This article appeared in a journal published by Elsevier. The attached [610102]

This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution
and sharing with colleagues.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.
In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information
regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:
http://www.elsevier.com/authorsrights

Author's personal copy
ComputersandMathematicswithApplications66(2013)1573–1580
Contents lists available at ScienceDirect
ComputersandMathematicswithApplications
journal homepage: www.elsevier.com/locate/camwa
Multiscaleanalysisofdiffusionprocessesincompositemedia
ClaudiaTimofte∗
FacultyofPhysics,UniversityofBucharest,P.O.BoxMG-11,Bucharest,Romania
a r t i c l e i n f o
Keywords:
Homogenization
Theperiodicunfoldingmethod
Dynamicalboundaryconditiona b s t r a c t
Thegoalofthispaperistopresentsomehomogenizationresultsforanonlinearproblem
arisinginthemodelingofdiffusioninaperiodicstructureformedbytwomediawith
differentproperties,separatedbyanactiveinterface.Oursettingisrelevantformodeling
heatdiffusionincompositematerialswithimperfectinterfacesorelectricalconduction
inbiologicaltissues.Theapproachwefollowisbasedontheperiodicunfoldingmethod,
whichallowsustodealwithgeneralmedia.
©2012ElsevierLtd.Allrightsreserved.
1. Introduction
Inthelastdecades,theproblemofdiffusioninhighlyheterogeneousmaterialshasbeenasubjectofhugeinterestfor
abroadcategoryofresearchers:mathematicians,physicists,biologists,etc.Themaingoalofthispaperistoanalyzethe
effectivebehaviorofthesolutionofsomenonlinearproblemsarisinginthemodelingofdiffusioninaperiodicstructure
formedbytwomediawithdifferentproperties,separatedbyanactiveinterface(see(1)).Oursettingprovestoberelevant
formodelingheatconductionincompositematerialswithimperfectinterfacesorelectricalconductioninbiologicaltissues.
We assume first that both media are connected. Using the periodic unfolding method recently introduced by
D.Cioranescu,A.Damlamian,G.Griso,P.DonatoandR.Zaki(see[1,2]),wecanprovethattheasymptoticbehaviorofthe
solutionofourproblemisgovernedbyanewnonlinearsystem(see(4)).Atamacroscopiclevel,thecompositemedium,
despiteitsdiscretestructure,canberepresentedbyacontinuousmodel,whichdescribesitasthesuperimpositionoftwo
interpenetratingcontinuousmedia,coexistingateverypointofthedomain.Hence,atthemacroscale,weobtaina bidomain
model,whichisageneralizationoftheso-called Barenblattmodel ,arisinginthecontextofdiffusioninpartiallyfissured
media(see,forinstance,[3,4]).
Asimilarmodelappearsalsointhestudyofthebioelectricalactivityoftheheartatamacroscopiclevel(see[5]).In
thiscase,atthemicroscopicscale,wedealwithamediumcomposedoftwodifferentconductivephases(theintracellular
andextracellularspaces),separatedbyadielectricinterface(modelingthecellularmembranes),whichhasacapacitiveand
anonlinearconductivebehavior.Theelectricpotentialverifiesellipticequationsinthetwoconductiveregions,coupled
byanevolutiveboundaryconditioninvolvingthepotentialjumpattheinterfacesbetweenthetwophases.Theevolution
intimeofthehomogenizedpotentialisgovernedexactlybya bidomainmodel.Suchamodel,proposedinthelate1970s
(see[6,7]),isconsideredtobeoneofthemostaccurateandrealisticmacroscopicdescriptionsoftheelectricalactivityof
cardiactissue,undernormalorpathologicalconditions.Asweshallsee,itsmathematicalformulationinvolvesasystemof
twodegenerateparabolicreaction–diffusionequations.Ithasbeenshownin[8]thatitcanalsobereformulatedintoone
parabolicsemi-linearpartialdifferentialequation,exhibitingnon-localityinspace.
Weshallalsobrieflydiscussadifferentgeometricsituation,inwhichonlyonephaseisconnected,whiletheotherone
isdisconnected.Inthiscase,weareledtoadifferentmacroscopicmodel(seeRemark2).
∗Tel.:+40721498466.
E-mailaddress:claudiatimofte@yahoo.com.
0898-1221/$–seefrontmatter ©2012ElsevierLtd.Allrightsreserved.
doi:10.1016/j.camwa.2012.12.003

