MONOCHROMATIZATION AND POLARIZATION OF THE [627320]
MONOCHROMATIZATION AND POLARIZATION OF THE
NEON SPECTRAL LINES IN CONSTANT/VARIABLE
MAGNETIC FIELD
I. GRUIA, L.C. CIOBOTARU*
Faculty of Physics, University of Bucharest, Magure le, Romania
*Corresponding author e-mail address: ciobotaru_lc@y ahoo.com
Abstract. As early as the 1980s, a new physical phenomenon w as observed in electronegative-
electropositive gas mixtures discharges plasma, nam ely a significant monochromatization effect (called
the M-effect) of the emitted visible light. As was established in our previous papers, the generation
mechanism of this effect is mainly based on the pol ar resonant three-body reaction, whose cross- secti on
strongly depends on the energy dissipated in discha rge, either by increasing the total gas pressure or the
electric current in discharge. In (Ne+H 2) gas mixtures, the phenomenon of monochromatizatio n was the
most intensive such that the only important spectra l line, virtually remaining, was λ=585.3nm that
belongs to the neon emission spectrum. This paper d eals with the study of way in which a
constant/variable magnetic field has influenced the monochromatization and polarization degree, in
regard with the neon principal spectral lines: 614. 30, 640.22, 692.94, 703.24, 717.39 and 724.51 nm.
Given the dependence of the cross-section of the th ree-body reaction on the energy reaction, the
measurements have been performed for different valu es of the discharge current. The study reveals that
the presence of a constant magnetic field improved the quality of the monochromatization -effect and
subsequently of the polarization degree for the neo n spectral lines, particularly λ=585.3nm, compared
with the situation when the magnetic field has been zero or a variable one.
Key words : the M-effect, polarization degree, neon emission spectrum, magnetic field.
1. INTRODUCTION
The monochromatization of visible light is an impor tant physical effect whose
appearance can be observed only in noble gas-electr onegative gas mixtures plasma, at
moderate to high total pressures [1]. The effect co nsists in a great reduction of the
noble gas emission spectrum at one single line, (so metimes a few lines) very intensive
in relation to the other spectral lines intensities . This spectacular change in aspect of the
noble gas emission spectrum appeared upon addition of a little quantity of
electronegative gas (Fig.1). However, there are com binations of gas mixtures in which
the M-effect has no appeared, as was indicated in [ 2].
The magnitude of the M-effect is obtained by introd ucing the M parameter,
defined as the intensities ratio of two emission li nes from the noble gas spectrum,
namely that of the λ1 monochromatized line, called the dominant line, an d that of a
λ2 reference line, chosen at random:
()()()j i ji II M λλλλ=, (1)
For example, λi =585.3 nm and λj = 614.3 nm in neon emission spectrum.
The generating process of the M-effect is produced via the polar resonant
three-body reaction having its general form as foll ows:
()( )0**≈ΔΔ + + +→++− +EE N NPNNPmet state ground met (2)
2
where Pand Nare the symbols of the atoms of electropositive and electronegative gases
respectively, +Pis the symbol for the positive ion, −Nis the symbol of the negative ion,
met Nis the symbol for the metastable negative atom, *)(met Nis the symbol of the
excited electronegative atom having a higher energy that the metastable level, *Pis the
electropositive atom in an excited state, and EΔis the reaction energy defect.
The energy defect is given by the difference in the energy of the participating
particles before the three-body interaction and aft er it: the positively ionized and
excited neutral atoms, +Pand *Prespectively, and the metastable-state atoms met N
and *met Nhave, by convention, positive energy values while t he negative ions
have, suitably, negative energy values.
Numerical calculation of the energy balance implied in reaction (2)
compared with the experimental observations proves that the M-effect is obtained
only for the combinations of *Pand *met Nthat give a very small energy defect
(near to 0 eV). The results of this calculation sug gest that values of EΔin the range
of (−1, 1) eV should be considered as an important possibility for the appearance of
the M-effect. For example, based on this calculatio n, the spectral lines of the neon
emission spectrum, with the highest probability wit hin the frame of the M-effect,
should be: λ= 585.3 nm and λ= 540.1 nm.
The compound of gases in which the M-effect was the most significant was
formed by neon and hydrogen. In this specific case, the eq. (1) takes the following form:
EnHnHpNe nHHNe nHHNe
Δ ±=+=+ →→=+ →=++− −+
) 1() 3()2 () 2()() 2(
*
1** * *
(3)
As we can see from the eq. (3), the particles invol ved in reaction are ions,
excited and neutral atoms of electronegative and el ectropositive gas, respectively. The
spectral line λ1=585.3 nm is generated by the transition 2 p1→1s2. Hence, is obviously
that mostly of the neon excited atoms, reported in monochromatization effect, must be
on 2p1 energy level because the emitted radiation intensi ty of spectral line λ1=585.3 nm
is directly proportional to the population of the i nitial level in Fig. 2.
575 600 625 650 675 700 725 750 0246810 12
614.3nm 585.3nm (N e+1% Ar)+40% H 2
Ptot =100 torr
λλ λλ1λλ λλ2I(a.u.)
λλ λλ(nm )
.
Fig. 1 – Emission spectrum of (Ne+1%Ar) +
40%H 2) gas mixture plasma. Fig. 2 – The neon energetic levels simplified struc ture
in Paschen notation (The energy levels 1 s2 and 1s4 are
resonant while 1 s3 and 1s4 are metastable).
A second permitted transition starting on this leve l is 2p1→1s4 with the
wavelength of the emitted radiation λ2= 540.1 nm. In this case, the spectral line is
not a dominant one (even the result of calculation would allow it) because its
probability of emission is about one hundred time s maller than for the first
transition. The levels 1 s2 and 1s4 that are resonant levels for neon atom, are having
3
a theoretical life-time of τs2 =2×10 -8 s and τs4 =1.5×10 -9 s, respectively. The excited
atoms standing on these levels return to the fundam ental energy level either by
radiative dezexcitation or non radiative by collisi on processes (see Fig. 2).
The wavelengths of the resonance radiation are λ=73.6 nm and λ=74.4 nm,
respectively, corresponding to the following two tr ansitions: 1 s2→1s0 and 1s4→1s0
(here 1s0 is the denotation for the fundamental energy level ). Under a few Torr
(mbar) pressures values, due to the resonance radia tion trapping phenomenon, the
real life-time of the excited neon atoms on the res onance energy levels becomes
comparable with the life-time of atoms on the metas table energy levels.
Theoretically, this life-time is about one second, but in the real circumstances of
discharge, this one could be significantly reduced, close to a 10 -3 s magnitude order.
Table 1 presents the calculation for the defect ene rgy of the reaction related
to the principal spectral neon lines of interest in our paper [3].
Table 1 Calculation of ∆E for the main spectral lines of neon.
