ONTHEASYMPTOTICBEHAVIOROFTHERMALTAYLOR DISPERSIONPROCESSESINPERIODICMEDIA ClaudiaTimofte DepartmentofMathematics,FacultyofPhysics,University… [610108]
JOURNALOFTHEORETICAL
ANDAPPLIEDMECHANICS
41,1,pp.75-88,Warsaw2003
ONTHEASYMPTOTICBEHAVIOROFTHERMALTAYLOR
DISPERSIONPROCESSESINPERIODICMEDIA
ClaudiaTimofte
DepartmentofMathematics,FacultyofPhysics,University ofBucharest,Romania
e-mail:[anonimizat]
Usingthegeneralizedmethodofmomentsandacentrallimitt heorem,we
shalldescribealargeclassofthermaldispersionphenomen aoccurringin
somemacrohomogeneoussystems.Weshallbeinterestedinco mputing
themacroscalecoefficientsintermsofthemicroscalecoeffici entsand
thesystemgeometry.Also,thefunctionaldependenceofthe effective
coefficientsonthevelocityandthespatialscaleparameters isanalyzed.
Key words:macrotransport equation, macroscale coefficients, scale
parameters
1. Introduction
Thefieldofmacrotransportprocessesconstitutesanatural extensionof
classicalTaylordispersiontheoryforunidirectional,re ctilinearflows(seeTay-
lor,1953)toalargeclassofflowanddispersionproblems.It iswell-knownby
nowthatG.I.Taylorusedratherintuitivesemi-analytical argumentstoprove
theFickiannatureofthemeanaxialdispersionofadiffusing soluteinjected
intoaviscousfluidflowingthroughacircularcylindricaltu be.Heshowedthat,
asymptotically,inthelong-timelimit,suchadispersionp rocessisdescribedby
aone-dimensionalconvective-diffusiveequationandthedi spersioncoefficient
characterizingthisaxialmacrotransportequationgovern ingthecross-sectional
meansoluteconcentrationis
D∗=D+a2U2
48D(1.1)
76 C.Timofte
whereaistheradiusofthetube, Uisthemeanvelocityofflowand Dis
thecoefficientofmoleculardiffusion.Thisnewcoefficientcom binesthemi-
croscopicallydistincteffectsofradialmoleculardiffusio nandaxialconvective
soluteflow.Dispersioniscausedbytheradialinhomogeneit yofthePoiseuil-
levelocityfieldwhichinteractswiththelateraldiffusiono fsolutemolecules.
Infact,allmacrotransportprocessescombinesuchaBrowni an(stochastic)
diffusivetransportmechanismwithaninhomogeneous,conve ctive(determini-
stic)transportmechanism.Thestochasticdispersionisas sumedtoactover
aperiodoftimelargeenoughtoallowthesamplingofallsuch velocitiesby
moleculardiffusionacrossthestreamlinesoftheflow.
Taylor‘stechnique,laterextendedtothecaseofsolutedis persioninturbu-
lentflows,providedthefirstframeworkforthegenericpheno menonreferredto
intheliteratureas”Taylordispersion”.In1956,Aris(see Aris,1956)extends
theseresultsforcylindersofnoncircularcross-sectiona nddevelopsarigorous
theory,basedona methodofmoments scheme.Also,heanalyzestheeffects
oftime-periodicconvectionondispersion(seeAris,1960) .In1971Horn(see
Horn,1971)madeanotherimportantsteptoputthefoundatio nsoftheso-
calledgeneralizedTaylordispersiontheory .Heextendedtheclassicaltheory
tomultidimensionalphasespaces.Adecisivestepwasdonet henbyBrenner
(seeBrenner,1980)whodevelopedaparadigmaticdispersio ntheoryforvery
generalandcomplexsystems.In1993,recognizingtheanalo gyexistingbe-
tweenthemasstransportandothermodesoftransportphenom ena,Brenner
andEdwardsextendedthistheorytonon-materialtransport processes(see
BrennerandEdwards,1993).
Hence,baseduponarigorousdescriptionofmicrotransport processesoc-
curringinheterogeneoussystems,macrotransporttheory, alternativelyknown
intheliteratureasthegeneralizedTaylordispersiontheo ry,allowsustodescri-
bealargeclassofmaterialandnonmaterialdispersivephen omenaoccurring
inmacrohomogeneoussystems.