Author's personal copy
1574 C.Timofte/ComputersandMathematicswithApplications66(2013)1573–1580
Fig. 1.Thegeometryoftheperiodicunitcell.
Similarproblemshavebeenconsidered,usingdifferenttechniques,in[5,8,9],forstudyingelectricalconductionin
biologicaltissues.Ourapproach,asalreadymentioned,isbasedonadifferentmethod,theperiodicunfoldingmethod,
whichallowsustoavoidtheuseofextensionoperatorsand,hence,todealwithmoregeneralmedia(seeSection2fora
briefdiscussionconcerningtheadvantagesofferedbytheuseofhomogenizationtechniquesbasedonthisgeneralmethod).
Theresultspresentedinthispaperconstitutealsoageneralizationofthoseobtainedin[3,4,10,11].Asamatteroffact,some
ofthemwereannounced,withoutdetailedproofs,in[11].Here,weofferdetailedproofsandconsidermuchmoregeneral
cases(forinstance,wedealherewiththecaseofmoregeneralnonlinearities β(x,uε),g(x, vε−uε)).Correctorresultsand
resultsforthecaseofnonsymmetricmatriceswillbepresentedinafuturepaper.
Theplanofthepaperisasfollows:inSection2,wegivethesettingoftheproblemweaddresshere.Ourmainconvergence
resultisgiveninSection3.Section4isdevotedtotheproofofthisresult.Thepaperendswithafewconclusionsandsome
references.
2. Setting of the problem
LetΩbeaboundeddomainin Rn(n≥3),withaLipschitzboundary ∂Ωconsistingofafinitenumberofconnected
components.Weconsiderthecaseinwhich Ωisaperiodicstructureformedbytwocomponents, Ωε
1andΩε
2,representing
twomaterialswithdifferentfeatures,separatedbyaninterface Γε.Weassumethatboth Ωε
1andΩε
2=Ω\Ωε
1are
connected,butonlyonephase, Ωε
1,reachestheexternalfixedboundaryofthedomain Ω.Here, εrepresentsasmall
parameterrelatedtothecharacteristicsizeofourtworegions.
Moreprecisely,let Y1beaLipschitzopenconnectedsubsetoftheunitcell Y=(0,1)n.LetY2=Y\Y1(seeFig.1).We
supposethatY2hasalocallyLipschitzboundary Γandweassumethattheintersectionsoftheboundaryof Y2withthe
boundaryofYareidenticallyreproducedonoppositefacesofthecell.
Wesupposethatrepeating Ybyperiodicity,theunionofallthesets Y1isconnectedandhasalocally C2boundary.Also,
weassumethattheoriginofthecoordinatesystemissetinaballcontainedinthisunion(see[4]).
Let
Zε= {k∈Zn|εk+εY⊆Ω},
Kε= {k∈Zε|εk±εei+εY⊆Ω,∀i=1,n},
whereeiaretheelementsofthecanonicalbasisof Rn.
Wedefine(seeFig.2)
Ωε
2=int
k∈Kε(εk+εY2)
and
Ωε
1=Ω\Ωε
2
andweset
θ=Y\Y2.
Letα1, β1∈Rsuchthat0 < α1< β1.Wedenoteby M(α1, β1,Y)thesetofallthesquarematrices A∈(L∞(Y))n×n
suchthat,forany ξ∈Rn,wehave (A(y)ξ, ξ) ≥α1|ξ|2,|A(y)ξ| ≤β1|ξ|,almosteverywherein Y.Weconsiderafamilyof
matricesAε(x)=A(x/ε)definedon Ω,whereA∈M(α1, β1,Y)isasymmetricsmooth Y-periodicmatrix.Weshalldenote
thematrixAbyA1inY1andbyA2,respectively,in Y2.

Author's personal copy
C.Timofte/ComputersandMathematicswithApplications66(2013)1573–1580 1575
Fig. 2.Abidimensionalsectionoftheperiodiccellstructure.
If(0,T)isthetimeinterval,weshallanalyzethemacroscopicbehaviorofthesolutionsofthefollowingsystem:


−div(Aε
1∇uε)+β(x,uε)=finΩε
1×(0,T),
−div(Aε
2∇vε)=finΩε
2×(0,T),

1∇uε·ν=Aε
2∇vε·νonΓε×(0,T),

1∇uε·ν=αε∂
∂t(vε−uε)+εg(x, vε−uε)onΓε×(0,T),
uε=0 on ∂Ω×(0,T),
uε(0,x)−vε(0,x)=c0(x)onΓε.(1)
Here,νistheunitoutwardnormalto Ωε
1,f∈L2(0,T;L2(Ω)),c0∈H1
0(Ω)andα >0.
Weassumethatthefunction β=β(x, v)iscontinuous,monotonouslynon-decreasingwithrespectto vforanyx
andsuchthat β(x,0)=0.Also,thefunction g=g(x, v)isconsideredtobecontinuouslydifferentiable,monotonously
non-decreasingwithrespectto vforanyxandwithg(x,0)=0.
Wesupposethatthereexist C≥0andtwoexponents qandrsuchthat
|β(x, v)|≤C(1+|v|q) (2)
and