(+) P +
(eV) (-) N –
(eV) (+)N met
(eV) (- )P *
(eV) N
(eV) (-)N met*
(eV) (±) ∆E
(eV) λ
(nm)
21.56 0.75 10.2 18.38 0 12.09 +0.54 724.52
21.56 0.75 10.2 18.57 0 12.09 +0.35 717.39
21.56 0.75 10.2 18.38 0 12.09 +0.54 703.24
21.56 0.75 10.2 18.63 0 12.09 +0.29 692.95
21.56 0.75 10.2 18.55 0 12.09 +0.37 640.22
21.56 0.75 10.2 18.63 0 12.09 +0.29 614.30
21.56 0.75 10.2 18.96 0 12.09 – 0.04 585.30
21.56 0.75 10.2 18.96 0 12.09 – 0.04 540.06
The radiative and collision processes that appear b etween 1 s2, 1 s3, 1 s4 and
1s5 levels are described by the following equations:
Ne*(1 si)+ e→Ne**(2 pm)+ e; m=1÷10 (4)
Ne**(2 pm)→Ne*(1 sj)+hν; i=1÷4; j=1÷4; m=1÷10; i ≠j (5)
Ne*(1 si)+Ne →Ne*(1 sj)+Ne; i≠j (6)
Ne*(1 si)+M →Ne*(1 sj)+M; i=1÷4; j=1÷4; i ≠j. (7)
However, the real life-time of the metastable neon atoms is shorter than 10 -3 s
due to the existence of the Penning-type collisions . These reactions produce a
quick extinction of the neon excited atoms from the metastable/resonant levels, as
are described in the following equations:
Ne*(1 si) +Ar → Ar ++Ne+ e ; (8)
Ne*(1 si) +Xe → Xe ++Ne+ e ; (9)
Ne*(1 si) +H 2 → H2+(v ≠0)+ e; i = 2, 3, 4, 5. (10)
Figure 2 shows that the energy differences between the levels on neon spectrum
are very small, around the value of 0.1 eV, being i n the range of ∆E values that allows the
appearance of the M-effect. The collision processes between neon atoms having their
energy levels values very close, causes a kind of „ fragmentation” of colliding particles
energy. This process favours the existence of a thi rd body into a convenient energy state
that can be involved in the resonant reaction. In o ur previous paper we have proposed a
kinetic model that explained the selective populati on of the 2 p1 energy level [4].
Remember that the three-body reaction has a cross-s ection that depends not
only on the energy of colliding particles involved in eq. (2), but also on the total
gas pressure. Therefore, the existence of the M-eff ect can be better observed above
4
a value of 10 Torr (13.3 mbar). Indeed, we shall se e there are two types of
conditions to be accomplished in order to obtaining the M-effect:
1. Experimental conditions : a) Electronegative-electropositive gas mixture; b) Low
gas temperature and elevated pressure of the gas mi xture; c) The question of a high
density of the negative ions: low electric field in the plasma and high electron
densities can both increase the density of negative ions, conditions accomplished in
the after-glow phase of the dielectric barrier disc harge, in very low RF discharge
and in negative glow of a dc discharge;
2. Energy conditions : a high emission probability of dominant spectral line(s) and a
corresponding appropriate value of ∆E.
Given these circumstances, the visible emitted ligh t has a degree of
monochromatization measured by the dimensionless pa rameter M. In our previous
work [5] we observed the existence of a certain pol arization degree of the emitted
dominant spectral lines, fact predictable. As is we ll known, the degree of
polarization is defined as follows:
90 00 90 00
PPPP
+−=ρ . (11)
2. EXPERIMENTAL DEVICE
The photo-view and a schematic diagram of the exper imental set-up are presented
in [5]. In order to allow the passage of the UV rad iation, the discharge is produced in a
quartz tube with 15 mm inner diameter and 20 mm out er diameter respectively, between
two identical wolfram-thorium cylinder electrodes o f 12 mm diameter, spaced at 6 mm
distance. In front of the discharge tube is placed a reflection mirror for minimizing the
loss of the emitted radiation. The experimental con ditions are the following: the total gas
mixtures pressure up to the value of 30 Torr (40 mb ar) and the electric current in
discharge varying within the range of 5 to 11 mA, w ith an increasing constant rate of 5
mA. The discharge device can be pumped down to a pr essure of about 10 –5 mbar and
then filled with various gas mixtures of spectral p urity. The RF electrical power supply
used in the experiment has the following characteri stics: maximum output electrical
tension of 2 kV corresponding to an electrical curr ent intensity of 150 mA, very low
frequency alternative voltage of 25 kHz and a filli ng factor between 10 to 20%. The
optical emission spectra of the plasma discharges h ave been registered using OMA
(Optical Analyzer Multichannel) with a spectral ran ge between 220 to 900 nm, 0.5 s time
of integration and a resolution of 1.5 nm, after th e passage of the emitted radiation
through a diaphragm, a polarization filter and a fo cusing lens system. The diaphragm has
a variable magnitude starting with a value of 20 mm and up to 40 mm. The registered
data have been processed by means of a computer.
3. RESULTS AND DISCUSSION
In order to study the influence of a constant/varia ble magnetic field on the
monochromatization and polarization degree we have chosen the (Ne+42.5% H 2)
gas mixture RF discharge plasma, at a total pressur e of 22 Torr (29.26 mbar),
because these experimental conditions are in the op timum range of values
5
established for obtaining the M-effect. We must rem ark here that the M-effect was
found to be more intensive in ac discharges (of rad io frequency and dielectric
barrier types) than in dc discharge.
By using two magnets, we have applied a constant ma gnetic perpendicularly
on the drift velocity direction of the electrons, n amely on an imaginary line
connecting the two electrodes of the discharge tube . The variable magnetic field
has been obtained by using a single magnet. We have performed the measurements
in a constant magnetic field or a variable one resp ectively, and then we have compared
them with the ones obtained in the situation when t he magnetic field has been zero. In
all the following graphs, P00 and P90 represent the intensities of light measured in
the oscillation and perpendicular plane of the elec tric vector respectively, and i is
the denotation for intensity of the electric curren t through the discharge.
580 600 620 640 660 680 700 720 740 -5000 05000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 Intensity (a.u.)
λ(nm) i=5mA
i=7.5mA
i=10mA
i=12.5mA
i=15mA
i=17.5mA
i=20mA
i=21.5mA
for
P00
Diaphragm 21.5
42.5% H+57.5% Ne
2 magnets
Fig. 3 – The spectral dependence of P00 . 580 600 620 640 660 680 700 720 740 05000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 Intensity (a.u.)
λ(nm) i=5mA
i=7.5mA
i=10mA
i=12.5mA
i=15mA
i=17.5mA
i=20mA
B=0
Diafragm 21.5
P00
42.5 % H+75.5 % Ne
Fig. 4 – The spectral dependence of P00 .
580 600 620 640 660 680 700 720 740 05000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 Intensity (a.u.)
λ(nm) i=5mA
i=7.5mA
i=10mA
i=12.5mA
i=15mA
i=17.5mA
i=20mA
i=21.5mA
for
P90
Diaphragm 21.5
42.5% H+57.5% Ne
2 magnets
Fig. 5 – The spectral dependence of P90 . 580 600 620 640 660 680 700 720 740 010000 20000 30000 40000 50000 60000 Intensity (a.u.)