Applicationsofthemacrotransporttheoryarepresentlyre cognizedinma-
nyfieldsofscientificandengineeringresearch.Variousoth ermethodshave
beendevelopedforobtainingthemacroscalebehaviorandpr opertiesofso-
meheterogeneouscomplexsystems.Theseincludehomogeniz ationtechniques
(seeBensoussanetal.,1978,Sanchez-Palencia,1980),statisticalandvolume-
averagingmethods(seeKochandBrady,1985)andprobabilis ticmethods
basedoncentrallimittheorems(seeBhattacharya etal.,1989).
Inthispaper,weshallbeespeciallyinterestedingettinga macrotran-
sportparadigmforaclassofthermaltransportphenomenaoc curringinsome
complexmultidimensionaladiabaticsystems.Weshalldedu cesimplemacro-
Ontheasymptoticbehaviorofthermal… 77
transportequations(andeffectivecoefficientsappearingth erein)whichapply,
forlongtimes,atacoarse-grainedlevelofdescriptionofo ursystems.
Ouranalysisisbasedontwoalternativemethods:theabovem entioned
generalizedmethodofmomentsandaprobabilisticmethodba sedonacentral
limittheoremforMarkovprocesses.
Wearealsointerestedingettingtheasymptoticbehaviorof themacrodi-
spersioncoefficientsasfunctionsofthevelocityandthespa tialscaleparame-
terswhichcharacterizeourtransportprocesses.
SpecificexamplesaregiveninSection3toillustratethecom putationof
thesemacrotransportcoefficientsasfunctionsoftheprescr ibedmicroscale
data.
2. Amacrotransportparadigmforthermaldispersionphenom ena
inadiabaticsystems
Letusintroducetwodistinctlydifferentclassesofindepen dentcoordinate
variableswhichcharacterizeagenericmicrotransportpro cess.Thesewillbe
designatedasglobalandlocalvariablesanddenotedby Qandq
Q=[Q1,Q2,…,Qr]q=[q1,q2,…,qs] (2.1)
Together,thevectors( Q,q)defineamultidimensionalphasespace Q∞⊕
q0withinwhichourtransportprocessesoccur.Theglobalsubs paceQ∞,
representingthedomainofthevaluestakenby Q,willbeunbounded,while
thesubspaceq0(q∈q0)will,generally,bebounded.Theglobalcoordinate Q
properlycorrespondstoalong-timescale,whilethelocalv ariablecorresponds
toashort-timescale.Theyarealsocalled slowand,respectively,fastvariables
(seeSanchez-Palencia,1980).
Thegenericmicrotransportequationgoverningtheevoluti onofthetempe-
raturefieldT=T(Q,q,t)incontinuousadiabaticsystemsmayberepresented
as
ρCp∂T
∂t+∇Q·J+∇q·j=0 (2.2)
wheretheconstitutiveequationsfortheglobalandtheloca linternalenergy
flux-densityvectorsare
J=ρ(q)Cp(q)U(q)T−KT(q)·∇Q(T)
(2.3)
j=ρ(q)Cp(q)u(q)T−kT(q)·∇q(T)
78 C.Timofte
Here, (KT,kT)denotetheglobalandthelocal-spacethermalconductivit ies
and (U,u)thecomparablevelocityvectors.Here, ρandCparepositive
functionsandKTandkTarepositivedefinitetensors.
Thissystemofequationsissubjectedtothefollowingcondi tions
n·j=0n·KT·∇qT=0 on∂q0
|Q|m{T,J}→{0,0}as|Q|→∞∀(q,t/x}∇eate∇equal0)
m=0,1,…(2.4)
T(Q,q,0)=T0(Q,q)
withtheright-handsideaprescribedfunction.
Notethattheenergydissipationandkineticenergycontrib utionarene-
glectedinthemicrotransportequation.
Weshalllimitourselvestotheclassofproblemsforwhich n·u=0on
∂q0andu·∇qCp=0.Also,itwillbesupposedthatthethermalproperties
areeverywherenonnegativedefinite.