∂g
∂v≤C(1+|v|q),
∂g
∂xi≤C(1+|v|r)1≤i≤n,(3)
with0 ≤q<n/(n−2)andwith0 ≤r<n/(n−2)+q.
Asexamplesofsuchfunctions,wementionthecaseofLangmuirorFreundlichkinetics(see[12]).
Forthespecialcaseofelectricalconductioninbiologicaltissues,wemayconsiderthat f=0, β=0andgis,inR3,
acubicfunction,likeintheFitzHugh–Nagumomodel(see,forinstance,[5]).Thus,forthiscase,in(1)weassumethatthe
normalfluxiscontinuousacrossthecellmembranesandthetransmembranepotential vε−uεonΓεsatisfiesadynamic
condition.Infact,thepotentialhasajumpacrossthemembranes,duetoitscapacitiveandconductivebehavior.Here, αis
themembranecapacityperunitofareaandthetermcontaining gin(1)takesintoaccounttheconductivebehaviorofthe
membrane.
Forresultsconcerningthewellposednessofproblem(1),wereferto[5,9,10,13].
Unfortunately,itisimpossibletosolveacomplicatedmodelsuchas(1)thattakesintoaccountthefine-structuredetails
ofthegeometryofthecompositemedium.Therefore,thecomplicatedmicrostructuremustbeaveraged(homogenized)to
yieldamodelthatdescribesitsaveragedproperties.
UsingtheperiodicunfoldingmethodintroducedbyD.Cioranescu,A.Damlamian,G.Griso,P.DonatoandR.Zaki
(see[1,2]),wecanprovethattheasymptoticbehaviorofthesolutionofourproblemisgovernedbyanewnonlinearsystem
(see(4)).Atamacroscopicscale,thecompositemediumcanberepresentedbyacontinuousmodel,whichdescribesitasthe

Author's personal copy
1576 C.Timofte/ComputersandMathematicswithApplications66(2013)1573–1580
superimpositionoftwointerpenetratingcontinuousmedia,coexistingateverypointofthedomain.Intheparticularcase
oftheelectricalconductioninbiologicaltissues,thetissueisconsideredtobeatwo-phasemedium(everypointinspace
iscomposedofacertainfractionofintracellularspaceandafractionofextracellularspaceandateachpointinspacethere
aretwoelectricalpotentialsandtwocurrents).
Oneadvantageofferedbythisapproachisthat,allowingustopassfromthemicroscopicscaletothemacroscopicone,
wecandescribethemacroscopicpropertiesofournonhomogeneoussystemintermsofthepropertiesofitsmicroscopic
structure.Intuitively,thenonhomogeneousrealsystem,havingaverycomplicatedmicrostructure,isreplacedbyafictitious
homogeneousone,whoseglobalcharacteristicsrepresentagoodapproximationoftheinitialsystem.Thehomogenization
methodeliminatesthedifficultiesrelatedtotheexplicitdeterminationofasolutionoftheproblematthemicroscaleand
offersalessdetaileddescription,butonewhichisapplicabletomuchmorecomplexsystems.
Anotheradvantageofferedbyourapproach,basedontheperiodicunfoldingmethod,isthatitallowsustoworkwith
generalmedia(seeRemark5).Fordealingwithsuchtwo-componentdomains,weuseunfoldingoperators,whichmap
functionsdefinedonoscillatingdomainsintofunctionsdefinedonfixeddomains.Insuchaway,wecanavoidtheuse
ofextensionoperatorsand,therefore,wecandealwithmediawithlessregularitythanthoseusuallyconsideredinthe
literature(compositematerialsandbiologicaltissuesarehighlyheterogeneousandtheirinterfacesarenotverysmooth,in
general).
Also,fromthepointofviewofnumericalcomputation,thehomogenizedequations,definedonafixeddomain Ωand
describingtheeffectivebehaviorofoursystem,willhavesimplercoefficients(evenconstantcoefficientsinourmaincase
describedbyTheorem1)and,therefore,itwillbeeasiertobesolvednumericallythantheoriginalequations,whichhave
rapidlyoscillatingcoefficients,aredefinedonacomplicateddomainandsatisfynonlinearconditionsontheboundaries.
Thedependenceontherealmicrostructureisgiventhroughthehomogenizedcoefficients(whichnolongerinvolveany
rapidoscillations).Thehomogenizedsolutioncanbeusedasagoodapproximationofthemicroscopicsolutionforsmall
valuesof ε.Inordertoimprovetheconvergencerate,weplantoobtain,inaforthcomingpaper,correctorresults.Still,
thedegeneracyofthissystembringssomenumericaldifficulties,simulatingthecompositemediumwiththeaidofthe
bidomainmodelturningouttobequiteexpensive.Toincreasetheefficiencyofthehomogenizationmethods,onecanuse
parallelcomputationsorsomereducedalternativehomogenizationmodels.Isthebidomainmodelthe‘‘best’’one?Onehas
tofacetwooppositeviewpoints:tomodelasaccuratelyaspossibleagivenphenomenonandtokeepaslowaspossiblethe
complexityofthemodel,intermsofcomputationaleffortsandinnumberofparameters.Apossiblealternativeisoffered
bythemonodomainmodel ,whichisasimplifiedversionofthebidomainmodel,commonlyusedbecauseitleadstolower
computationalcoststhanthebidomainmodel(see,forinstance,[8]).
Ontheotherhand,itcouldbearguedthattheassumedperiodicityofthemicrostructureisnotaveryrealistichypothesis.
Forinstance,inporouscompositemediaorinbiologicaltissuesitwouldbeinterestingtotakeintoaccounttherandomness
ofthemicrostructure.However,aperiodicrepresentationofsuchmediaprovidesaverygooddescription,inagreement
withtheexperimentalfindings(see[14]).
Wecantreatinaquitesimilarmannerthemoregeneralcaseofaheterogeneousmediummodeledbyamatrix