λ(nm) i=5mA
i=7.5mA
i=10mA
i=12.5mA
i=15mA
i=17.5mA
i=20mA
B=0
Diafragm 21.5
P90
42.5 % H+75.5 % Ne
Fig. 6 – The spectral dependence of P90 .
4 6 8 10 12 14 16 18 20 22 05000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 Intensity (a.u.)
I(mA) λ=585.24 nm
614.30 nm
640.22 nm
692.94 nm
703.24 nm
717.39 nm
724.51 nm
B=constant (2 magnets)
Diaphragm 21.5
P00
42.5 % H+75.5 % Ne
Fig. 7 – The dependence of P00 emitted visible light
intensity on the electric discharge current. 4 6 8 10 12 14 16 18 20 22 05000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 Intensity (a.u.)
I(mA) λ=585.24 nm
614.30 nm
640.22 nm
692.94 nm
703.24 nm
717.39 nm
724.51 nm
B=0
Diafragm 21.5
P00
42.5 % H+75.5 % Ne
Fig. 8 – The dependence of P00 emitted visible light
intensity on the electric discharge current.
6
4 6 8 10 12 14 16 18 20 22 05000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 Intensity (a.u.)
I(mA) λ=585.24 nm
614.30 nm
640.22 nm
692.94 nm
703.24 nm
717.39 nm
724.51 nm
B=constant (2 magnets)
Diaphragm 21.5
P90
42.5 % H+75.5 % Ne
Fig. 9 – The dependence of P 90 emitted visible
light intensity on the electric discharge current. 4 6 8 10 12 14 16 18 20 22 010000 20000 30000 40000 50000 60000 Intensity (a.u.)
I(mA) λ=585.24 nm
614.30 nm
640.22 nm
692.94 nm
703.24 nm
717.39 nm
724.51 nm
B=0
Diafragm 21.5
P90
42.5 % H+75.5 % Ne
Fig. 10 – The dependence of P 90 emitted visible
light intensity on the electric discharge current.
Let us analyze the Figs. 3÷10 (diaphragm of 21.5 mm ), highlighting their
following characteristics:
• The intensities of all neon spectral lines have big ger values when is applied a
constant magnetic field comparatively with the situ ation when there is no field.
• The intensities of the component P00 of all neon spectral lines are bigger than the
intensities of the component P90 in both situations, with or without magnetic field .
• The P00 and P90 components intensities of all spectral lines from t he neon
spectrum, except the dominant line, keep their valu es almost constant when the
current electric in discharge increases, in both si tuations, with or without
applying a magnetic field.
• The intensity of the dominant spectral line is much higher than any other’s line
from the neon emission spectrum; however, there are two other spectral lines
having a slight increase of their intensities becau se of the M-effect, namely
those with the wavelengths of 640.22 nm and 703.3 n m, respectively.
580 600 620 640 660 680 700 720 740 05000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 Intensity (a.u.)
λ(nm) ( i=4mA)
( i=5mA)
( i=7.5mA)
( i=10mA)
( i=12.5mA)
( i=15mA)
( i=17.5mA)
( i=18.5mA)
For P 00
Diafragm 25
42.5% H+57.5% Ne
1 magnet
Fig. 11 – The spectral dependence of P00 . 580 600 620 640 660 680 700 720 740 05000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 Intensity (a.u.)
λ(nm) i=4mA
i=5mA
i=7.5mA
i=10mA
i=12.5mA
i=15mA
i=17.5mA
B=0
Diafragm 25
P00
42.5 % H+75.5 % Ne
Fig. 12 – The spectral dependence of P00 .
7
580 600 620 640 660 680 700 720 740 05000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 Intensity (a.u.)
λ(nm) i=4mA
i=5mA
i=7.5mA
i=10mA
i=12.5mA
i=15mA
i=17.5mA
i=18.5mA
For P 90
Diafragm 25
42.5% H+57.5% Ne
1 magnet
Fig. 13 – The spectral dependence of P90 . 580 600 620 640 660 680 700 720 740 05000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 Intensity (a.u.)
λ(nm) i=4mA
i=5mA
i=7.5mA
i=10mA
i=12.5mA
i=15mA
i=17.5mA
B=0
Diafragm 25
P90
42.5 % H+75.5 % Ne
Fig. 14 – The spectral dependence of P90 .
2 4 6 8 10 12 14 16 18 20 05000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 Intensity (a.u.)
I(mA) λ=585.24 nm
614.30 nm
640.22 nm
692.94 nm
703.24 nm
717.39 nm
724.51 nm
for P 00
Diaphragm 25
42.5% H+57.5% Ne
1 magnet
Fig. 15 – The dependence of P00 emitted visible
light intensity on the electric discharge current. 2 4 6 8 10 12 14 16 18 05000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 Intensity (a.u.)
I (mA) λ=585.24 nm
614.30 nm
640.22 nm
692.94 nm
703.24 nm
717.39 nm
724.51 nm
for B=0
Diafragm 25
P00
Fig. 16 – The dependence of P00 emitted visible
light intensity on the electric discharge current.
2 4 6 8 10 12 14 16 18 20 05000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 Intensity (a.u.)
I(mA) λ=585.24 nm
614.30 nm
640.22 nm
692.94 nm
703.24 nm
717.39 nm
724.51 nm
for P 90
Diaphragm 25
42.5% H+57.5% Ne
1 magnet
Fig. 17 – The dependence of P90 emitted visible
light intensity on the electric discharge current. 2 4 6 8 10 12 14 16 18 05000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 Intensity (a.u.)
I(mA) λ=585.24 nm
614.30 nm
640.22 nm
692.94 nm
703.24 nm
717.39 nm
724.51 nm
for B=0
Diafragm 25
P90
Fig. 18 – The dependence of P90 emitted visible
light intensity on the electric discharge current.
Figures 7÷10 and 15÷18 show the dependence of the s pectral lines intensities on the
discharge electric current, in other words, on the energy dissipated in discharge. As we can
see, these lines are forming a close-fitting group, except the dominant line λ1=585.3 nm,
that clearly detaches from them. This aspect of the graphs points out that the collision
coupling processes between the energetic levels in neon spectrum (within the frame of M-
effect), as we have indicated in expressions 5÷8, d o not allow the preferential population
for any of them with the notable exception represen ted by 2 p1 energy level [6].
Figures 11 ÷14 (diaphragm of 25 mm) show the dependence of inte nsity for the
two components of the visible light, namely P 00 and P 90 , on the wavelengths forming the
emission spectrum of neon. Similar to the situation presented in figs. 3 ÷6, the intensities of
P00 and P90 have different magnitudes namely a large values in the presence of the magnet ic
field compared with the situation in which there is no magnetic field. This behaviour gives
8
us an interesting information about the way in whic h has been produced the
monochromatized light effect in volume of plasma. T hus, when a magnetic field has been
applied over the discharge, the Lorentz force acted on the motion of the electrons and
negative ions, first generating local irregularitie s in their distributions. Because of the small
dimensions of the tube discharge and the very low f requency alternative supply voltage,
the walls of the device in which has been produced plasma rapidly become negative
charged. On this line, the negative potential of th e wall favours the processes in plasma
volume concerning the formation of the negative ion s (particles that play an essential role
in the appearance of M-effect) and, withal, reduces the possibility of their neutralization
on the discharge tube walls; as a result, the life time of the negative ions in plasma
volume becomes bigger. This process is not one of h aving neglected due to the small
diameter of the discharge tube ( Φ15 mm) and the moderate total pressure value (22 To rr).