It proves useful to reformulate linear microscale problem ( 2.2) in
terms of a Green’s function. In this context, let us define a qu antity
P=P(Q,q,t|Q′,q′,t′)suchthatρCpPtobeinterpretedastheconditio-
nalprobabilitydensityofhavingthetemperature T(Q,q,t)attheposition
(Q,q)atthemomenttifwehadthetemperature T(Q′,q′,t′)at(Q′,q′)at
theearliermoment t′.Pwillgenerallydependonlyonthedifferences Q−Q′
andt−t′andso,choosingQ′=0andt′=0,wecanconsider,withoutloss
ofgenerality,thatP=P(Q,q,t|q′).
Sincewearemodelingthetransportofconservedentities,w ehave
/integraldisplay
Q∞/integraldisplay
q0ρCpPdqdQ=1t/x}∇eate∇equal0
and
P=0t<0
Also,therelationshipbetweenthetemperaturefield TandtheGreenfunction
Pis
T(Q,q,t)=/integraldisplay
Q′∞/integraldisplay
q′
0ρ(q′)Cp(q′)P(Q,q,t|q′)T(Q′,q′,0)dq′dQ′(2.5)
andthemicrotransportequationofenergydispersionincon tinuoussystems
mayberepresentedas
ρCp∂P
∂t+∇Q·JP+∇q·jP=δ(Q)δ(q−q′)δ(t)
Ontheasymptoticbehaviorofthermal… 79
where
JP=ρ(q)Cp(q)U(q)P−KT(q)·∇Q(P)
jP=ρ(q)Cp(q)u(q)P−kT(q)·∇q(P)
DefiningthemacroscaleGreen’sfunction
P(Q,t|q′)=1
ρCp∗/integraldisplay
q0ρ(q)Cp(q)P(Q,q,t|q′)dq(2.6)
thiswillbecomeasymptoticallyindependentof q′
P(Q,t|q′)∼=P(Q,t)
and,hence,followingamomentanalysis(seeBrennerandEdw ards,1993;
Timofte,1996),weareledtothefollowingmacrotransporte quation
ρCp∗/parenleftBig∂P
∂t+U∗·∇QP/parenrightBig
=kT∗:∇Q∇QP+δ(Q)δ(t) (2.7)
subjectedtotheconditions
P=0t<0
P→0 when|Q|→∞(2.8)
Here,themacroscalecoefficients ρCp∗andU∗aregivenby
ρCp∗=1
τ0/integraldisplay
q0ρCpdq (2.9)
where
τ0=/integraldisplay
q0dq (2.10)
andby
U∗=/integraldisplay
q0ρCpP∞
0Udq (2.11)
Theeffectivethermalconductivitydyadichastheexpressio n:
kT∗=kM+kC(2.12)
80 C.Timofte
where
kM=1
τ0sim/integraldisplay
q0KTdq (2.13)
isthe”molecular”contributionand
kC=sim/integraldisplay
q0/bracketleftBig/parenleftBig
P∞
0−1
τ0ρCp∗/parenrightBig
KT+ρCpP∞
0B(U−U∗)/bracketrightBig
dq(2.14)
istheconvectivecontribution.
Thesephenomenologicalcoefficientsaretobeobtainedafter solvingthe
associatedlocalproblemsfor P∞
0(q)andB(q)
∇q·j∞
0=0
j∞
0=ρCpuP∞
0−kT·∇qP∞
0(2.15)
n·KT·∇qP∞
0=0 on∂q0
/integraldisplay
q0ρCpP∞
0dq=1
and
j∞
0·∇qB−∇q·(P∞
0kT·∇qB)=ρCpP∞
0(U−U∗)
(2.16)
ρCpP∞
0n·kT·∇qB=0 on∂q0
More,weshallrequirethat P∞
0isnonnegativeforall q∈q0.Also,P∞
0
andBmustbesingle-valuedforall q∈q0.
So,wecanexpressthemacrotransportcoefficients ρCp∗,U∗andkT∗
intermsoftheprescribedmicroscaledataandthesystemgeo metry.Itis
worthwhiletonoticethat,infact, ρCp,whichisinhomogeneousin q,actslike
abiasingpotential.Thiscausesaredistributionoftheint ernalenergyinthe
localspace,whichisfinallyreflectedinthemagnitudeofthe macrotransport
coefficientsU∗andkT∗.
