Modelsof DistributedSystems [629491]
Modelsof DistributedSystems
Lecture4
MSD (2020) Lecture4 1/ 41
Overview
1Linear AlgebraicTechniques
Place Invariants
Transition Invariants
2StructuralAnalysisof PetriNets
Siphons
Traps
Siphons, Trapsand BehaviouralPropertiesof PetriNets
The cs- property
3SpecialClassesof PetriNets
S-systems
MSD (2020) Lecture4 2/ 41
LinearAlgebraicTechniques Place Invariants
Overview
1Linear AlgebraicTechniques
Place Invariants
Transition Invariants
2StructuralAnalysisof PetriNets
Siphons
Traps
Siphons, Trapsand BehaviouralPropertiesof PetriNets
The cs- property
3SpecialClassesof PetriNets
S-systems
MSD (2020) Lecture4 3/ 41
LinearAlgebraicTechniques Place Invariants
Place Invariants
Definition 1
Let N= (P,T,F,W)a markedPetrinet . N iscovered byP-invariantsiff thereexistsa
P-invarianti such that ||i||=P.
MSD (2020) Lecture4 4/ 41
LinearAlgebraicTechniques Place Invariants
Place Invariants
Definition 1
Let N= (P,T,F,W)a markedPetrinet . N iscovered byP-invariantsiff thereexistsa
P-invarianti such that ||i||=P.
p1 t2t3t1
p3p2
2(x,y,z)·
1 1 0
0−1 1
0 1 −1
=0=⇒
P-invariants: (0,α,α)
Thenet is notcovered byP-invariants(theredoesnot exists a P-invarian ti>0withi(p1)/ne}ationslash=0)
MSD (2020) Lecture4 4/ 41
LinearAlgebraicTechniques Place Invariants
Place Invariants
Theorem1
Letγ= (N,M0)bea marked Petrinet .
(1)If i>0isa P-invariantof N, thenanyplace p ∈ ||i||isbounded.
(2)Ifγis coveredbyP-invariants, then γisbounded.
Thereverse of (1)and (2)isnot true.
Theorem2
Let N bea PetriNet andi >0is a P-invariantofN. It holdsthat:
•||i||=||i||•
MSD (2020) Lecture4 5/ 41
LinearAlgebraicTechniques TransitionInvariants
Overview
1Linear AlgebraicTechniques
Place Invariants
Transition Invariants
2StructuralAnalysisof PetriNets
Siphons
Traps
Siphons, Trapsand BehaviouralPropertiesof PetriNets
The cs- property
3SpecialClassesof PetriNets
S-systems
MSD (2020) Lecture4 6/ 41
LinearAlgebraicTechniques TransitionInvariants
TransitionInvariants
Decribe sequencesoftransitionswhich lead froma markingto the s ame marking.
Definition 2
Amarking M of a PetrinetN isreproducible if thereexists a non-e mptysequence of
transitionsw such thatM [w/an}bracketri}htM.
MSD (2020) Lecture4 7/ 41
LinearAlgebraicTechniques TransitionInvariants
TransitionInvariants- Definitions
Definition 3
Let N= (P,T,F,W)be a markedPetrinet. A T-invariant of N isanyn-dimensional
column vector j ∈Znforwhich C ·j=0, whereC isthe incidence matrixof N.
AnetNissaid to have T-invariantsif it hasat least non-nullT-invar iant.
MSD (2020) Lecture4 8/ 41
LinearAlgebraicTechniques TransitionInvariants
T-invariantsandReproducible Markings
Theorem3
APetrinetN haspositive T-invariantsiff N hasreproduciblemar kings.
MSD (2020) Lecture4 9/ 41
LinearAlgebraicTechniques TransitionInvariants
T-invariantsandReproducible Markings
Theorem3
APetrinetN haspositive T-invariantsiff N hasreproduciblemar kings.
(=⇒): Letj>0aT-invariantof N. LetMbea markinggivenby
M(p) =/summationdisplay
tk∈p•j(k)·W(p,tk),
foranyp∈P.
Consider thesequenceof transitions:
w=tj(1)
1…tj(n)
n
It holds:M[w/an}bracketri}htM′.
MarkingMis reproducible.
(⇐=)LetM[w/an}bracketri}htM. ThenM=M+C·− →w. HenceC·− →w=0and− →wis aT-invariant.