We present the Tables 2 ÷9 that contain data’s depending of the polarization
degree and the monochromatization parameter on the values of electric current in
discharge and on wavelengths, respectively:
Table 2
Dependence of ρ, the polarization degree, on the electric current in discharge for different
spectral lines wavelengths (B=0).
Polarization degree ρ=(P00 -P90 )/( P00 +P90 ) for 42.5%H+57.5%Ne for B=0; Diaphragm 21.5; λ(nm) I = 5mA 7.5mA 10mA 12.5mA 15mA 17.5mA 20mA
585.24879 0.11813 0.11129 0.08973 0.09175 0.11029 0.12693 0.18949
614.30626 0.03267 0.09432 0.04801 0.08786 0.05357 0 .08482 0.14528
640.2248 0.13261 0.14136 0.06812 0.06907 0.08396 0.10784 0.17048
692.94673 0.04834 0.00112 -0.00475 4.26985E -4 0.06692 0.02121 0.03131
703.24131 0.06491 0.094 0.06887 0.04337 0.09234 0.1 2724 0.11585
717.39381 -0.03978 0.04957 -0.01479 0.02108 0.00909 0.05465 0.0174
724.51666 0.02354 0.03351 0.01164 0.01812 0.06247 0 .03091 0.04281
Table 3
Dependence of ρ, polarization degree, on the electric current in d ischarge for different spectral
lines wavelengths (B=ct).
Polarization degree ρ=(P00 -P90 )/( P00 +P90 ) for 42.5%H+57.5%Ne; for 2 Magnets (B = ct) ; Diaph ragm 21.5; λ(nm)
I = 5mA 7.5mA 10mA 12.5mA 15mA 17.5mA 20mA 21.5mA
585.24879 0.19018 0.17544 0.21654 0.18595 0.18577 0.17802 0.1902 0.18768
614.30626 0.12583 0.10237 0.12313 0.10599 0.15479 0 .12804 0.14339 0.15172
640.2248 0.1213 0.13728 0.17691 0.16211 0.16561 0.17988 0.17 632 0.18401
692.94673 0.06518 0.04364 0.04728 0.02057 0.01983 0 .02251 0.09239 0.09598
703.24131 0.08453 0.09569 0.14843 0.11066 0.12913 0 .12928 0.1157 0.16259
717.39381 0.03567 0.01418 0.06014 0.02033 0.03815 0 .04036 -0.01287 0.02579
724.51666 0.02457 0.06845 0.04663 0.02182 0.05292 – 0.24672 0.07625 0.0834
Table 4
Dependence of ρ, the polarization degree, on the wavelengths spect ral lines for different values
of electric current in discharge (B=0).
Polarization degree ρ=(P00 -P90 )/( P00 +P90 ) for 42.5%H+57.5%Ne for B=0; Diaphragm 21.5; I(mA) λ1=585.24nm 614.30nm 640.22nm 692.94nm 703.24nm 717.39nm 724.51nm
5 0.11813 0.03267 0.13261 0.04834 0.06491 -0.03978 0.02354
7.5 0.11129 0.09432 0.14136 0.00112 0.094 0.04957 0 .03351
10 0.08973 0.04801 0.06812 -0.00475 0.06887 -0.0147 9 0.01164
12.5 0.09175 0.08786 0.06907 4.26985E -4 0.04337 0.02108 0.01812
15 0.11029 0.05357 0.08396 0.06692 0.09234 0.00909 0.06247
17.5 0.12693 0.08482 0.10784 0.02121 0.12724 0.0546 5 0.03091
19/20 0.18949 0.14528 0.17048 0.03131 0.11585 0.017 4 0.04281
9
Table 5
Dependence of ρ, the polarization degree, on the wavelengths spect ral lines for different values
of electric current in discharge (B=ct).
Polarization degree ρ=(P00 -P90 )/( P00 +P90 ) for 42.5%H+57.5%Ne for 2 Magnets (B=ct);
Diaphragm 21.5 and different λj (nm) I(mA)
λj=585.24nm 614.30 nm 640.22 nm 692.94 nm 703.24 nm 717.39 nm 724.51 nm
5 0.19018 0.12583 0.1213 0.06518 0.08453 0 0.02457
7.5 0.17544 0.10237 0.13728 0.04364 0.09569 0.01418 0.06845
10 0.21654 0.12313 0.17691 0.04728 0.14843 0.06014 0.04663
12.5 0.18595 0.10599 0.16211 0.02057 0.11066 0.0203 3 0.02182
15 0.18577 0.15479 0.16561 0.01983 0.12913 0.03815 0.05292
17.5 0.17802 0.12804 0.17988 0.02251 0.12928 0.0403 6 -0.24672
20 0.1902 0.14339 0.17632 0.09239 0.1157 -0.01287 0 .07625
21.5 0.18768 0.15172 0.18401 0.09598 0.16259 0.0257 9 0.0834
Table 6
Values of M parameter ( λ1= 585.3 nm, j ≠1) for different values of electric current in disc harge
(P00 component, B=0).
Parameter M=I 585.24 nm /I λj for B=0; P 00 ; Diaphragm 21.5 and different λj (nm) I(mA) λj = 614.30 nm 640.22 nm 692.94 nm 703.24 nm 717.39 nm 724.51 nm
5 9.37245 5.31042 10.278 9.20291 14.69115 11.2137
7.5 9.76379 5.52438 12.13581 9.55363 14.2876 12.540 53
10 9.6247 5.39958 12.30542 9.74708 15.76654 13.3226 9
12.5 10.17988 5.59097 13.26035 10.41535 16.44733 13 .82688
15 10.81383 5.73246 13.8521 10.84097 19.44907 14.41 243
17.5 11.47399 5.82291 15.98771 10.91606 19.35095 16 .15203
19 11.12945 5.81173 17.10547 11.94948 22.88348 18.0 2737
Table 7
Values of M parameter ( λ1= 585.3 nm, j ≠1) for different values of electric current in disc harge
(P00 component, B=ct)
Parameter M=I 585.24 nm /I λi for 2 Magnets (B=ct); P 00 ; Diaphragm 21.5 and different λj (nm) I(mA) λj = 614.30 nm 640.22 nm 692.94 nm 703.24 nm 717.39 nm 724.51 nm
5 10.64902 5.70435 12.97125 10.47595 18.48157 14.15 733
7.5 10.8152 5.69722 14.07238 11.114 18.81613 15.356 74
10 10.46904 5.45735 13.98242 9.98516 18.04951 15.06 586
12.5 11.7865 5.75855 16.75574 11.73328 22.38611 18. 11373
15 11.51834 5.81543 18.56744 12.26404 24.06457 18.4 3305
17.5 11.85654 5.69183 19.22694 12.50012 25.86166 36 .7923
20 12.57022 5.80601 21.04812 13.45491 30.11737 22.3 5192
21.5 12.45619 5.95163 21.20872 12.70413 30.80543 22 .35389
Table 8
Values of M parameter ( λ1= 585.3 nm, j≠1) for different values of electric current in disc harge
(P90 component, B=0).