Thecoarse-grainedmacroscaletemperaturefield
T(Q,t)=1
τ0/integraldisplay
Q′∞/integraldisplay
q′
0ρ(q′)Cp(q′)P(Q−Q′,t|q′)T(Q′,q′,0)dq′dQ′(2.17)
Ontheasymptoticbehaviorofthermal… 81
willsatisfythemacrotransportequation
ρCp∗/parenleftBig∂T
∂t+U∗·∇QT/parenrightBig
=kT∗:∇Q∇QT(2.18)
subjectedtoappropriateinitialandboundaryconditions( seeBrennerand
Edwards,1993;Timofte,1996).
Asimilaranalysiscanbedonefortheproblemofthermaldisp ersionin
discontinuousadiabaticsystems.
Thegeometricalstructureofthediscontinuousmediumisid ealizedasbeing
spatiallyperiodic(porousmedia,compositematerials,la minatedmedia).The
periodicmediumisrepresentedasaspatiallyperiodicarra yinR3,composed
oftopologicallyindistinguishableunitcellsofperiodic ity,havingthesame
shape,orientation,volumeand”content”.
Ifwedenotebyτ0thevolumeofsuchanelementarycellandby τpthe
volumeofthesolidpart,wehave
τp=τ0−τf
whereτfistheinterstitialfluidvolumewithinsuchacell.
Arbitrarilydesignatingoneoftheelementarycellsasbein gthezerothcell,
itisconvenienttomeasurethepositionvector Rofanypointinspacerelative
tothecentroidofthiscell.Denotingby Rnthepositionvectorofthecentroid
ofthen-thcellrelativetothecentroidofthezerothcellandby r∈τ0{n}
thelocalpositionvectorforanypointwithinthe n-thcellrelativetoanorigin
atitscenter,wehave
R=Rn+r (2.19)
Ifwesupposethatattheparticle-fluidinterface Spwehavealocalequ-
ilibriumdescribedbyalinearpartitioningrelationship, usingsimilarnota-
tionsasinthecontinuouscaseandintroducingmicroscaleG reen’sfunction
P=P(Rn,r,t|r′),thiswillobeythefollowingsystemofcellular-levelequ –
ations(seeBrennerandEdwards,1993;Timofte,1996)
ρ(r)Cp(r)∂P
∂t+∇·J=δnn′δ(r−r′)δ(t)
J=ρ(r)Cp(r)U(r)P−KT(r)·∇P
(2.20)
ν·∆SpJ=0 onSp
|Rn−Rn′|mP→0
|Rn−Rn′|mJ→0/bracerightBigg
as/braceleftBigg
{n−n′}→∞
m=0,1,…
82 C.Timofte
In(2.20)3,foranarbitrarytensorfield f,∆Spdefinesthe”jump”of f,
acrossthediscontinuousphasesurface Spandνisaunitvectorwhichis
normaltothissurface.
Thethermophysicalproperties ρ,Cp,KTandthelocalfluidvelocityare
regardedasbeingspatiallyperiodic.
Followingamoment-matchingschemeandconsideringmacros caleGreen’s
functionP
P(Rn,t|r′)=1
ρCp∗/integraldisplay
τ0ρ(r)Cp(r)P(Rn,r,t|r′)d3r∼=P(R,t) (2.21)
wegetthefollowing macrotransportequation
ρCp∗/parenleftBig∂P
∂t+U∗·∇P/parenrightBig
=kT∗:∇∇P+δ(R)δ(t) (2.22)
with
P→0 as|R|→∞ (2.23)
Here,Risthemacroscale(Darcy)positionvectorofalatticepoint relative
toanoriginOarbitrarilychosenintheunitperiodiccell.
