See discussions, stats, and author profiles for this publication at: [601874]
See discussions, stats, and author profiles for this publication at:
http://www.researchgate.net/publication/200556761
Force-closure workspace analysis of
cable-driven parallel mechanisms
ARTICLE
in
MECHANISM AND MACHINE THEORY
· JANUARY 2006
Impact Factor: 1.31
·
DOI: 10.1016/j.mechmachtheory.2005.04.003
CITATIONS
56
5 AUTHORS
, INCLUDING:
Bang Cong Pham
Ho Chi Minh City University of Technol
…
12
PUBLICATIONS
171
CITATIONS
SEE PROFILE
Guilin Yang
Agency for Science, Technology and R
…
135
PUBLICATIONS
1,476
CITATIONS
SEE PROFILE
Shabbir Kurbanhusen Mustafa
Singapore Institute of Technology (SIT)
30
PUBLICATIONS
226
CITATIONS
SEE PROFILE
I-Ming Chen
Nanyang Technological University
307
PUBLICATIONS
2,485
CITATIONS
SEE PROFILE
Available from: I-Ming Chen
Retrieved on: 23 August 2015
Force-closureworkspaceanalysisofcable-driven
parallelmechanisms
CongBangPhama,*,SongHuatYeoa,GuilinYangb,
MustafaShabbirKurbanhusena,I-MingChena
aSchoolofMechanicalandAerospaceEngineering,NanyangTechnologicalUniversity,Singapore637098,Singapore
bMechatronicsGroup,SingaporeInstituteofManufacturingTechnology,Singapore638075,Singapore
Received9November2004;receivedinrevisedform23March2005;accepted27April2005
Availableonline27June2005
Abstract
A cable-driven parallel mechanism (CDPM) possesses a number of promising advantages over the
conventional rigid-link mechanisms, such as simple and light-weight mechanical structure, high-loading
capacity,andlargereachableworkspace.However,theformulationsandresultsobtainedfortherigid-link
mechanisms cannot be directly applied to CDPMs due to the unilateral property of cables. This paperfocusesontheworkspaceanalysisoffullyrestrainedpositioningmechanisms.Becausethecabletensionisthemostessentialissuetoconstrainthemovingplatform,theforce-closureworkspaceismainlystudied.Ageneralapproachisproposedtochecktheforce-closurecondition.Thisconditionisexpressedintermsoftheconvexhullwhichenclosestheorigin.However,suchaconditionisformulatedandexpressedinhighdimensions.Tosimplifytheanalysis,arecursivedimensionreductionalgorithmisproposedtocheckcon-vexhullsinonedimensionspaces.ThisalgorithmisverifiedthroughsimulationresultsofvariousCDPMs.
/C2112005 Elsevier Ltd. All rights reserved.
Keywords:Force-closure;Workspaceanalysis;Cable-drivenmechanism
0094-114X/$-seefrontmatter /C2112005ElsevierLtd.Allrightsreserved.
doi:10.1016/j.mechmachtheory.2005.04.003*Correspondingauthor.
E-mail addresses: [anonimizat] (C.B. Pham), [anonimizat] (S.H. Yeo), glyang@simtech.a-
star.edu.sg(G.Yang),[anonimizat] (M.S.Kurbanhusen), [anonimizat] (I-MingChen).www.elsevier.com/locate/mechmtMechanismandMachineTheory41(2006)53–69
Mechanism
and
Machine Theory
1.Introduction
Currently,mostofmechanismsusedforrobotmanipulatorsareconventionallinkagemecha-
nismsthatconsistofanumberofrigidlinksandjoints.Basedontheirkinematicstructures,these
mechanismsareclassifiedintotwomajortypes:serialandparallelmechanisms [1].Fig.1showsa
cable-drivenparallelmechanism(CDPM)formedbyreplacingallthesupportinglegsofaparallel
mechanismwithcables.ItisseenthattheCDPMisaclosed-loopmechanisminwhichthemoving
platformisconnectedtothebasebyseveralcables.Thebasesuspendingpointscanbemountedat
theextremitiesofthebase.Therefore,thesemanipulatorscanperformmanipulationtasksrequir-ingalargereachableworkspace.Generally,aCDPMhasthefollowingsignificantadvantages:
•Simplelight-weightmechanicalstructure,resultinginlowenergyconsumption.
•Largereachableworkspace,limitedmainlybycablelengthsandcabletensionconstraints.
•Lowmomentinertiaandhighspeedmotion.
•Easyreconfigurabilitybyrelocatingplatformconnectingpointsandbasesuspendingpoints.
TheadvantagesmaketheCDPMapromisingalternativetotherigid-linkmechanismsinmany
industrialapplications,suchasloadliftingandpositioning [2],coordinatemeasurement [3,4],air-
crafttesting[5],hapticdevices [6,7],androbotrehabilitation [8].