0=A0(x,x/ε)orbyamatrixDε=D(t,x/ε),undersuitablehypothesesonthematrices A0andD.Forinstance,wecan
supposethatDisasymmetricmatrix,with D, ∂tD∈L∞(0;T;L∞per(Y))n×nandsuchthat,forany ξ∈Rn, (D(t,x)ξ, ξ) ≥
α2|ξ|2,|D(t,x)ξ| ≤β2|ξ|,almosteverywherein (0,T)×Y,for0 < α2< β2.
Also,letusmentionthatusingtheperiodicunfoldingmethod,wecanrigorouslydeal(see[15])withthecaseinwhich
weconsideranotherrelevantscaling,i.e.thecaseinwhichthedynamictermandtheterminvolving gontheinterfaces
Γεareoftheorderof1 /ε.Suchaproblem,addressedusingdifferenttechniquesin[9],isrelevantfordescribingthe
responseofbiologicaltissuestotheinjectionofelectricalcurrentsintheradiofrequencyrange.Inthiscase,oneobtains,
atthemacroscale,acompletelydifferentmodel(anellipticequationwithmemoryterms).
Ifwedealwithadifferentgeometry,i.e.weconsiderthatonlyonephaseisconnected,whiletheotheroneisdisconnected,
weareledtoadifferentmacroscopicmodel(seeRemark2).
3. The main result
Usingtheperiodicunfoldingmethod,wecanpasstothelimitinthevariationalformulationofproblem(1)andweobtain
theeffectivebehaviorofthesolutionofourmicroscopicmodel.
Theorem 1.Thesolution (uε, vε)ofsystem(1)converges,as ε→0,totheuniquesolution (u, v),withu , v∈L2(0,T;H1
0(Ω)),

∂t(u−v)∈L2(0,T;L2(Ω))andu, v∈C0([0,T];H1
0(Ω)),ofthefollowingmacroscopicproblem:


α|Γ|∂
∂t(u−v)−div(A1∇u)+θβ(x,u)− |Γ|g(x, v−u)=θf inΩ×(0,T),
α|Γ|∂
∂t(v−u)−div(A2∇v)+ |Γ|g(x, v−u)=(1−θ)f inΩ×(0,T),
u(0,x)−v(0,x)=c0(x)onΩ.(4)