Themacroscalecoefficients ρCp∗,U∗andKT∗aregivenbythefollowing
formulas
ρCp∗=1
τ0/integraldisplay
τ0ρ(r)Cp(r)d3r
U∗=/integraldisplay
τ0J∞
0(r)d3r (2.24)
α∗=KT∗
ρCp∗=/integraldisplay
τ0P∞
0(r)(∇B)⊤(r)·simKT(r)·∇B(r)d3r
ThefieldsP∞
0(r)andB(r)satisfy,forr∈τ0,thefollowingboundary-
valueproblems
∇·J∞
0=0
J∞
0=ρCpUP∞
0−KT·∇P∞
0
ν·∆SpJ∞
0=0∆SpP∞
0=0 onSp(2.25)
/ba∇dblP∞
0/ba∇dbl=0/ba∇dbl∇P∞
0/ba∇dbl=0 on∂τ0
/integraldisplay
τ0ρ(r)Cp(r)P∞
0(r)d3r=1
Ontheasymptoticbehaviorofthermal… 83
and
∇·(P∞
0KT·∇B)−J∞
0·∇B=ρCpP∞
0U∗
Biscontinuousacross Sp
(2.26)
ν·∆Sp(KT·∇B)=0 onSp
/ba∇dblB/ba∇dbl=−/ba∇dblr/ba∇dbl /ba∇dbl∇B/ba∇dbl=0 on∂τ0
Here,foranytensor-valuedfield F,/ba∇dblF/ba∇dbldefinesthe”jump”inthevalueof F
betweentheequivalentpointslyingonoppositepairsofthe cellfaces.
Inthismanner,wecanobtainamacrotransportparadigmfora classof
thermaldispersionphenomenaoccurringinperiodicmedia.
Moreover,forthiscase,introducingtwopositivescalars U0anda,wecan
expressthefluidvelocity Uintheform
U(r)=U0V(r/a) (2.27)
U0andawillbeinterpretedasbeingthevelocityandthespatialsca lepara-
meterswhichcharacterizeourtransportprocesses.
Weareinterestedingettingthefunctionaldependenceofth easymptotic
dispersioncoefficients α∗intermsofthesetwoparameters.
UsingacentrallimittheoremforMarkovprocesses,itcanbe proved(see
Timofte,1999;Bhattacharya etal.,1989)thatforaspecialcaseofthermal
dispersionphenomenainperiodicmedia,themacroscalecoe fficientsα∗
ijde-
pendonlyontheproduct aU0,theresultbeinginaccordancewithallthe
experimentalstudiesthathavebeendone.Infact
α∗(a,U0)=α∗(U0,a)=α∗(aU0,1) (2.28)
Thisinterchangeabilityofthevelocityandspatialscalep arametersinthe
large-scaledispersionmatrixenablesustoconsider,ifne eded,thatthespatial
scaleparameteraisheldfixedata=1,whilethevelocityparameter U0is
allowedtovary.
Amorepreciseanalysisoftheasymptoticbehaviorofthedis persioncoeffi-
cientsα∗
ijcanbedoneifthethermophysicalproperties ρ,Cp,KTaresupposed
tobeconstantandifwemakemorerestrictiveassumptionsab outthevelocity
field(seeTimofte,1999).
84 C.Timofte
3. Applications
Asafirstexample,weshallconsidertheproblemofinternale nergydi-
spersioninanincompressibleviscousfluidmovingunderlam inarflowcondi-
tionsbetweentwoparallel,insulatedporousplatessepara tedbyadistanceh.
Theupperplatemovesatavelocity U0paralleltoitinthe x-direction.Si-
multaneously,thereexistsauniformflowacrossthechannel (inthenegative
y-direction)ataconstantvelocity v0.Inthiscase,thefluidvelocityfield U
isgivenby
U=U0y
hi−v0j (3.1)
Att=0,anamountofheatisinstantaneouslyaddedintooursyste mover
someregionoftheinfinitedomainbetweentheplatesinthefo rmofsome
initialtemperaturedistribution T0(x).
Assumingthatthethermophysicalproperties ρ,CpandKTareconstant,
theevolutionofthetemperature T(t,x)willbegovernedbythefollowing
equation
∂T
∂t+U0y
h∂T
∂x−v0∂T
∂y=α∆T (3.2)
withtheinitialcondition T(0,x)=T0(x)andwithα=KT/(ρCp).