Parameter M=I 585.24 nm /I λi for B=0; P90 ; Diaphragm 21.5 and different λj (nm) I(mA) λj = 614.30 nm 640.22 nm 692.94 nm 703.24 nm 717.39 nm 724.51 nm
5 7.89141 5.46904 8.92985 8.26601 10.70029 9.27072
7.5 9.43442 5.87253 9.72686 9.22539 12.61772 10.724 12
10 8.85058 5.16976 10.18178 9.34635 12.78629 11.390 87
12.5 10.10043 5.34139 11.04101 9.45046 14.27223 11. 92755
15 9.64646 5.43572 12.69248 10.45489 15.87106 13.08 837
17.5 10.53696 5.6018 12.92304 10.92299 16.72524 13. 31162
20 10.16162 5.58782 12.40919 10.27615 16.14499 13.3 8257
10
Table 9
Values of M parameter ( λ1= 585.3 nm, j ≠1) for different values of electric current in disc harge
(P90 component, B=ct).
Parameter M=I 585.24 nm /I λj for 2 Magnets (B=ct); P 90 ; Diaphragm 21.5 and different λj (nm) I(mA)
λj= 614.30 nm 640.22 nm 692.94 nm 703.24 nm 717.39 nm 724.51 nm
5 9.33174 4.95298 10.05662 8.4444 12.57519 10.11817
7.5 9.31727 5.26845 10.77271 9.44633 13.57909 12.35 581
10 9.16054 5.33088 10.50022 9.19931 13.90867 11.299 15
12.5 10.00877 5.48223 11.98446 10.05816 16.00393 12 .98817
15 10.80639 5.57842 13.26549 10.91883 17.83513 14.0 7197
17.5 10.70269 5.71375 14.03374 11.31232 19.56336 15 .51163
20 11.41587 5.64153 17.23651 11.55013 19.97051 17.7 1854
21.5 11.56693 5.90655 17.58582 12.06304 22.18475 18 .07115
The figures 19 ÷26, which were plotted based on the calculations co ntained in
Tables 2 ÷9, are presented as follows:
580 600 620 640 660 680 700 720 740 0.00 0.05 0.10 0.15 0.20 0.25 (P00 -P90 )/( P00 +P90 )
λ(nm) i=5mA
i=7.5mA
i=10mA
i=12.5mA
i=15mA
i=17.5mA
i=20mA
i=21.5mA
uniform magnetic field
Diaphragm 21.5
42.5 % H+75.5 % Ne
Fig. 19 – The spectral dependence of the polarizati on
degree for different values of the electric current in
discharge. 580 600 620 640 660 680 700 720 740 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 (P00 -P90 )/( P00 +P90 )
λ(nm) i=5mA
i=7.5mA
i=10mA
i=12.5mA
i=15mA
i=17.5mA
i=20mA
for
B=0
Diafragm 21.5
42.5 % H+75.5 % Ne
Fig. 20 – The spectral dependence of the
polarization degree for different values of the
electric current in discharge.
4 6 8 10 12 14 16 18 20 22 0.0 0.1 0.2 (P00 -P90 )/( P00 +P90 )
I(mA) λ=585.24 nm
614.30 nm
640.22 nm
692.94 nm
703.24 nm
717.39 nm
724.51 nm
for
Diaphragm 21.5
2 magnets
42.5 % H+75.5 % Ne
Fig. 21 – The dependence of the polarization
degree on the electric current in discharge for
different wavelengths. 4 6 8 10 12 14 16 18 20 22 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 (P00 -P90 )/( P00 +P90 )
I(mA) λ=585.24 nm
614.30 nm
640.22 nm
692.94 nm
703.24 nm
717.39 nm
724.51 nm
for
B=0
Diafragm 21.5
42.5 % H+75.5 % Ne
Fig. 22 – The dependence of the polarization
degree on the electric current in discharge for
different wavelengths.
4 6 8 10 12 14 16 18 20 22 0246810 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 M factor
I (mA) % (M=I 585.24 /I 614.30 )
% (M=I 585.24 /I 640.22 )
% (M=I 585.24 /I 692.94 )
% (M=I 585.24 /I 703.24 )
% (M=I 585.24 /I 717.39 )
% (M=I 585.24 /I 724.51 )
for
uniform magnetic field
P90
Diaphragm 21.5
42.5% H+57.5% Ne
Fig. 23 – The dependence of M-parameter on the
electric current in discharge ( λ1= 585.3 nm, j≠1, and
P90 component of electric vector). 4 6 8 10 12 14 16 18 20 22 0246810 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 M factor
I (mA) M=I 585.24 /I 614.30
M=I 585.24 /I 640.22
M=I 585.24 /I 692.94
M=I 585.24 /I 703.24
M=I 585.24 /I 717.39
M=I 585.24 /I 724.51
for
B=0
P90
Diaphragm 21.5
42.5% H+57.5% Ne
Fig. 24 – The dependence of M-parameter on the
electric current in discharge ( λ1= 585.3 nm, j≠1, and
P90 component of electric vector).
11
4 6 8 10 12 14 16 18 20 22 0246810 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 M factor
I (mA) M=I 585.24 /I 614.30
M=I 585.24 /I 640.22
M=I 585.24 /I 692.94
M=I 585.24 /I 703.24
M=I 585.24 /I 717.39
M=I 585.24 /I 724.51
for
uniform magnetic field
P00
Diaphragm 21.5
42.5% H+57.5% Ne
Fig. 25 – The dependence of M-parameter on the
electric current in discharge ( λ1= 585.3 nm, j≠1, and
P00 component of electric vector). 4 6 8 10 12 14 16 18 20 22 0246810 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 M factor
I (mA) M=I585.24 /I614.30
M=I585.24 /I640.22
M=I585.24 /I692.94
M=I585.24 /I703.24
M=I585.24 /I717.39
M=I585.24 /I724.51
for
B=0
P00
Diaphragm 21.5
42.5% H+57.5% Ne
Fig. 26 – The dependence of M-parameter on the
electric current in discharge ( λ1= 585.3 nm, j≠1, and
P00 component of electric vector).
Figures 19 and 20 show the dependence of ρ, the polarization degree, on
the electric current in discharge for different val ues of the wavelength, and figs. 21
and 22 the dependence on the wavelengths, for diffe rent values of the electric
current in discharge. In both cases, the values of the polarization degree are slightly
large when is applied a constant magnetic field ( ρ= 0÷0.216) compared with the
case without magnetic field ( ρ=0÷0.189). The figures 19÷20 show that the
maximum degree of polarization is reached by the do minant spectral line λ1=585.3
nm. Hence, when is applied a magnetic field, the po larization degree increases up
to a maximum value, corresponding to I=10 mA.
In the case without magnetic field, the polarizatio n degree has an opposite
behaviour: first it decreases, reaching a minimum a t a value of I =13 mA, and after that
has a continuous increase in the range of variation for the electric current in discharge.