Unlikerigidlinks,cablesarecharacterizedbytheunilateralproperty(canpullbutcannotpush
movingplatforms),andthereforetheformulationsandresultsobtainedforthekinematicsanal-
ysis,workspaceanalysis,trajectoryplanning,etc.oftherigid-linkmechanismscannotbedirectly
applied.Hence,onechallengingissueistodeterminetheposeswherebythemovingplatformis
fullyconstrainedbythecables.ForCDPMs,itisknownthatmaintainingpositivecabletension
iscriticalinconstrainingthemovingplatform.Hence,theforce-closureworkspaceofCDPMsisa
setofposeswherebyresultantcabletensionscansustainanarbitraryexternalwrenchactingon
themovingplatform.Oncetheforce-closureworkspaceisobtained,itsarea(inplanarcases)orits
Fig.1. Acable-drivenparallelmechanism.54 C.B.Phametal./MechanismandMachineTheory41(2006)53–69
volumes(inspatialcases)canbeusedasaprimarycriteriatodesignacable-drivenparallelmech-
anismsuchthattheforce-closureworkspacematchestherequiredworkspace.
Becauseoftheadvantagesanduniquefeaturesofcables,CDPMshavereceivedagreatatten-
tion in robotics literature. The first general classification was given by Ming and Higuchi [9].
Basedonthenumberofcables( m)andthenumberofdegreesoffreedom( n),theCDPMswere
classified into three categories, i.e. the incompletely restrained positioning mechanisms
(m<n+1),the completelyrestrainedpositioningmechanisms( m=n+1)andthe redundantly
restrained positioning mechanisms ( m>n+1). With such classification, a number of different
workspaceshavebeenstudied.OneoftheearlyworksisthatfortheNISTROBOCRANE [2],
which is similar to a Gough–Stewart platform parallel manipulator, but replacing the parallel
linkswithanumberofcables.Tadokoroalsoanalyzedthereachableworkspaceforacable-dri-
ven,six-DOFmotionbaseforvirtualsensationofacceleration [10],andexploredthereachable
workspace of a redundant eight-wire mechanism to derive optimal wire configuration [11].
Dynamic workspace analysis has been performed by Gosselin and Barrette [12]in such a way
that the motion of a moving platform is incorporated into a set of wrenches called a pseudo-
pyramid. The statically reachable workspace is defined by Agrawal and coworkers [13]as the
set all end-effector poses that can be reached statically. Additionally, Verhoeven et al. has
exploredthe controllableworkspaceand otherworkspacepropertiesfor tendonbased Stewart
platformsin[14–16].Recently,Ebert–Uphoffhasreviewedsomebasicworkspaceterminologies
for cable-driven robots [17]and alsogeometrically explored the wrench-feasible workspace for
cable-driven robots by visualizing a net wrench set as a hyper-parallelogram [18]. A similar
researchissuetermedthecable-forceregionisalsoexploredbyOsumietal. [19].However,incon-
straining positive cable tensions, these analyses are almost based on the null space approach
through pseudo-inverse matrices or graphical approaches that are only convenient in some
specificcases.
Theobjectivesofthispaperaretodevelopageneralalgorithmtoexaminetheforce-closure
condition which is sufficient to fully restrain the moving platform, and to generate the force-
closure workspace for CDPMs. Here, the research is focused on fully restrained CDPMs
(mPn+1).Ageneralrecursiveapproachisproposedtochecktheforce-closurecondition.This
conditionisexpressedintermsoftheconvexhullwhichenclosestheorigin.Recursivityimplies
thatcheckingtheconvexhullisrealizedin( n/C01)-dimensionalspacesinsteadofinan n-dimen-
sionalspace.Thisisdonebyreducingonerowandonecolumnoftheoriginalsystematatimevia
Gaussianeliminations.Thisalgorithmisverifiedthroughapplyingittoanalyzetheworkspaceof
both the completely restrained 4-3 cable-driven planar parallel mechanism (4-3-CDPPM) as
shown inFig. 2(a) and the redundantly restrained 8-6 cable-driven spatial parallel mechanism
(8-6-CDSPM)asshownin Fig.2(b).
Inouranalysis,thefollowingassumptionsaremade:
•Each motor controls the length of exactly one cable; therefore, there are mmotors and m
cables.
•Duetothefactthatcablescanonlypullbutcannotpush,allcablesmustremaininpositive
tensionatalltimes.