Introducingthedimensionlessparameter
β=v0h
α(3.3)
andconsideringtheincompletegammafunction
γ(n+1,β)=β/integraldisplay
0ξnexp(−ξ)dξ n=0,1,2,…(3.4)
themacroscalethermalvelocity Uisgivenby
U∗=U∗i (3.5)
where
U∗=U0γ(2,β)
βγ(1,β)(3.6)
Ifweconsiderthemeanaxialfluidvelocity
V=U0
2(3.7)
Ontheasymptoticbehaviorofthermal… 85
weget
U∗
V=2γ(2,β)
βγ(1,β)(3.8)
So,thethermalvelocity U∗isdifferentfromthemeanaxialfluidvelocity V.
Asthecrossflowvelocity v0→0,correspondingto β→0,itiseasyto
seethat
lim
β→0U∗
V=1
Ifv0→∞,thenβ→∞and
lim
β→∞U∗
V=0
Usingthegeneralformulasgivenbytheabovemethodofmomen ts,wesee
thattheonlycomponentoftheeffectivethermaldispersivit ydyadicα∗which
isdifferentfromzerois
α∗
11=α+k(β)h2V2
α(3.9)
with
k(β)=4
β4/bracketleftBigγ(2,β)
γ(1,β)/bracketrightBig2/bracketleftBig
2γ(2,β)
γ(1,β)+3γ(3,β)
γ(2,β)/bracketrightBig
(3.10)
Wenoticethatifv0=0wegetaformulawhichissimilartoclassicalformula
(1.1)forthecaseofTaylor’ssolutedispersion.
Asasecondexample,letusconsidertheproblemofinternale nergydisper-
sioninalayeredperiodicporousmedium,saturatedwithavi scousincompres-
siblefluid.Weshallchooseasaperiodiccelltheparallelep ipedτ0havingthe
sideslx,lyandlz.Letussupposethatthethermophysicalproperties ρ,Cp,
KTareconstantandthevelocityfield Uisperiodic,withtheperiod lz
U=/bracketleftBig
U0/parenleftBig
1+sin2πz
lz/parenrightBig
,U0sin2πz
lz,U0ω/bracketrightBig
(3.11)
Here,U0andωaregivenrealparameters(seeTimofte,1996).
Initially,themediumhasanuniformtemperature T0(wecanchoose
T0=0).Att=0,anamountofheat Qisinstantaneouslyintroducedin-
tothesystemastheinitialdistributionoftemperature T(0,x)=T0(x).
Withα=KT/(ρCp),theevolutionofthetemperature T(t,x)willbe
governedbythefollowingequation
∂T
∂t=α∆T−U0/parenleftBig
1+sin2πz
lz/parenrightBig∂T
∂x−U0sin2πz
lz∂T
∂y−U0ω∂T
∂z(3.12)
86 C.Timofte
subjectedtotheinitialcondition T(0,x)=T0(x).
Obviously
U∗=(U0,0,U0ω) (3.13)
Followingthegeneralschemeofferedbytheabovemethodofmo ments,we
cancomputethemacroscalecoefficients α∗
ij
α∗
11=α∗
22=α+αl2
zU2
0
2[(2πα)2+(U0lzω)2]
α∗
33=α
(3.14)
α∗
12=α∗
21=αl2
zU2
0
2[(2πα)2+(U0lzω)2]
α∗
13=α∗
31=α∗
23=α∗
32=0
Itissimpletoseethatforsmallvaluesof lzU0,α∗
ijdependquadraticallyon
lzU0.However,aslzU0→∞,eachα∗
ijbecomesasymptoticallyconstant.
Asthefinalexample,weshallconsidertheproblemofinterna lenergy
dispersioninaperiodicporousmedium,saturatedwithanin compressible
viscousfluidhavingthevelocityfield U(x)=U0V(x)givenby
V=[0,2+sin2πx,2+cos2πxcos2πy] (3.15)
Weassumethatthespatialscaleparameter aisfixedata=1andthe
phenomenologicalcoefficients ρ,,CpandKTarestrictlypositiveconstants.