MSD (2020) Lecture4 9/ 41
LinearAlgebraicTechniques TransitionInvariants
T-invariantsCovering
Definition 4
Let N= (P,T,F,W)be a Petrinet. N is covered byT-invariants iff thereexists a
T-invariantj >0with||j||=T
MSD (2020) Lecture4 10/ 41
LinearAlgebraicTechniques TransitionInvariants
T-invariants,Livenessand Boundness
Theorem4
Anylive and boundedmarkedPetrinet iscovered byT-invarian ts.
MSD (2020) Lecture4 11/ 41
LinearAlgebraicTechniques TransitionInvariants
T-invariants,Livenessand Boundness
Theorem4
Anylive and boundedmarkedPetrinet iscovered byT-invarian ts.
In aliveandboundedPetri net,there exists a reachablemarking M∈[M0/an}bracketri}htandatransition sequence σsuch
that
σcontains allthe transitions in T
M[σ/an}bracketri}htM
j=− →σis aT-invariantwith ||j||=T.
MSD (2020) Lecture4 11/ 41
LinearAlgebraicTechniques TransitionInvariants
T-invariants,Livenessand Boundness
Theorem4
Anylive and boundedmarkedPetrinet iscovered byT-invarian ts.
t1p1t3
p2t2/parenleftigg
1 1 −1
0−1 1/parenrightigg
·
x
y
z
=0=⇒
/braceleftigg
x+y−z=0
−y+z=0
T-invariants: (0,α,α).
Thenet is notliveor itis not bounded.
MSD (2020) Lecture4 11/ 41
LinearAlgebraicTechniques TransitionInvariants
TransitionInvariants
Thereexist Petrinetscoveredby T-invariantswhich arenot liv e/bounded:
p1 t1 p3
p2 t2t3
−1 1 0
1−1 0
1 0 −1
·
x
y
z
=0
T-invariants: (α,α,α)T
Thenet iscovered byT-invariantsbut it isnot bounded.
MSD (2020) Lecture4 12/ 41
Structural AnalysisofPetri Nets Siphons
Overview
1Linear AlgebraicTechniques
Place Invariants
Transition Invariants
2StructuralAnalysisof PetriNets
Siphons
Traps
Siphons, Trapsand BehaviouralPropertiesof PetriNets
The cs- property
3SpecialClassesof PetriNets
S-systems
MSD (2020) Lecture4 13/ 41
Structural AnalysisofPetri Nets Siphons
Siphons- definition
Definition 5
Let N= (P,T,F,W)be a Petrinet and R ⊆P a set of places. R iscalled a siphon if
•R⊆R•. Asiphon is properif R /ne}ationslash=∅.
MSD (2020) Lecture4 14/ 41
Structural AnalysisofPetri Nets Siphons
Siphons- definition
Definition 5
Let N= (P,T,F,W)be a Petrinet and R ⊆P a set of places. R iscalled a siphon if
•R⊆R•. Asiphon is properif R /ne}ationslash=∅.
{p1,p2}isa siphon.
MSD (2020) Lecture4 14/ 41
Structural AnalysisofPetri Nets Siphons
FundamentalPropertyof Siphons
Notations: let R⊆Pbe a set of placesand Ma marking. M(R) =/summationtext
p∈RM(p)
MSD (2020) Lecture4 15/ 41
Structural AnalysisofPetri Nets Siphons
FundamentalPropertyof Siphons
Notations: let R⊆Pbe a set of placesand Ma marking. M(R) =/summationtext
p∈RM(p)
Definition 6
LetN= (P,T,F,W)beaPetrinet,R ⊆P apropersiphonandM amarkingofN. R is
markedat M , if M (R)/ne}ationslash=0.
MSD (2020) Lecture4 15/ 41
Structural AnalysisofPetri Nets Siphons
FundamentalPropertyof Siphons
Notations: let R⊆Pbe a set of placesand Ma marking. M(R) =/summationtext
p∈RM(p)
Definition 6
LetN= (P,T,F,W)beaPetrinet,R ⊆P apropersiphonandM amarkingofN. R is
markedat M , if M (R)/ne}ationslash=0.
Proposition1 (Fundamentalpropertyof siphons)
Let N= (P,T,F,W)be a Petrinet and R ⊆P a propersiphon. LetM be a markingof
the netsuch that M (R) =0. Then,∀M′∈[M/an}bracketri}ht, M′(R) =0.