•Allcablesareassumedtobeinelasticandextendinstraightlinepathsfromthebasesuspending
pointBitotheplatformconnectingpoint Pi.C.B.Phametal./MechanismandMachineTheory41(2006)53–69 55
Theremainingsectionsofthispaperareorganizedasfollows:inSection2,kinematicmodelling
andstaticequilibriumofthemovingplatformareformulated.Force-closureconditionandrecur-
siveconvexhullcheckingalgorithmfollowedbyforce-closureworkspacegenerationarepresented
inSection3.Section4illustratessomeresultsofforce-closureworkspaceobtainedbytherecur-
sivealgorithm.ThepaperissummarizedinSection5.
2.Kinematic modellingandstatic equilibrium
AschematicdiagramofafullyrestrainedCDPMisshownin Fig.3,inwhichthemovingplat-
formisconnectedtothebasethroughdrivingcables, li¼BiPi/C131/C131!ði¼1;2;…;mȚ.Fig. 2. Two examples of symmetric cable-driven parallel mechanisms: (a) 4-3-CDPPM: completely restrained
positioningmechanism,(b)8-6-CDSPM:redundantlyrestrainedpositioningmechanism.
BiPi li
{B}{P}
P
O
Fig.3. KinematicdiagramofaCDPM.56 C.B.Phametal./MechanismandMachineTheory41(2006)53–69
Letframe{B}bethebaseframeandframe{ P}bethemovingplatformframe(attachedatthe
centerofmass Pofthemovingplatform).Theframe{ P}isknownwithrespecttotheframe{ B}
bythekinematictransformationmatrix TB,Pasfollows:
TB;P¼Rp
01/C20/C21
ð1Ț
wherep={xyz}Tisthepositionvectorofpoint Pwithrespecttothebaseframe{ B}and
R¼ca/C1cbð/C0sa/C1ccțca/C1sb/C1scȚð sa/C1scțca/C1sb/C1ccȚ
sa/C1cbðca/C1ccțsa/C1sb/C1scȚð /C0 ca/C1scțsa/C1sb/C1ccȚ
/C0sb cb/C1sc cb/C1cc2
643
75
representstheorientationofframe{ P}withrespecttoframe{ B},inwhich a,bandcarethe
Z/C0Y/C0XEulerangles[20].
Inordertosustainanyexternalwrench( fp,mp)appliedonthemovingplatform,allcablesmust
beabletocreatetensionforcestoachieveequilibriumofthemovingplatform.Referringto Fig.4,
theequilibriumconditionsforforceandtorqueatthemovingplatformareasfollows:
Xm
i¼1tițfp¼0 ð2Ț
Xm
i¼1ri/C2tițmp¼0 ð3Ț
whereti¼tiui¼/C0tili
lirepresentsthetensionforcethatactsintheoppositedirectionof li.Substi-
tutingtiintoEqs.(2)and(3),thefollowingequationisobtained:
A/C1T¼BwithTP0 ð4Ț
Piui
titm
Pm
riP
mpfp
Fig.4. Freebodydiagramofthemovingplatform.C.B.Phametal./MechanismandMachineTheory41(2006)53–69 57
where
A¼u1
r1/C2u1u2
r2/C2u2/C1/C1/C1um
rm/C2um/C20/C21
2Rn/C2m:structurematrix
T¼t1t2/C1/C1/C1tm fgT2Rm:cabletension
B¼/C0fpmp/C8/C9T2Rn:externalwrench
Thedirectionalunitvector ui(i=1,2, …,m)inthestructurematrixdependsonthepostureof
themovingplatformandisobtainedbythevectorloop-closureequationas:
ui¼OB/C131!
i/C0OP/C131!/C0PPi/C131!
kOB/C131!
i/C0OP/C131!/C0PPi/C131!k¼bi/C0p/C0Rrp
i
kbi/C0p/C0Rrp
ikð5Ț
wherethesuperscript pisusedtodenotethatthequantityiswritteninframe{ P}.Hence,the
structurematrix Aisexpressedwithrespecttothepostureofthemovingplatform.
3.Force-closureworkspace
Forparallelmechanismswithrigidlinks,itsworkspaceisthespacewheretheinverse/forward
kinematicsolutionsexist.HoweverforaCDPM,itsworkspaceisthespacewheresetsofpositive
cabletensionsexistbecausetheyareneededtoconstrainthemovingplatformallthetimeregard-
lessofanyexternalwrench.Inotherwords,ifthereisatleastonesetofpositivecabletensionsata
specificposeformingaforceclosure,thenthisposebelongstotheforce-closureworkspace.Gen-
erally,force-closureworkspaceisasetofposesthattheforce-closureconditionissatisfied.