Author's personal copy
C.Timofte/ComputersandMathematicswithApplications66(2013)1573–1580 1577
In(4),A1andA2arethehomogenizedmatrices,definedby:
A1
ij=
Y1
aij+aik∂χ1j
∂yk
dy,
A2
ij=
Y2
aij+aik∂χ2j
∂yk
dy
andχ1k∈H1
per(Y1)/R, χ2k∈H1
per(Y2)/R,k=1, . . . ,n,aretheweaksolutionsofthecellproblems
−∇y·(A1(y)∇yχ1k)= ∇yA1(y)ek,y∈Y1,
(A1(y)∇yχ1k)·ν= −A1(y)ek·ν,y∈Γ,
−∇y·(A2(y)∇yχ2k)= ∇yA2(y)ek,y∈Y2,
(A2(y)∇yχ2k)·ν= −A2(y)ek·ν,y∈Γ./square
So,atamacroscopicscale,weobtainanewsystem,whichissimilartothe bidomainmodel,appearinginthecontextof
diffusioninpartiallyfissuredmediaorinthecontextofelectricalactivityoftheheart(forthiscase, f=0, β=0).
Letusnoticethatourmacroscopicmodel(4)isadegenerateparabolicsystem,asthetimederivativesinvolvethe
unknown v−u./square
Remark 2.Ifweconsiderthecaseofadifferentgeometry,i.e.ifweassumethat Ωε
1isstillconnected,but Ωε
2isdisconnected,
thenthehomogenizedmatrix A2=0andsystem(4)consistsinthecouplingofapartialdifferentialequationandanordinary
differentialone,which,inparticularcases,canbesolved.Insuchaway,weremainwithonlyonepartialdifferentialequation
withmemory. /square
Remark 3.Wecanrelaxtheconditionsimposedonnonlinearities gandβ.Forinstance,wecanconsiderthat βandgare
maximalmonotonegraphs,satisfyingsuitablegrowthconditions(see[15]). /square
Remark 4.Wecandeal,usingtheperiodicunfoldingmethod,withotherinterestingcases,obtainedforvariousscalings
ofthediffusiontermsinthetwophasesand,also,foradifferentscalingforthedynamicandthenonlineartermsonthe
imperfectinterfaces,asin[16]. /square
4. Proof of the main result
Weconsiderthevariationalformulationofproblem(1):T
0
Ωε
1Aε
1∇uε· ∇ϕdxdt+T
0
Ωε
2Aε
2∇vε· ∇ϕdxdt
+T
0
Ωε
1β(x,uε)ϕdxdt+αεT
0
Γε(uε−vε)∂
∂t[ϕ]dσdt
+αε
Γε(uε−vε)(0)[ϕ](0)dσ+εT
0
Γεg(x, vε−uε)[ϕ]dσdt=T
0
Ωfϕdxdt, (5)
forany ϕ∈L2(Ω×(0,T))suchthat
ϕ|Ωε
1∈L2(0,T;H1(Ωε
1)), ϕ |Ωε
2∈L2(0,T;H1(Ωε
2)),
[ϕ] ∈H1(0,T;L2(Γε)),
ϕvanisheson ∂Ω×(0,T)andϕvanishesatt=T.Here,wehavedenotedby [ϕ]thedifferenceofthetracesof ϕ|Ωε
1and
ϕ|Ωε
2onΓε.
Let
H1
∂Ω(Ωε
1)= {v∈H1(Ωε
1)|v=0on∂Ω∩∂Ωε
1},
endowedwiththenorm
∥v∥H1
∂Ω(Ωε
1)= ∥∇v∥L2(Ωε
1).
Letusintroducethespace Hε=L2(0,T;H1
∂Ω(Ωε
1))×L2(0,T;H1(Ωε
2)),endowedwiththescalarproduct
(u, ϕ)Hε=T
0
Ωε
1∇u1· ∇ϕ1dxdt+T
0
Ωε
2∇u2· ∇ϕ2dxdt
+εT
0
Γε(u1−u2)(ϕ1−ϕ2)dσdt,∀u=(u1,u2), ϕ=(ϕ1, ϕ2). (6)