Obviously
U∗=[0,2U0,2U0] (3.16)
Itiseasytoseethatinthiscase
α∗
11=α
(3.17)
α∗
12=α∗
21=α∗
13=α∗
31=α∗
23=α∗
32=0
Forthisexample,closed-formsolutionsofthemacrotransp ortcoefficientsα∗
22
andα∗
33cannotbeobtained.However,theanalyticaltheorydevelop edby
Timofte(1999)andBhattacharya etal.(1989)showsthat,as U0→ ∞,
α∗
22=α+O(U2
0)andα∗
33=α+O(1).
Thisexamplereflectstheinfluenceofthegeometryoftheflowc urveson
theasymptoticbehaviorofthemacrotransportcoefficients.
Ontheasymptoticbehaviorofthermal… 87
References
1.ArisR.,1956,Onthedispersionofasoluteinafluidflowingthrougha tube,
Proc.Roy.Soc.,Ser.A,235,67-78
2.ArisR.,1960,Onthedispersionofasoluteinpulsatingflowthrough atube,
Proc.Roy.Soc.,Ser.A,259,370-376
3.BensoussanA.,LionsJ.L.,PapanicolaouG. ,1978,AsymptoticAnalysis
forPeriodicStructures ,Amsterdam,North-Holland
4.BhattacharyaR.N.,GuptaV.K.,WalkerH. ,1989,Asymptoticsofsolute
dispersioninperiodicporousmedia, SIAMJ.Appl.Math. ,49,86-98
5.BrennerH.,1980,Dispersionresultingfromflowthroughspatiallyper iodic
porousmedia,Phil.Trans.Roy.Soc.London ,A,297,81-133
6.BrennerH.,EdwardsD.A. ,1993,MacrotransportProcesses ,Butterworth-
Heinemann,Boston
7.HornF.J.M.,1971,Calculationofdispersioncoefficientsbymeansofmo-
ments,AIChEJ.,613-620
8.KochD.L.,BradyJ.F. ,1985,Dispersioninfixedbeds, J.FluidMech.,154,
399-427
9.Sanchez-PalenciaE. ,1980,Non-HomogeneousMediaandVibrationTheory ,
Lect.NotesPhys.,127,Springer-Verlag,Berlin
10.TaylorG.I.,1956,Dispersionofsolublematterinasolventflowingslow ly
throughatube,Proc.Roy.Soc.,Ser.A,219,186-203
11.TimofteC.,1996,StochasticProcessesandtheirApplicationstoFlui dMe-
chanics,Ph.D.Thesis,InstituteofMathematicsoftheRoma nianAcademy,
Bucharest(inRomanian)
12.Timofte C.,1999,Asymptotics ofthermaldispersionin periodic media ,
JournalofTheoreticalandAppliedMechanics ,37,1,95-108
OasymptotycznejnaturzeprocesutermicznejdyspersjiTay lora
wośrodkachperiodycznych
Streszczenie
Wpracydokonanoprzegląduszerokiejklasyzjawiskzwiązan ychztermicznądys-
persjąwwybranychukładachjednorodnychwskalimakro.Wop isiewykorzystano
uogólnionąmetodęmomentówitwierdzenieogranicycentral nej.Jakoszczególnie
88 C.Timofte
interesującyprzedstawionoproblemobliczaniawspółczyn nikówmakroskaliwfunkcji
współczynnikówmikroskaliigeometriibadanegoukładu.Po nadtoprzeanalizowano
funkcjonalnązależnośćwspółczynnikówefektywnychodpol aprędkościiprzestrzen-
nychparametrówskali.
ManuscriptreceivedOctober16,2001;acceptedforprintOc tober22,2002
Copyright Notice
© Licențiada.org respectă drepturile de proprietate intelectuală și așteaptă ca toți utilizatorii să facă același lucru. Dacă consideri că un conținut de pe site încalcă drepturile tale de autor, te rugăm să trimiți o notificare DMCA.
Acest articol: ONTHEASYMPTOTICBEHAVIOROFTHERMALTAYLOR DISPERSIONPROCESSESINPERIODICMEDIA ClaudiaTimofte DepartmentofMathematics,FacultyofPhysics,University… [610108] (ID: 610108)
Dacă considerați că acest conținut vă încalcă drepturile de autor, vă rugăm să depuneți o cerere pe pagina noastră Copyright Takedown.