3.1.Force-closurecondition
ACDPMissaidtohaveaforce-closureinaparticularposeifandonlyifanyarbitraryexternal
wrench applied at the moving platform can be sustained through appropriate tension forces
(t1,t2,…,tm)inthecables.Withtheassumptionthattheactuatortorquesareofunlimitedmag-
nitude,fromEq. (4),theconditionofbeingfullyrestrainedismathematicallydescribedas
8Fp2Rn:9t1;t2;…;tm2½0;1Ț :Xm
i¼1tisi¼/C0Fp ð6Ț
wheresi¼ui
ri/C2ui/C26/C27
:theithcolumnvectorofthestructurematrix A.
Eq.(6)implies that the set of vectors tisimust positively span Rn. Subsequently, this set is
positivelydependent(bychoosing Fp=0)suchthat:
rankðAȚ¼nand ð7Ț
Xm
i¼1tisi¼0 ð8Ț
Fromtheconvextheory [21],thefollowingtheoremshowsthatthesetofallconvexcombina-
tionsinthelefthandsideofEq. (8)isactuallyaconvexhull.58 C.B.Phametal./MechanismandMachineTheory41(2006)53–69
Theorem 1. Let C ={x1,x2,…,xm}be a finite collection of points in Rn. Then the convex hull of the
xi(i = 1,2, …,m), is the set of all their convex combinations, i.e.
H¼coðCȚ¼ xjx¼Xm
i¼1kixi;Xm
i¼1ki¼1;06ki2Rforall i()
Eq.(8)isequivalentlyrepresentedasfollows:
Xm
i¼1tisi¼Xm
i¼1ti
Pm
i¼1tisi¼Xm
i¼1kisi¼0 with ki¼ti
Pm
i¼1tið9Ț
FromthenotationofTheorem1,Eq. (9)formsaconvexhullbasedonthestructurematrix A.
Furthermore,theoriginbelongstothatconvexhullbecausetheoriginistheconvexcombination
ofsi.Hence,thefollowingpropositionshowsanutilizationofconvexhullinsatisfyingtheforce-
closurecondition.
Proposition 1. A moving platform with n degrees of freedom is fully restrained if and only if the
convex hull formed by column vectors of the structure matrix A,co{s1,s2,…,sm}, contains a
neighborhood of the origin.
Proof. Necessity :Becausethe platformisfullyrestrained,asmallexternalwrenchO( e)canbe
expressedbyEq. (6)suchthat:
Xm
i¼1tisi¼OðeȚð 10Ț
DividingEq. (10)byPm
i¼1tigives:
Xm
i¼1ti
Pm
i¼1tisi¼OðeȚ
Pm
i¼1ti’OðeȚð 11Ț
It is obvious that the neighborhood of the origin belongs to the convex hull (according to
Theorem1).
Sufficiency:AstheneighborhoodoftheoriginO( e)isenclosedbytheconvexhull,itcanbe
expressed:
Xm
i¼1tisi¼OðeȚwithXm
i¼1ti¼1and 8ti>0 ð12Ț
Eq.(12)impliesthattherealwaysexistsasetofpositivetensionsbeingabletosustainasmall
externalwrenchinanydirection.Therefore,themovingplatformisfullyrestrained. h
3.2.Recursivealgorithmcheckingforce-closurecondition
As discussed above, the force-closure condition is satisfied if the n-dimensional convex hull,
formedbythestructurematrix,enclosestheorigin.However,ifthenumberoftask-spacedimen-
sionsnisgreaterthanthree,itisimpossibletorepresenttheconvexhullgeometrically.Therefore,C.B.Phametal./MechanismandMachineTheory41(2006)53–69 59
ageneralalgorithmisproposedtocheckwhetherthemovingplatform,ataparticularpose,isfully
restrained.Inotherwords,itiswhethertheconvexhullenclosestheoriginofthetask-spaceframe.
To solve the above problem ingeneral, the resultedidea is that if the size of the task-space
dimensioncanbereducedintoone( n=1),i.e.theconvexhullbecomesaclosedlinesegment,
itiseasiertochecktheoriginenclosure,i.e.whetherthislinesegmentpassestheoriginasillus-
tratedinFig.5.Therefore,thedimensionreductionofastructurematrix A(nrows,mcolumns)
isdescribedintwostepsasfollows:
•Step1:Foreachcolumnvectorinaspaceof Rn,thereisauniquehyperplanepassingthrough
theoriginandbeingorthogonaltothisvector.Thishyperplaneisasubspaceof Rn/C01.Bypro-
jectingtheothercolumnvectorsontothishyperplane,projectedvectorsareexpressedinthis
newsubspaceof Rn/C01. Inaddition,thevectorwhichisperpendicular tothishyperplanecan
beignoredduetoitszeroprojectedvalue.Therefore,thereareonly m/C01columnvectorsin
thesubspaceof Rn/C01.Totally,fromtheoriginalspacein Rn,thisstepresultsin msubspaces
inRn/C01formedcorrespondingto mcolumnvectors.