Author's personal copy
1578 C.Timofte/ComputersandMathematicswithApplications66(2013)1573–1580
Exactlylikein[4,17],wecanprovethatthenormassociatedtothescalarproduct(6)isequivalenttothestandardnorm
inL2(0,T;H1
∂Ω(Ωε
1))×L2(0,T;H1(Ωε
2)),withconstantsindependentof ε.
Thereexistsauniqueweaksolution (uε, vε)of(5),withuε∈L2(0,T;H1
∂Ω(Ωε
1)), vε∈L2(0,T;H1(Ωε
2))(see,forinstance,
[4,5,9,10,17]).
Undertheabovehypothesesonthedata,usingCauchy–Schwartz,Poincaré’s,Young’sandGronwall’sinequalities,we
canobtainsuitableenergyestimates,independentof ε,foroursolution(see[5,9,10,12]).Moreprecisely,ifwemultiplythe
firstequationin(1)by uε,thesecondoneby vεandweintegrateformallybyparts,weobtain,for0 <t<T,
t
0
Ωε
1Aε
1∇uε· ∇uεdxdτ+t
0
Ωε
2Aε
2∇vε· ∇vεdxdτ+t
0
Ωε
1β(x,uε)uεdxdτ
+εα
2
Γε(vε−uε)2dσ+εt
0
Γεg(x, vε−uε)(vε−uε)dσdτ
=εα
2
Γε(c0)2dσ+t
0
Ωε
1fuεdxdτ+t
0
Ωε
2fvεdxdτ.
Usingtheconditionsimposedfor βandgandourhypothesesonthedata,wehave:
t
0
Ωε
1Aε
1∇uε· ∇uεdxdτ+t
0
Ωε
2Aε
2∇vε· ∇vεdxdτ+ε
Γε(vε−uε)2dσ≤C, (7)
whereCisindependentof ε.Thesecomputationscanbemaderigorousbyusingthetechniquesdevelopedin[5].
Therefore,itfollowsthat (uε, vε)isboundedinHεandthereexistsaconstant C>0,independentof ε,suchthat
∥uε∥L2(0,T;H1
∂Ω(Ωε
1))≤C,
∥vε∥L2(0,T;H1(Ωε
2))≤C
and
∥vε−uε∥L2(0,T;L2(Γε))≤Cε−1
2.
Forprovingourmainresult,weusetwounfoldingoperators, Tε
1andTε
2,whichmapfunctionsdefinedonoscillating
domainsintofunctionsdefinedonfixeddomains.Insuchaway,wecanavoidtheuseofextensionoperators(see[1,17,18]).
Also,weshallmakeuseoftheboundaryunfoldingoperator, Tε
b,introducedin[2].Therefore,usingour aprioriestimates
andthepropertiesoftheabovementionedunfoldingoperators,wecanprovethatthereexist u, v∈L2(0,T;H1
0(Ω)),u∈
L2((0,T)×Ω;H1
per(Y1)),v∈L2((0,T)×Ω;H1
per(Y2))suchthat,uptoasubsequence,for ε→0,wehave:

1(uε) ⇀uweaklyinL2((0,T)×Ω,H1(Y1)),

1(∇uε) ⇀∇u+ ∇yuweaklyinL2((0,T)×Ω×Y1),

2(vε) ⇀ vweaklyinL2((0,T)×Ω,H1(Y2)),

2(∇vε) ⇀∇v+ ∇yvweaklyinL2((0,T)×Ω×Y2).
Moreover,asin[10],

∂t(u−v)∈L2(0,T;L2(Ω))
and
u, v∈C0([0,T];H1
0(Ω)).
Inordertoobtainthelimitproblem(4),wetake,inafirststep, Φ1,Φ2∈C∞
0(Ω)=D(Ω)andΨ∈C∞
0((0,T))=
D(0,T).Wehave:
T
0
Ωε
1Aε
1∇uε· ∇Φ1Ψdxdt+T
0
Ωε
2Aε
2∇vε· ∇Φ2Ψdxdt
+T
0
Ωε
1β(x,uε)Φ1Ψdxdt+αεT
0
Γε(uε−vε)(Φ2−Φ1)dΨ
dtdσdt
+εT
0
Γεg(x, vε−uε)(Φ2−Φ1)Ψdσdt
=T
0
Ωε
1fΦ1Ψdxdt+T
0
Ωε
2fΦ2Ψdxdt. (8)