MSD (2020) Lecture4 15/ 41
Structural AnalysisofPetri Nets Siphons
Example
[M0/an}bracketri}ht={(0,0,1,0),(0,0,0,1)},{p1,p2}arenever marked.
MSD (2020) Lecture4 16/ 41
Structural AnalysisofPetri Nets Siphons
FundamentalPropertyof Siphons
Anecessarycondition for reachabilityisobtained
IfRisa siphon with M0(R) =0 andM(R)/ne}ationslash=0, thenM/ne}ationslash∈[M0/an}bracketri}ht.
R={p1,p2}siphon,M0(R) =0⇒markingM= (1,0,0,1)isnot reachable.
MSD (2020) Lecture4 17/ 41
Structural AnalysisofPetri Nets Siphons
Example
Proposition2
Letγ= (N,M0)bea marked Petrinet with W (f) =1,∀f∈F and M a marking. If M is
a deadmarking, then theset of placesR ={p∈P|M(p) =0}is aproper siphon.
MSD (2020) Lecture4 18/ 41
Structural AnalysisofPetri Nets Siphons
Example
Proposition2
Letγ= (N,M0)bea marked Petrinet with W (f) =1,∀f∈F and M a marking. If M is
a deadmarking, then theset of placesR ={p∈P|M(p) =0}is aproper siphon.
M= (0,0,1,0)isa dead marking,so {p1,p2,p4}isa siphon .
MSD (2020) Lecture4 18/ 41
Structural AnalysisofPetri Nets Siphons
Example
Proposition2
Letγ= (N,M0)bea marked Petrinet with W (f) =1,∀f∈F and M a marking. If M is
a deadmarking, then theset of placesR ={p∈P|M(p) =0}is aproper siphon.
Proposition3
Let N= (P,T,F,W)be a Petrinet i a P-invariantforN. Thesupport set, ||i||, isa
siphon.
MSD (2020) Lecture4 18/ 41
Structural AnalysisofPetri Nets Traps
Overview
1Linear AlgebraicTechniques
Place Invariants
Transition Invariants
2StructuralAnalysisof PetriNets
Siphons
Traps
Siphons, Trapsand BehaviouralPropertiesof PetriNets
The cs- property
3SpecialClassesof PetriNets
S-systems
MSD (2020) Lecture4 19/ 41
Structural AnalysisofPetri Nets Traps
Traps-definition
Definition 7
Let N= (P,T,F,W)be a netand R ⊆P a set ofplaces. R is called a trapif R • ⊆ •R.
Atrap isproperif R /ne}ationslash=∅.
MSD (2020) Lecture4 20/ 41
Structural AnalysisofPetri Nets Traps
Traps-definition
Definition 7
Let N= (P,T,F,W)be a netand R ⊆P a set ofplaces. R is called a trapif R • ⊆ •R.
Atrap isproperif R /ne}ationslash=∅.
{p3,p4}isa trap.
MSD (2020) Lecture4 20/ 41
Structural AnalysisofPetri Nets Traps
Traps-definition
Definition 7
Let N= (P,T,F,W)be a netand R ⊆P a set ofplaces. R is called a trapif R • ⊆ •R.
Atrap isproperif R /ne}ationslash=∅.
Proposition4
Let N= (P,T,F,W)be a netand i a P-invariantof N. The supportset, ||i||, isa trap.
MSD (2020) Lecture4 20/ 41
Structural AnalysisofPetri Nets Traps
FundamentalPropertyof Traps
Proposition5
Let N= (P,T,F,W)be a Petrinet and R ⊆P a propertrap. Let M bea marking of
the netsuch that M (R)/ne}ationslash=0. Then,∀M′∈[M/an}bracketri}ht, M′(R)/ne}ationslash=0.
MSD (2020) Lecture4 21/ 41
Structural AnalysisofPetri Nets Traps
FundamentalPropertyof Traps
Proposition5
Let N= (P,T,F,W)be a Petrinet and R ⊆P a propertrap. Let M bea marking of
the netsuch that M (R)/ne}ationslash=0. Then,∀M′∈[M/an}bracketri}ht, M′(R)/ne}ationslash=0.
{p3,p4}isa trap.
Placesp3,p4remainmarked in anyreachablemarking.
MSD (2020) Lecture4 21/ 41
Structural AnalysisofPetri Nets Traps
FundamentalPropertyof Traps
Anecessarycondition for reachabilityisobtained
Given a marking MandRa trapwith M0(R)/ne}ationslash=0,ifM(R) =0, thenM/ne}ationslash∈[M0/an}bracketri}ht
R={p1,p2,p3}trap,M0(R)/ne}ationslash=0.