•Step2:Foreachsubspaceformedabove,thereareonly m/C01columnvectors.Therefore,the
convexhullwhichisformedbythese m/C01vectorsisalsorequiredtoenclosetheoriginofthe
subspaceinordertohaveaforce-closure.Generally, mnewconvexhullsarecheckedforsat-
isfactionofforce-closure.Ifallofthemenclosestheoriginoftherespectivesubspaces,theori-
ginalsystemformsaforce-closure.Otherwise,ifanyofthemdoesnothavetheforce-closure,thismeansthatacertainexternalwrenchcannotberesistedinthissubspace.Consequently,the
originalproblemdoesnotsatisfytheforce-closurecondition.
Theseproceduresareillustratedin Fig.6.Itcanbeseenfrom Fig.6(a)thatifthethreevectors
(OS/C131!
i)areprojectedontothelinewhichisperpendiculartoanyvector OS/C131!
i,therealwaysexistboth
positivecomponentsandnegativecomponents.Thismeansthatanyexternalforcecanberesisted
bysomeofthesecabletensions.Ontheotherhand,asshownin Fig.6(b),ifthethreevectorsare
projectedontothelinewhichisperpendicularto OS/C131!
1orOS/C131!
3,allcomponentshavethesamesign.
Thismeansthatallcabletensionscannotresisttheexternalforceinthesamedirectiononthepro-
jectedline.Forbothcases,theoriginalconvexhullsareinthespaceof R2.Whenprojectedonto
theline,theoriginalproblemisequivalenttothreenewconvexhullswhichareexpressedasline
segmentsinthesubspaceof R1.Asaresult,checkingforceclosureinthespaceof R1issimpleasit
onlyinvolvescheckingthesignofcomponents.
Asmentionedinpreviousdiscussion,thefirststepistoreducethespacedimensionandthesec-
ondstepistochecktheconvexhullsformedinthesubspaces.Ifthedimensionofthesubspacesis
O+ f
fp)(
1−f)(
2−f)(
j−f
)(
1+f)(
2+f)(
i+f
Fig.5. Co( fð/C0Ț
1;fðțȚ
1;…;fð/C0Ț
j;fðțȚ
i)isaclosedlinesegmentpassingtheorigin.60 C.B.Phametal./MechanismandMachineTheory41(2006)53–69
morethanone,thesesubspacesarefurtherreducedintoothersubspacesbyrepeatingstep1and
soon.Asshownin Fig.7,oneoriginalsystemin Rnisdecomposedto msubsystemsin Rn/C01.Then
each subsystem in Rn/C01is decomposed to ( m/C01) subsystems in Rn/C02. Therefore, using more
cables considerately increases the number of subsystems in R1. Typically, for a 4-3-CDPPM,
thenumberofsubsystemsin R1is12whereasthatfora8-6-CDSPMis6720.
Mathematically,itisnotedthatprojectingcolumnvectorsontoahyperplanewhichisperpendic-
ulartothecolumnvector jisaGaussianeliminationforthecorrespondingcolumnvector.Asare-
sult,aconvexhullcheckingprocedureisproposedthatisbasedonarecursivealgorithm.This
algorithmisnamed‘‘FCC[ A(n,m)]’’(Force-ClosureCheck).Generally,bygivingtheoriginalstruc-
turematrix A(nrows,mcolumns)tothealgorithm,thisalgorithmwillreducethespacecontinu-
ouslyuntilallsubspacesareone-dimensional.Theflowchartofthisalgorithmisdescribedin Fig.8.
AsshowninFig.8,therecursivealgorithmFCCconsistsoftwoprocedures:
•One-dimensioncase: Thisisthesimplestcaseinwhich
(a) Thereisatleastonerowconsistingofthesamesigncomponents.Thisimpliesthatthe
convexhulldoesnotenclosetheorigin.Thealgorithmreturnsavalue /C2120/C213,or
Fig.7. Diagramofdecomposingspacedimension.Fig.6. Twosamplesofconvexhull.(a) O2co(S1,S2,S3).(b)O62co(S1,S2,S3).C.B.Phametal./MechanismandMachineTheory41(2006)53–69 61
(b) Thenumberofrowsisone.Ifthesignsamongcomponentsarechanged,thelinesegment
enclosestheorigin.Thealgorithmreturnsavalue /C2121/C213.Otherwise,itreturnsavalue /C2120/C213,i.e.
thesignsareunchanged.
•Higherdimensioncase: Thisisthecasesuchthatthenumberofrowsisgreaterthanoneandthe
signsarechangedineachrow.ReducingspacedimensionisdonebyGaussianeliminationuntil
one-dimensional systems. If there is one subsystem which does not satisfy the force-closure
condition,thealgorithmreturnsavalue /C2120/C213.