The value of polarization degree for each other spe ctral line depending on
the electric current in discharge is lower than the one for the dominant line.
As we have already explained in our recent work [7- 9], this singular aspect
of the graphs 21 and 22, that present the dependenc e of the polarization degree of
each wavelength on the electric current (practicall y, on the energy dissipated in
discharge), consisting in multiple points of maximu m and minimum, indicates the
energy resonant character of the M-effect generatin g mechanisms.
Consider now the figs. 23÷26, in which is showing t he dependence of the
M-parameter on the electric current in discharge for the two components of the
electric vector, namely P 00 and P 90. Here, the M-parameter is calculated by dividing
the intensity of the dominant line λ1=585.3 nm to intensity of each other spectral
lines belonging to the neon spectrum, considered as reference lines.
The comparative analyze of these graphs provides us the information that
there is a value of the M-parameter that remains nearly constant with the in crease of
the electric current in discharge, namely the one c alculated having as reference line
λ1=640.2 nm. For all other reference spectral lines, the values of the M parameter
have, generally, an increasing trend related to the increase of the electric current in
discharge. It means that for all these spectral lin es, except the line with λ=640.22 nm,
the substantial population of the 2 p1 energy level is realized on account of their
depopulation. It is interesting that the line λ=640.22 nm has an equal ∆E defect
energy reaction with the one of the dominant line, but a probability of emission less
than for this one. This process is carried out by t he collision reactions of the type
12
indicated in eqs. 3÷7. The spectral line with the l arger transfer of energy to the
emission of the dominant spectral line is λ=717.39 nm; which is why its polarization
degree is the lowest of all , while the correspondi ng values of the M parameter are the
biggest (in both cases, with or without magnetic fi eld). Second in order of
contribution are the lines with the wavelengths of 724.51 nm and 692.94 nm.
As in the other cases, the values of M parameters increase by the application of
the magnetic field: for B ≠0, M=5.83÷30.89 and for B=0, M=5.39÷22.92 (concerning
the P00 component of electric vector) and for B ≠0, M=4.95÷22.16 and for B=0,
M=5.4÷16.2 (concerning the P90 component of electric vector).
Consider now the case of a spatially variable magne tic field applied on the
discharge device and a diaphragm size of 25 mm that is synthesized by the data
from the Tables 10 ÷17, as follows:
Table 10
Dependence of ρ, polarization degree, on the electric current in d ischarge for different spectral
lines wavelengths (B ≠0).
Polarization degree ( P00 -P90 )/(P 00 +P 90 ) for 42.5%H+57.5%Ne; B ≠ constant (1 Magnet); Diaphragm 25 λ(nm) I= 4mA 5mA 7.5mA 10mA 12.5mA 15mA 17.5mA 18.5mA
585.24879 0.16254 0.18698 0.2211 0.23957 0.24394 0.22157 0.18975 0.15246
614.30626 0.10992 0.12101 0.13239 0.16135 0.16661 0 .16371 0.13394 0.12022
640.2248 0.11841 0.1382 0.18586 0.19361 0.19677 0.17693 0.15192 0.13975
692.94673 0.02107 0.01185 0.05904 0.06889 0.04229 0 .05383 0.0651 0.04547
703.24131 0.07364 0.11182 0.13906 0.16939 0.16067 0 .16329 0.14707 0.10609
717.39381 0.09158 0.0426 0.00878 0.03811 -5.2356E-4 0.00679 0.03566 0.00624
724.51666 0.04133 0.02063 0.02021 0.04394 0.07152 0 .05439 0.08301 0.04553
Table 11
Dependence of ρ, polarization degree, on the electric current in d ischarge for different spectral
lines wavelengths (B=0).
Polarization degree ( P00 -P90 )/(P 00 +P 90 ) for 42.5%H+57.5%Ne for B=0; Diaphragm 25 λ(nm) I= 4mA 5mA 7.5mA 10mA 12.5mA 15mA 17.5mA
585.24879 0.1395 0.11101 0.09723 0.07973 0.06841 0.07425 0.09747
614.30626 0.10357 0.08939 0.06618 0.06174 0.05013 0 .05352 0.08534
640.2248 0.11634 0.08029 0.08644 0.07997 0.05901 0.07223 0.09938
692.94673 0.01324 0.02398 0.00702 0.03439 0.03369 0 .03562 0.02425
703.24131 0.04672 0.05941 0.08364 0.06727 0.0397 0. 08775 0.10035
717.39381 0.00558 0.01115 0.01603 -0.0077 -0.02088 0.04865 0.00823
724.51666 0.03053 0.02204 -0.00308 0.00964 -0.00387 0.05803 0.05199
Table 12
Dependence of ρ, polarization degree, on the wavelengths spectral lines for different values of
electric current in discharge (B ≠0).
Polarization degree ( P00 -P90 )/(P 00 +P 90 ) for 42.5%H+57.5%Ne; B ≠ constant (1 Magnet); Diaphragm 25 I(mA) λ1=585.24nm 614.30 nm 640.22 nm 692.94 nm 703.24 nm 717.39 nm 724.51 nm
4 0.16254 0.10992 0.11841 0.02107 0.07364 0.09158 0 .04133
5 0.18698 0.12101 0.1382 0.01185 0.11182 0.0426 0.0 2063
7.5 0.2211 0.13239 0.18586 0.05904 0.13906 0.00878 0.02021
10 0.23957 0.16135 0.19361 0.06889 0.16939 0.03811 0.04394
12.5 0.24394 0.16661 0.19677 0.04229 0.16067 -5.235 6E-4 0.07152
15 0.22157 0.16371 0.17693 0.05383 0.16329 0.00679 0.05439
17.5 0.18975 0.13394 0.15192 0.0651 0.14707 0.03566 0.08301
18.5 0.15246 0.12022 0.13975 0.04547 0.10609 0.0062 4 0.04553
13
Table 13
Dependence of ρ, polarization degree, on the wavelengths spectral lines for different values of
electric current in discharge (B=0).
Polarization degree (P 00 -P90 )/(P 00 +P 90 ) for 42.5%H+57.5%Ne for B=0; Diaphragm 25 I(mA) λ1=585.24nm 614.30 nm 640.22 nm 692.94 nm 703.24 nm 717.39 nm 724.51 nm
4 0.1395 0.10357 0.11634 0.01324 0.04672 0.00558 0. 03053
5 0.11101 0.08939 0.08029 0.02398 0.05941 0.01115 0 .02204
7.5 0.09723 0.06618 0.08644 0.00702 0.08364 0.01603 -0.00308
10 0.07973 0.06174 0.07997 0.03439 0.06727 -0.0077 0.00964
12.5 0.06841 0.05013 0.05901 0.03369 0.0397 -0.0208 8 -0.00387
15 0.07425 0.05352 0.07223 0.03562 0.08775 0.04865 0.05803
17.5 0.09747 0.08534 0.09938 0.02425 0.10035 0.0082 3 0.05199
Table 14
Values of M parameter ( λ1= 585.3 nm, i ≠1) for different values of electric current in disc harge
(P00 component, B ≠0).