M= (0,0,0,1)/ne}ationslash∈[M0/an}bracketri}ht(M(R) =0)
MSD (2020) Lecture4 22/ 41
Structural AnalysisofPetri Nets Siphons,TrapsandBehaviouralPropertiesofPetri Nets
Overview
1Linear AlgebraicTechniques
Place Invariants
Transition Invariants
2StructuralAnalysisof PetriNets
Siphons
Traps
Siphons, Trapsand BehaviouralPropertiesof PetriNets
The cs- property
3SpecialClassesof PetriNets
S-systems
MSD (2020) Lecture4 23/ 41
Structural AnalysisofPetri Nets Siphons,TrapsandBehaviouralPropertiesofPetri Nets
Anecessarycondition forliveness
Proposition6
Letγ= (N,M0)bea live markedPetrinet . Anysiphon R of N ismarked at M 0.
MSD (2020) Lecture4 24/ 41
Structural AnalysisofPetri Nets Siphons,TrapsandBehaviouralPropertiesofPetri Nets
Anecessarycondition forliveness
Proposition6
Letγ= (N,M0)bea live markedPetrinet . Anysiphon R of N ismarked at M 0.
{p1,p2}isnot markedat the initialmarking, hence thenet isnot live.
MSD (2020) Lecture4 24/ 41
Structural AnalysisofPetri Nets Siphons,TrapsandBehaviouralPropertiesofPetri Nets
Anecessarycondition forliveness
Thereverse isnot true:
Allsiphonsaremarked in the initialmarking:
{p1,p2}
Thenet isnot live.
MSD (2020) Lecture4 25/ 41
Structural AnalysisofPetri Nets Siphons,TrapsandBehaviouralPropertiesofPetri Nets
Deadlocks
Proposition7
Letγ= (N,M0)bea marked Petrinet with W (f) =1,∀f∈F. If anypropersiphon ofN
includesa trap markedat M 0, thenγisdeadlock-free.
MSD (2020) Lecture4 26/ 41
Structural AnalysisofPetri Nets Siphons,TrapsandBehaviouralPropertiesofPetri Nets
Deadlocks
Proposition7
Letγ= (N,M0)bea marked Petrinet with W (f) =1,∀f∈F. If anypropersiphon ofN
includesa trap markedat M 0, thenγisdeadlock-free.
Siphons: {p1,p2},{p1,p2,p3},
Traps:{p1,p2},{p3},{p1,p2,p3}
Thenet is deadlock-free.
MSD (2020) Lecture4 26/ 41
Structural AnalysisofPetri Nets Siphons,TrapsandBehaviouralPropertiesofPetri Nets
Deadlocks
Thereverse isnot true:
p1 p2 p3 t1
t2t3 t4
Deadlock-free net
Propersiphons: {p1,p2}
Propertraps: {p3}
MSD (2020) Lecture4 27/ 41
Structural AnalysisofPetri Nets The cs-property
Overview
1Linear AlgebraicTechniques
Place Invariants
Transition Invariants
2StructuralAnalysisof PetriNets
Siphons
Traps
Siphons, Trapsand BehaviouralPropertiesof PetriNets
The cs- property
3SpecialClassesof PetriNets
S-systems
MSD (2020) Lecture4 28/ 41
Structural AnalysisofPetri Nets The cs-property
Notations
Let(N,M0)bea marked Petrinet and pa place of N.
minp•=mint∈p•W(p,t)
maxp•=maxt∈p•W(p,t)
MSD (2020) Lecture4 29/ 41
Structural AnalysisofPetri Nets The cs-property
Min-controlled/max-controlledsiphons
Definition 8
Let(N,M0)bea marked Petrinet . A siphon S ismin-controlled(min-cs) if:
∀M∈[M0/an}bracketri}ht,∃p∈S:M(p)≥minp•.
(N,M0)satisfiesthe min-cspropertyif allitssiphons satisfythe min-cspr operty.
Definition 9
Asiphon S ismax-controlled (max-cs)if:
∀M∈[M0/an}bracketri}ht,∃p∈S:M(p)≥maxp•.
(N,M0)satisfiesthe max-cspropertyif allitssiphonssatisfy the max-cspr operty.