ForconvenientprogramminginMatlab,theGaussianeliminationisalwaysdoneforthefirst
column.Therefore,acolumnindex jisusedtoincreasethecolumnorder,thenthiscolumnis
swapped with the first column. To demonstrate this algorithm, detailed checking steps of two
examplesshownin Fig.6arepresentedinAppendix A.FCC[A(n,m)]
Column order, j = 1FCC = 0
FCC = 1If sign is changed
in each row?
Gaussian elimination
of the first columnj = j + 1, then
swap two columns 1 and j
FCC = 0 FCC = 1FCC[A(n–1,m–1)] = 1? If the last column
is done ( j = m)?If the number of
rows is one?YesNo
Yes
No
NoYes
YesNo
If
Fig.8. Recursivealgorithm‘‘force-closurecheck’’—FCC.62 C.B.Phametal./MechanismandMachineTheory41(2006)53–69
3.3.Generatingforce-closureworkspace
Informulatingtheforce-closureworkspace,asetoffullyrestrainedposturesneedstobeob-
tained.Positionalandrotationalrangesarediscretizedintosegments.Ateachoftheircombina-
tions,acorrespondingstructurematrix Aisdetermined.Byapplyingtheforce-closurealgorithm,
returningvalue /C2121/C213meansthisposturebelongstotheforce-closureworkspace,andreturningvalue
/C2120/C213impliesthisposturedoesnotbelongtotheforce-closureworkspace.Althoughthisworkspace
generationtakestimetofinish,thisapproachisverysimpleandeffectivetoobtaintheworkspace
areaorvolumewhennecessary.Iftheresolutionislargeenough,itsareaoritsvolumeisclosedtoanalyticalresultswhicharedifficulttocalculateforgeneralcable-drivenparallelmechanisms.
Inthispaper,twotypicalmechanismsareusedtoverifytherecursiveforce-closurealgorithm.
Firstly,thealgorithmisappliedtothecompletelyrestrainedcable-drivenplanarparallelmecha-
nism(3degreesoffreedom,4cables).Forthismechanism,theorientationoftheplatformisfixed,
asetofpositions( x,y)ofthecenterofmassofthemovingplatform Pdefinestheforce-closure
workspace.Secondly,thealgorithmisappliedtotheredundantlyrestrainedcable-drivenspatial
parallelmechanism(6degreesoffreedom,8cables).Similarly,thethreeorientationsarekeptcon-
stant,andtheforce-closureworkspaceisdefinedbythesetofpositions( x,y,z)ofthecenterof
massofthemovingplatform P.
4.Simulationandresults
In this section, the recursive force-closure algorithm is applied to generate the force-closure
workspace for the two typical mechanisms shown in Fig. 2. Simulated results shows the effect
oftherecursivealgorithm.
Inthefollowingillustrations,themechanismshavethesymmetricdesign.Fortheplanarmech-
anismshownin Fig.9(a),thebaseisasquareof1 ·1(m),andthemovingplatformisarectangle
thathasthedimensionof0.3 ·0.2(m).Forthespatialmechanismshownin Fig.9(b),thebaseisa
unitcubeof1 ·1·1(m),andthemovingplatformisaparallelepipedthathasthedimensionof
0.3·0.2·0.1(m).Thebaseframeislocatedatthepoint B
1.Thecoordinatesofverticesarede-
scribedinFig.9.Thelocalframeislocatedatthecenter Poftherectangle(intheplanarcase)and
Fig.9. Geometricalparameters.(a)Asymmetric4-3-CDPPMand(b)Asymmetric8-6-CDSPM.C.B.Phametal./MechanismandMachineTheory41(2006)53–69 63
Fig.10. Two-dimensionalforce-closureworkspacesofthe4-3-CDPPMs.(a) /=0/C176,(b)/=+3 /C176and(c) /=/C03/C176.64 C.B.Phametal./MechanismandMachineTheory41(2006)53–69
Fig.11. Three-dimensionalforce-closureworkspacesofthe8-6-CDSPM.(a) a=0/C176,b=0/C176,c=0/C176,(b)a=+3 /C176,b=0/C176,
c=0/C176and(c) a=/C03/C176,b=0/C176,c=0/C176.C.B.Phametal./MechanismandMachineTheory41(2006)53–69 65
ofthecube(inthespatialcase).Therefore,asetofreachablepositionsofthiscenter Patacertain
orientationofthemovingplatformconstitutestheforce-closureworkspace.
Asshownin Fig.10,theforce-closureworkspaceisgeneratedatvariousorientationsofthe
movingplatform.The2-dimensionalworkspacesobtainedat /=0/C176,+3/C176and/C03/C176areillustrated
inFigs.10(a)–(c),respectively.