Author's personal copy
C.Timofte/ComputersandMathematicswithApplications66(2013)1573–1580 1579
Applyingthecorrespondingunfoldingoperatorsin(8),weobtain:
T
0
Ω×Y1Tε
1(Aε
1)Tε
1(∇uε)·Tε
1(∇Φ1)Ψdxdydt +T
0
Ω×Y2Tε
2(Aε
2)Tε
2(∇vε)·Tε
2(∇Φ2)Ψdxdydt
+T
0
Ω×Y1Tε
1(β(x,uε))Tε
1(Φ1)Ψdxdydt +αT
0
Ω×ΓTε
b(uε−vε)Tε
b(Φ2−Φ1)dΨ
dtdxdσdt
+T
0
Ω×ΓTε
b(g(x, vε−uε))Tε
b(Φ2−Φ1)Ψdxdσdt
=T
0
Ω×Y1Tε
1(f)Tε
1(Φ1)Ψdxdydt +T
0
Ω×Y2Tε
2(f)Tε
2(Φ2)Ψdxdydt . (9)
Inviewoftheaboveconvergenceresults,itisobvioushowtopasstothelimitinthelineartermsof(9)definedon Ω×Y1
and,respectively, Ω×Y2(see,fordetails,[1,10–12]).
Forthetermsinvolvingthenonlinearfunctions βandg,letusnoticethat,exactlylikein[12],onecanprovethat,
assuming(2),forany zε⇀zweaklyinH1
0(Ω),weget β(x,zε)→β(x,z)stronglyinLq(Ω),whereq=2n
q(n−2)+n.Notice
thatq≥1.Also,onecanprove(see[12])thatif Hisacontinuouslydifferentiablefunction,monotonouslynon-decreasing,
withH(x, v)=0ifandonlyif v=0andsatisfyingtheassumptions(3),then,forany zε⇀zweaklyinH1
0(Ω),weget
H(x,zε) ⇀H(x,z),weaklyinW1,q
0(Ω).Therefore,usingthepropertiesoftheunfoldingoperators Tε
1and,respectively, Tε
b
(see,forinstance,[2])andLebesgue’sconvergencetheorem,wehave
T
0
Ω×Y1Tε
1(β(x,uε))Tε
1(Φ1)Ψdxdydt →T
0
Ω×Y1β(x,u)Φ1Ψdxdydt ,
αT
0
Ω×ΓTε
b(uε−vε)Tε
b(Φ2−Φ1)dΨ
dtdxdσdt→αT
0
Ω×Γ(u−v)(Φ2−Φ1)dΨ
dtdxdσdt
and
T
0
Ω×ΓTε
b(g(x, vε−uε))Tε
b(Φ2−Φ1)Ψdxdσdt→T
0
Ω×Γg(x, v−u)(Φ2−Φ1)Ψdxdσdt.
Thus,passingtothelimitin(9),with ε→0,weget:
T
0
Ω×Y1A1(∇u+ ∇yu)· ∇Φ1Ψdxdydt +T
0
Ω×Y2A2(∇v+ ∇yv)· ∇Φ2Ψdxdydt
+T
0
Ω×Y1β(x,u)Φ1Ψdxdydt +αT
0
Ω×Γ(u−v)(Φ2−Φ1)dΨ
dtdxdσdt
+T
0
Ω×Γg(x, v−u)(Φ2−Φ1)Ψdxdσdt
=T
0
Ω×Y1fΦ1Ψdxdydt +T
0
Ω×Y2fΦ2Ψdxdydt . (10)
Inasecondstep,wetakethetestfunctions wε
i=εΦi(x)ϕi(x
ε)Ψ(t),withi=1,2,where Φ∈D(Ω), ϕi∈H1
per(Yi),
Ψ∈D((0,T)).Observingthat Tε
i(wε
i)→0stronglyinL2((0,T)×Ω×Yi)andTε
i(∇wε
i)→Φi∇yϕi,stronglyinL2((0,T)×
Ω×Yi),wecanpasstothelimitandweget:
T
0
Ω×Y1A1(∇u+ ∇yu)· ∇yϕ1Φ1Ψdxdydt +T
0
Ω×Y2A2(∇v+ ∇yv)· ∇yϕ2Φ2Ψdxdydt =0. (11)
Adding(10)and(11)andusingstandarddensityarguments,weobtain:
T
0
Ω×Y1A1(∇u+ ∇yu)·(∇xΦ1+ ∇yϕ1)dxdydt
+T
0
Ω×Y2A2(∇v+ ∇yv)·(∇xΦ2+ ∇yϕ2)dxdydt
+T
0
Ω×Y1β(x,u)Φ1dxdydt +αT
0
Ω×Γ∂
∂t(v−u)(Φ2−Φ1)dxdσdt

Author's personal copy
1580 C.Timofte/ComputersandMathematicswithApplications66(2013)1573–1580
+T
0
Ω×Γg(x, v−u)(Φ2−Φ1)dxdσdt
=T
0
Ω×Y1fΦ1dxdydt +T
0
Ω×Y2fΦ2dxdydt , (12)
forΦ1,Φ2∈L2(0,T;H1
0(Ω)),ϕ1∈L2((0,T)×Ω;H1
per(Y1))andϕ2∈L2((0,T)×Ω;H1
per(Y2)).
Thisisexactlythevariationalformulationofthelimitproblem(4).Indeed,ifwerememberthat θ= |Y1|andwetake
Φ1=0and,respectively, Φ2=0,usingthecellproblems,wegetexactly(4).
Letusremarkthatwecaneasilypasstothelimit,with ε→0,intheinitialconditionandweobtain u(0,x)−v(0,x)=
c0(x),∀x∈Ω.
Asuandvareuniquelydetermined(see[5,10]),thewholesequencesofmicroscopicsolutionsconvergetoasolutionof
theunfoldedlimitproblemandthiscompletestheproofofTheorem1.
Remark 5.Theaboveresultscanbeextendedtothecaseinwhich Aεisasequenceofmatricesin M(α1, β1,Ω)suchthat