Parameter M = I585.24 nm /I λi for B ≠ constant (1 Magnet) Diaphragm 25; P00 and different λj (nm) I(mA) λj= 614.30 nm 640.22 nm 692.94 nm 703.24 nm 717.39 nm 724.51 nm
4 9.51939 5.38736 14.56968 10.98857 17.86422 14.768 67
5 9.66482 5.51302 16.03389 11.60891 20.07386 16.482 15
7.5 10.37833 5.47827 17.32133 11.86135 24.32898 18. 46513
10 10.66929 5.67763 18.81661 12.48342 25.35241 20.2 6346
12.5 10.81261 5.6387 21.34257 12.74784 28.65427 21. 73262
15 10.69069 5.64291 21.48668 12.99823 30.56305 23.0 1485
17.5 10.76342 5.66224 22.53047 13.02759 31.07494 23 .00337
18.5 10.98551 5.58872 22.26169 13.5585 31.7416 23.25634
Table 15
Values of M parameter ( λ1= 585.3 nm, i ≠1) for different values of electric current in disc harge
(P00 component, B=0).
Parameter M = I585.24 nm /I λi for B=0; P00 ; Diaphragm 25 and different λj (nm) I(mA) λj= 614.30 nm 640.22 nm 692.94 nm 703.24 nm 717.39 nm 724.51 nm
4 9.15991 5.42155 13.61441 10.60289 18.88194 14.077 12
5 9.57291 5.47687 15.10205 10.94544 18.95486 15.268 08
7.5 9.76069 5.39914 16.47191 10.93793 21.13361 17.7 5298
10 9.84719 5.39208 16.50623 11.97369 23.37721 18.95 531
12.5 10.26998 5.46719 18.415 12.56779 24.39054 20.2 4299
15 10.54139 5.54273 18.66177 12.41301 26.26576 18.9 1936
17.5 10.39495 5.54915 21.17832 12.53449 29.22154 21.43205
Table 16
Values of M parameter ( λ1= 585.3 nm, i ≠1) for different values of electric current in disc harge
(P90 component, B ≠0).
Parameter M = I585.24 nm /I λj for B ≠ constant (1 Magnet); Diaphragm 25; P90 and different λj (nm) I(mA) λj= 614.30 nm 640.22 nm 692.94 nm 703.24 nm 717.39 nm 724.51 nm
4 8.55129 4.92337 10.9473 9.17446 15.4634 11.55633
5 8.44259 4.98727 11.24593 9.95374 14.97319 11.7651 3
7.5 8.64033 5.08989 12.43529 10.01017 15.79358 12.2 6429
10 9.06374 5.15559 13.25151 10.78168 16.78525 13.57 357
12.5 9.1995 5.10628 14.11762 10.71447 17.3977 15.24 392
15 9.47967 5.1418 15.2499 11.5158 19.74224 16.35294
17.5 9.59747 5.23772 17.48097 11.93177 22.72811 18. 50243
18.5 10.28672 5.44533 17.93132 12.33789 23.63632 18.73455
14
Table 17
Values of M parameter ( λ1= 585.3 nm, i ≠1) for different values of electric current in disc harge
(P90 component, B=0).
Parameter M=I 585.24 nm /I λj for B=0; P90 ; Diaphragm 25 and different λj (nm) I(mA) λj= 614.30 nm 640.22 nm 692.94 nm 703.24 nm 717.39 nm 724.51 nm
4 8.51553 5.17214 10.5569 8.79171 14.41903 11.30014
5 9.16365 5.14751 12.67793 9.86446 15.50886 12.7675 7
7.5 9.16921 5.28288 13.74428 10.64231 17.95492 14.5 1691
10 9.49732 5.39461 15.07042 11.67733 19.62013 16.47 015
12.5 9.90002 5.36495 17.1764 11.86452 20.39751 17.5 1478
15 10.11151 5.52023 17.2701 12.75504 24.94997 18.31293
17.5 10.14372 5.57058 18.28233 12.60766 24.4302 19. 55837
In figures 27÷30 are plotted the graphs presenting the dependence of ρ,
polarization degree, on the values of electric curr ent in discharge and of the
wavelengths exposed in Table 2, respectively:
580 600 620 640 660 680 700 720 740 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 (I00 -I90 )/( I00 +I90 )
λ(nm) i=4mA
i=5mA
i=7.5mA
i=10mA
i=12.5mA
i=15mA
i=17.5mA
i=18.5mA
for Diaphragm 25
42.5% H+57.5% Ne
1 magnet
Fig. 27 – The spectral dependence of the polarizati on
degree for different values of the electric current in
discharge. 580 600 620 640 660 680 700 720 740 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 (I00 -I90 )/( I00 +I90 )
λ(nm) i=4mA
i=5mA
i=7.5mA
i=10mA
i=12.5mA
i=15mA
i=17.5mA
B=0
Diafragm 25
42.5 % H+75.5 % Ne
Fig. 28 – The spectral dependence of the
polarization degree for different values of the
electric current in discharge.
2 4 6 8 10 12 14 16 18 20 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 (I
00 -I
90 )/( I
00 +I
90 )
I(mA) λ=585.24 nm
614.30 nm
640.22 nm
692.94 nm
703.24 nm
717.39 nm
724.51 nm
for
Diaphragm 25
42.5% H+57.5% Ne
1 magnet
Fig. 29 – The dependence of the polarization degree
on electric current in discharge for different
wavelengths. 2 4 6 8 10 12 14 16 18 0.00 0.05 0.10 0.15 0.20 0.25 (I00 -I90 )/( I00 +I90 )
I(mA) λ=585.24 nm
614.30 nm
640.22 nm
692.94 nm
703.24 nm
717.39 nm
724.51 nm
for B=0
Diafragm 25
P90
Fig. 30 – The dependence of the polarization
degree on electric current in discharge for
different wavelengths.
The interpretations of figs. 19÷22 are valid also f or the graphs from the figs.
27÷30, because the latter are having the same aspec t. However, there are some
differences, which clearly appear in the fig. 29. H ere, the polarization degree of the
dominant spectral line has no more a periodical asp ect, like in fig. 21, but a real curve
shape, with the maximum value of ρ=0.24 for I=12.5 mA, when B=variable. The lines
λ=614.3, 640.22, 692.94 and 703.24 nm have a similar shape, exhibiting a lower value
for their corresponding polarization degrees than t he one of the dominant spectral line.
15
The figures 31÷34 are presenting the dependence of M,
monochromatization parameter, on electric current i n discharge, calculated for the
two component of electric vector, P00 and P90.
2 4 6 8 10 12 14 16 18 20 0510 15 20 25 30 35 40 M factor
I (mA) M=I585.24 /I614.30
M=I585.24 /I640.22
M=I585.24 /I692.94
M=I585.24 /I703.24
M=I585.24 /I717.39
M=I585.24 /I724.51
for P 00
Diaphragm 25
42.5% H+57.5% Ne
1 magnet
Fig. 31 – The dependence of M-parameter on electric
current in discharge ( λ1= 585.3 nm, j ≠1, and P 00
component of electric vector). 2 4 6 8 10 12 14 16 18 0510 15 20 25 30 35 40 M factor
I (mA) M=I 585.24 /I 614.30
M=I 585.24 /I 640.22
M=I 585.24 /I 692.94
M=I 585.24 /I 703.24
M=I 585.24 /I 717.39
M=I 585.24 /I 724.51
for B=0
P00
Diaphragm 25
42.5% H+57.5% Ne
Fig. 32 – The dependence of M-parameter on
electric current in discharge ( λ1= 585.3 nm, j ≠1,
and P 00 component of electric vector).