Inordertoverifythevalidityoftherecursivealgorithmforredundantlyrestrainedpositioning
mechanisms, the algorithm is also applied to a 8-6-CDSPM. Subsequently, the force-closure
workspacesareillustratedin Fig.11.Bygiving c=0/C176(theorientationabout x)and b=0/C176(the
orientation about y), the three-dimensional workspaces obtained at a=0/C176,+ 3/C176and/C03/C176(the
orientationabout z)areillustratedin Figs.11(a)–(c),respectively.
AsshowninFigs.10and11 ,itisrealizedthattheforce-closureworkspaceisalwayssmaller
thanandinsidetheconvexhullformedbythebase.Thisisusefultosettheinitialpossibledis-
placementrangesfordiscretizing.Moreover,with c=b=0/C176,the8-6-CDSPMlookedfromthe
topisactuallyequivalenttothe4-3-CDPPM.Therefore,thecrosssectionsofthethree-dimen-
sionalworkspacesin Fig.11areexactlythesameasthetwo-dimensionalworkspacesin Fig.10
duetotheirsimilardimensions.
Fromthepreviousillustrations,itcanbeseenthattherecursivealgorithmcanbegenerallyap-
plied to completely restrained positioning mechanisms and redundantly restrained positioning
mechanisms.These results canbe verifiedthrough the null spaceapproach—thehomogeneous
solutionofunderdeterminedlinearsystems [9].
5.Conclusion
Thegeneralalgorithmtogeneratetheforce-closureworkspaceofcable-drivenparallelmecha-
nismsisthemajorsubjectofthispaper.Asetofdiscretepostureswhichsatisfytheforce-closure
conditionconstitutestheforce-closureworkspace.Therecursivealgorithmhasbeenappliedsuc-
cessfullytochecktheforce-closureandthengeneratetheworkspaceofa4-3-CDPPM,whichisa
completely restrained positioning mechanism, and a 8-6-CDSPM, which is a redundantly re-strained positioning mechanism. Due to the generic formulation approach, the proposed algo-
rithm can be used for both completely restrained positioning mechanisms ( m=n+1) and
redundantlyrestrainedpositioningmechanisms( m>n+1).Asthecomputationalresolutionis
increased,theresultedworkspacesaremoreprecise.
AsdiscussedinSection3.2theconvexhullcanalsobevisualizedifthetask-spacedimensionisless
thanorequaltothree.However,thisgeometricalvisualizationbecomesineffectiveasthenumberof
cablesincreasesbecauseoftheconvexhullformulation.Ontheotherhand,theproposedalgorithm
canstillbeappliedforincompletelyrestrainedpositioningmechanisms( m<n+1)bycombining
externalforcesandcabletensionsinstantaneously.Inbrief,thisapproachcanbegenerallyused
tocreatetheforce-closureworkspaceforvariouscable-drivenparallelmechanisms.
Acknowledgements
The authors would like to thank the School of Mechanical and Aerospace Engineering at
NanyangTechnologicalUniversityforsponsoringthisresearchprogram.66 C.B.Phametal./MechanismandMachineTheory41(2006)53–69
AppendixA.Force-closurechecking stepsof examplesin Fig.6
Thesequentialprocedurestochecktheconvexhull(orforce-closure)forsamplecasesin Fig.6
areshowninFigs.A.1andA.2 .InFig.A.1,bothpositiveandnegativecomponentsexistineach
Fig.A.1. (a)Theoriginalstructurematrix.(b)Step1:Thesignsarechangedinthesecondrow.(c)Step2:Thesignsare
changedinthesecondrow.(d)Step3:Thesignsarechangedinthesecondrow.Computationalstepsforthecasein
Fig.6(a).C.B.Phametal./MechanismandMachineTheory41(2006)53–69 67
sub-matrix (the second row), whereas there exists at least one sub-matrix which composes all
negativeorallpositivecomponentsasseenin Fig.A.2.Fig.A.2. (a)Theoriginalstructurematrix.(b)Step1:Thesignsarethesameinthesecondrow.(c)Step2:Thesignsare
changedinthesecondrow.(d)Step3:Thesignsarethesameinthesecondrow.ComputationalstepsforthecaseinFig.6(b).68 C.B.Phametal./MechanismandMachineTheory41(2006)53–69
References
[1]L.W.Tsai,RobotAnalysis—TheMechanicsofSerialandParallelManipulators,AWiley-IntersciencePublication,
1999.
[2]J.Albus,R.Bostelman,N.Dagalakis,Thenistrobocrane,JournalofRoboticSystems10(5)(1993)709–724.[3]J.W.Jeong,S.H.Kim,Y.K.Kwak,C.C.Smith,Developmentofaparallelwiremechanismformeasuringposition
andorientationofarobotend-effector,JournalofMechatronics8(1998)845–861.