i(Aε)→Aa.e.in Ω×Y,
withi=1,2andA=A(x,y)∈M(α1, β1,Ω×Y).Theonlydifferenceisthatinthiscasethehomogenizedmatricesareno
longerconstantanddependon x./square
5. Conclusions
Usingtheperiodicunfoldingmethod,theeffectivebehaviorofthesolutionofsomeproblemsarisinginthemodelingof
diffusionprocessesinaperiodicstructureformedbytwomediawithdifferentproperties,separatedbyanactiveinterface,
wasanalyzed.Twointerestinggeometricsituationswerediscussed,leadingtodifferentmacroscopicmodels(seeTheorem1
andRemark2).
Oneadvantageofferedbyourapproachisthatitallowsustoavoidtheuseofextensionoperatorsand,asaresult,todeal
withmuchmoregeneralmedia.
Oursettingisrelevantforstudyingtheheatconductionincompositematerialswithimperfectinterfacesortheelectrical
conductioninbiologicaltissues.
References
[1] D.Cioranescu,A.Damlamian,G.Griso,Theperiodicunfoldingmethodinhomogenization,SIAMJ.Math.Anal.40(4)(2008)1585–1620.
[2] D.Cioranescu,P.Donato,R.Zaki,Asymptoticbehaviorofellipticproblemsinperforateddomainswithnonlinearboundaryconditions,Asymptot.
Anal.53(4)(2007)209–235.
[3] G.I.Barenblatt,Y.P.Zheltov,I.N.Kochina,Basicconceptsinthetheoryofseepageofhomogeneousliquidsinfissuredrocks(strata),Prikl.Mat.Mekh.
24(1960)852–864.
[4] H.I.Ene,D.Polisevski,Modelofdiffusioninpartiallyfissuredmedia,Z.Angew.Math.Phys.53(6)(2002)1052–1059.
[5] M.Pennacchio,G.Savaré,P.C.Franzone,Multiscalemodelingforthebioelectricactivityoftheheart,SIAMJ.Math.Anal.37(4)(2005)1333–1370.
[6] W.T.Miller,D.B.Geselowitz,Simulationstudiesoftheelectrocardiograminthenormalheart,Circ.Res.43(1978)301–315.
[7] L.Tung,ABi-domainmodelfordescribingischemicmyocardialD-Cpotentials,Ph.D.Thesis,MIT,Cambridge,1978.
[8] Y.Bourgault,Y.Coudière,C.Pierre,Existenceanduniquenessofthesolutionforthebidomainmodelusedincardiacelectrophysiology,Nonlinear
Anal.RWA10(1)(2009)458–482.
[9] M.Amar,D.Andreucci,P.Bisegna,R.Gianni,Onahierarchyofmodelsforelectricalconductioninbiologicaltissues,Math.MethodsAppl.Sci.29(7)
(2006)767–787.
[10] C.Timofte,Multiscaleanalysisinnonlinearthermaldiffusionproblemsincompositestructures,Cent.Eur.J.Phys.8(4)(2010)555–561.
[11] C.Timofte,Multiscaleanalysisofcompositestructures,Biomath1(2012)1209021.http://dx.doi.org/10.11145/j.biomath.2012.09.021.
[12] C.Conca,J.I.Díaz,C.Timofte,Effectivechemicalprocessesinporousmedia,Math.ModelsMethodsAppl.Sci.(M3AS)13(10)(2003)1437–1462.
[13] H.Brézis,Problèmesunilatéraux,J.Math.PuresAppl.51(1)(1972)1–168.
[14] C.S.Henriquez,Simulatingtheelectricalbehaviorofcardiactissueusingthebidomainmodel,Crit.Rev.Biomed.Eng.21(1993)1–77.
[15] C.Timofte,Homogenizationresultsforreaction–diffusionprocessesinatwo-phasemedium(inpreparation).
[16] M.A.Peter,M.Böhm,Differentchoicesofscalinginhomogenizationofdiffusionandinterfacialexchangeinaporousmedium,Math.MethodsAppl.
Sci.31(11)(2008)1257–1282.
[17] P.Donato,K.H.LeNguyen,R.Tardieu,Theperiodicunfoldingmethodforaclassofimperfecttransmissionproblems,J.Math.Sci.176(6)(2011)
891–927.
[18] D.Cioranescu,A.Damlamian,P.Donato,G.Griso,R.Zaki,Theperiodicunfoldingmethodindomainswithholes,2010,Preprint.

Similar Posts