2 4 6 8 10 12 14 16 18 20 0246810 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 M factor
I (mA) M=I 585.24 /I 614.30
M=I 585.24 /I 640.22
M=I 585.24 /I 692.94
M=I 585.24 /I 703.24
M=I 585.24 /I 717.39
M=I 585.24 /I 724.51
for P 90
Diaphragm 25
42.5% H+57.5% Ne
1 magnet
Fig. 33 – The dependence of M-parameter on the electric current in
discharge ( λ1= 585.3 nm, j ≠1, and P 90 component of electric vector). 2 4 6 8 10 12 14 16 18 0246810 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 M factor
I (mA) M=I 585.24 /I 614.30
M=I 585.24 /I 640.22
M=I 585.24 /I 692.94
M=I 585.24 /I 703.24
M=I 585.24 /I 717.39
M=I 585.24 /I 724.51
for B=0
P90
Diaphragm 25
42.5% H+57.5% Ne
Fig. 34 – The dependence of M-parameter on the electric current in
discharge ( λ1= 585.3 nm, j ≠1, and P 90 component of electric vector).
The deductions made for explaining figures 23÷26 ca n be applied for the
figs. 31÷34. However, we must notice that the value s of M parameters calculated
over all range of spectral lines intensities, are c omparable in the two cases: with or
without magnetic field applied. So, related to λ=717.39 nm, for B=variable,
M=5.38÷31.74, and for B=0, M=5.39÷29.22 (concerning the P00 component of
electric vector), and for B=variable, M=4.92÷23.63, and for B=0, M= 5.14÷24.43
(concerning the P90 component of electric vector). This means that a v ariable
magnetic field applied on discharge device, unlike the case of a constant magnetic
field, causes no increased values of the M-parameter, only of the polarization degree.
4. CONCLUSIONS
In this work, we have treated the spectral emission behaviour of the most
remarkable gas mixture plasma, within the frame of the M-effect, under different
experimental conditions: zero magnetic field, const ant magnetic field and spatially
variable magnetic field, respectively. Obviously, w e are talking about the
combination of neon and molecular hydrogen.
16
Due to the atomic nature of the generating mechanis m that underlies
appearance of this effect, we have been led to anal yze mostly of the important lines
belonging to the neon emission spectrum, by their r eporting directly to the best
monochromatized line, namely λ=585.24 nm. The large number of experimental
data has provided us the following conclusions: whe n there is a constant magnetic
field applied to the discharge gap, the values of b oth monochromatization-
parameters and polarization-degrees, are significan tly bigger as against the case
when there is no magnetic field. Conversely, the pr esence of a variable magnetic
field, acting in plasma space, causes no notable ch anges in monochromatization
parameter ( M) and polarization degree values ( ρ).
Now, in the end of this study, we shall briefly pre sent our results in the
following table:
Table 18
Resuming data
λ1 (nm) λj (j≠1) (nm) Diaphragm (mm) I (mA) B (T) P 00 (N/C) P90 (N/C) Mmax ρmax
585.24 – 21.5 20.0 0 – – – 0.18
585.24 – 21.5 10.0 ct. – – – 0.21
585.24 717.39 21.5 19.0 0 X – 22.88 –
585.24 717.39 21.5 21.5 ct X – 30.80 –
585.24 717.39 21.5 17.5 0 – X 16.75 –
585.24 717.39 21.5 21.5 ct – X 22.18 –
585.24 – 25.0 12.5 Variable – – – 0.24
585.24 – 25.0 12.5 0 – – – 0.13
585.24 717.39 25.0 18.5 Variable X – 31.74 –
585.24 717.39 25.0 17.5 0 X – 29.22 –
585.24 717.39 25.0 18.5 Variable – X 23.63 –
585.24 717.39 25.0 15.0 0 – X 24.94 –
This paper presents a complete picture describing t he two subsequent
phenomena, the monochromatization and the polarizat ion of visible light
respectively, regarding the principal spectral line s emitted by the neon and
hydrogen gas mixture plasma, in the specified exper imental conditions. Further, the
study can be extended to other electronegative-elec tropositive gas mixtures; the
interest’s being both scientifically and in practic al applications.
REFERENCES
1. G. Musa, A. Popescu, A. Baltog, C. P. Lungu , M-effect, Monochromatization
of the radiation of discharges in multiple gas mixt ures, Romanian Reports in
Physics, 45 , 287, 1993.
2. G. Musa, A. Baltog, G. Bajeu, C. P. Lungu, E. Ra iciu, I. Borcoman, A. Ricard,
Time evolution of the narrow gap barrier discharge in Ne+1%Xe at the H 2 and
SF 6 addition , Romanian Reports in Physics, 49 , 521-525, 1997.
3. C. C. Surdu-Bob, G. Musa, The kinetics of monochromatization of plasma light
emission , Journal of Physics D-Applied Physics, 41 , 17, 2008.
4. L. C. Ciobotaru, G. Musa, Monochromatization effect kinetic model for Penning
gas mixtures emission mechanisms, Turkish Journal of Physics, 36 , 77, 2012.
5. L. C. Ciobotaru, I. Gruia, Quasi-monochrome light polarization study in binary
electropositive-electronegative gas mixture , Romanian Journal of Physics, 61 ,
657-665, 2016.
17
6. L. C. Ciobotaru, The monochromatization effect of radiation in AC/DC multiple gas
mixtures discharges and the comparison with the exc imer radiation generation
mechanism , Romanian Reports in Physics, 61 , 53-69, 2009.
7. L. C. Ciobotaru, I. Gruia, Influence of magnetic field on monochrome visible
light in electropositive–electronegative gas mixtur es discharge plasma ;
Proceeding of the Romanian Academy, Series A, Vol. 17 , 314-321, 2016.
8. L. C. Ciobotaru, Monochromatization–effect AC/DC discharges comparat ive
behaviour, Romanian Reports in Physics, 62 , 134-141, 2010.
9. L .C. Ciobotaru, I. Gruia, Study of the carbon atoms production in
methanol/ethanol-nitrogen flowing post-discharge pl asma , Romanian Journal of
Physics, 60 , 1536-1549, 2015.
Copyright Notice
© Licențiada.org respectă drepturile de proprietate intelectuală și așteaptă ca toți utilizatorii să facă același lucru. Dacă consideri că un conținut de pe site încalcă drepturile tale de autor, te rugăm să trimiți o notificare DMCA.
Acest articol: MONOCHROMATIZATION AND POLARIZATION OF THE [627320] (ID: 627320)
Dacă considerați că acest conținut vă încalcă drepturile de autor, vă rugăm să depuneți o cerere pe pagina noastră Copyright Takedown.