[4]E. Ottaviano, M. Ceccarelli, M. Toti, C.A. Carrasco, Catrasys (cassino tracking system): A wire system for
experimentalevaluationofrobotworkspace,JournalofRoboticsandMechatronics14(1)(2002)78–87.
[5]P.Lafourcade,M.Llibre,Designofaparallelwire-drivenmanipulatorforwindtunnels,in:Proceedingsofthe
WorkshoponFundamentalIssuesandFutureResearchDirectionsforParallelMechanismsandManipulators,
QuebecCity,Canada,October3–42002,pp.187–194.
[6]T. Morizono, K. Kurahashi, S. Kawamura, Realization of a virtual sports training system with parallel wire
mechanism,in:ProceedingsofIEEEConferenceonRoboticsandAutomation,Albuquerque,NewMexico,April
1997,pp.3025–3030.
[7]R.L.WilliamsII,Cable–suspendedhapticinterface,JournalofVirtualReality3(3)(1998)13–21.[8]K.Homma,O.Fukuda,Y.Nagata,Studyofawire-drivenlegrehabilitationsystem,in:ProceedingsofIEEE/RSJ
InternationalConferenceonIntelligentRobotsandSystems,Lausanne,Switzerland,October2002,pp.1451–1456.
[9]A.Ming,T.Higuchi,Studyonmultipledegree-of-freedompositioningmechanismusingwires(part1)—concept,
designandcontrol,InternationalJournalofJapanSocialEngineering28(2)(1994)131–138.
[10]S.Tadokoroet al.,Amotionbasewith6-dofbyparallelcabledrivearchitecture,IEEE/ASMETransactionson
Mechatronics7(2)(2002)115–123.
[11]S. Tadokoro et al., On fundamental design of wire configurations of wire-driven parallel manipulators with
redundancy,in:Japan/USASymposiumonFlexibleAutomation,vol.1,1996,pp.151–158.
[12]C.M.Gosselin,G.Barrette,Kinematicanalysisofplanarparallelmechanismsactuatedwithcables,in:Proceedings
ofSymposiumonMechanisms,MachinesandMechatronics,Quebec,Canada,June12001,pp.41–42.
[13]J. Pusey, A. Fattah, S. Agrawal, E. Messina, Design and workspace analysis of a 6-6 cable-suspended parallel
robot,JournalofMechanismandMachineTheory39(2004)761–778.
[14]R. Verhoeven, M. Hiller, S. Tadokoro, Workspace, stiffness, singularities and classification of tendon-driven
stewartplatforms,in:InternationalSymposiumonAdvancesinRobotKinematics,Strobl,Austria,1998,pp.105–
114.
[15]R. Verhoeven, M. Hiller, S. Tadokoro, Workspace of tendon-driven stewart platforms: Basics, classification,
detailsontheplanar2-dofclass,in:InternationalConferenceonMotionandVibrationControlMOVIC,vol.3,
1998,pp.871–876.
[16]R. Verhoeven, M. Hiller, Estimating the controllable workspace of tendon-based stewart platforms, in:
Proceedings of the International Symposium on Advances in Robot Kinematics, Portoroz, Slovenia, 2002, pp.
277–284.
[17]I. Ebert-Uphoff, P.A. Voglewede, On the connections between cable-driven robots, parallel manipulators and
grasping,in:ProceedingsofIEEEConferenceonRoboticsandAutomation,NewOrleans,LA,April26–May012004,pp.4521–4526.
[18]P.Bosscher,I.Ebert-Uphoff,Wrench-basedanalysisofcable-drivenrobots,in:ProceedingsofIEEEConference
onRoboticsandAutomation,NewOrleans,LA,April26–May012004,pp.4950–4955.
[19]H. Osumi, Y. Utsugi, M. Koshikawa, Development of a manipulator suspended by parallel wire structure, in:
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Takamatsu, Japan,
December30–November52000,pp.498–503.
[20]J.J.Craig,IntroductiontoRobotics—MechanicsandControl,Addison-WesleyPublishingCompany,1986.
[21]R.T.Rockafellar,ConvexAnalysis,PrincetonUniversityPress,1970.C.B.Phametal./MechanismandMachineTheory41(2006)53–69 69
Copyright Notice
© Licențiada.org respectă drepturile de proprietate intelectuală și așteaptă ca toți utilizatorii să facă același lucru. Dacă consideri că un conținut de pe site încalcă drepturile tale de autor, te rugăm să trimiți o notificare DMCA.
Acest articol: See discussions, stats, and author profiles for this publication at: [601874] (ID: 601874)
Dacă considerați că acest conținut vă încalcă drepturile de autor, vă rugăm să depuneți o cerere pe pagina noastră Copyright Takedown.