MSD (2020) Lecture4 30/ 41
Structural AnalysisofPetri Nets The cs-property
Thecs-property
Definition 10
APetrinet (N;M0)is said to besatisfying thecontrolled-siphon property(cs-prope rty)
if and onlyif each minimalsiphon of (N;M0)is min ormaxcontrolled.
a max-controlledsiphon isalso a min-controlled siphon
If∀t,t′∈p•:W(p,t) =W(p,t′), thena min-controlled siphonis also a
max-controlledsiphon.
MSD (2020) Lecture4 31/ 41
Structural AnalysisofPetri Nets The cs-property
Example
{p1,p2}min-cs, not max-cs
{p3}max-cs,min-cs
Thenet hasthe min-cspropertyandthe cs-property
MSD (2020) Lecture4 32/ 41
Structural AnalysisofPetri Nets The cs-property
Properties
Proposition8
If a markedPetrinet (N,M0)islive, thenit satisfiesthe min-csproperty.
Proposition9
If a markedPetrinet (N,M0)satisfies themax-csproperty, thenit is deadlock-free.
MSD (2020) Lecture4 33/ 41
Structural AnalysisofPetri Nets The cs-property
Example
{p1,p2}min-cs, not max-cs
{p3}max-cs,min-cs
min-cs, notlive
deadlock-free,not max-cs
MSD (2020) Lecture4 34/ 41
SpecialClassesofPetri Nets S-systems
Overview
1Linear AlgebraicTechniques
Place Invariants
Transition Invariants
2StructuralAnalysisof PetriNets
Siphons
Traps
Siphons, Trapsand BehaviouralPropertiesof PetriNets
The cs- property
3SpecialClassesof PetriNets
S-systems
MSD (2020) Lecture4 35/ 41
SpecialClassesofPetri Nets S-systems
Definition of S-systems
Definition 11
AS-system (statemachine) isa markedPetrinet (N,M0), where N = (S,T,F,W)
such that:
W(x,y) =1,∀(x,y)∈F
|•t|=|t•|=1∀t∈T.
Theweight functionis usuallyomitted: N= (S,T,F).
p1 p2 p3
t2t3
t4t1
MSD (2020) Lecture4 36/ 41
SpecialClassesofPetri Nets S-systems
Propertiesof S-systems
Proposition10 (fundamentalpropertyof S-systems)
Let(N,M0)bea S-system. If M ∈[M0/an}bracketri}ht, then M 0(S) =M(S).
p1 p2 p3
t2t3
t4t1
Anecessarycondition for reachabilityin S-systems: M= (0,1,0),M(S)/ne}ationslash=M0(S),
henceM/ne}ationslash∈[M0/an}bracketri}ht
MSD (2020) Lecture4 37/ 41
SpecialClassesofPetri Nets S-systems
LivenessandBoundnessin S-systems
Theorem5 (boundness)
AS-system (N,M0)isbounded
MSD (2020) Lecture4 38/ 41
SpecialClassesofPetri Nets S-systems
LivenessandBoundnessin S-systems
Theorem5 (boundness)
AS-system (N,M0)isbounded
Theorem6 (liveness)
AS-system (N,M0)islive iff it is stronglyconnectedand M 0(S)/ne}ationslash=0.
MSD (2020) Lecture4 38/ 41
SpecialClassesofPetri Nets S-systems
LivenessandBoundnessin S-systems
Theorem5 (boundness)
AS-system (N,M0)isbounded
Theorem6 (liveness)
AS-system (N,M0)islive iff it is stronglyconnectedand M 0(S)/ne}ationslash=0.
p1 p2 p3 t1
t2t3 t4
MSD (2020) Lecture4 38/ 41
SpecialClassesofPetri Nets S-systems
Reachabilityin S-systems
Lemma1
Let(N,M0)astronglyconnected system and M,M′markingssuch that
M(S) =M′(S). ThenM [∗/an}bracketri}htM′.
MSD (2020) Lecture4 39/ 41
SpecialClassesofPetri Nets S-systems
Reachabilityin S-systems
Lemma1
Let(N,M0)astronglyconnected system and M,M′markingssuch that
M(S) =M′(S). ThenM [∗/an}bracketri}htM′.
Consequence 1
Let(N,M0)astronglyconnected system and M a marking such thatM (S) =M0(S).
ThenM ∈[M0/an}bracketri}ht.
MSD (2020) Lecture4 39/ 41
SpecialClassesofPetri Nets S-systems
Reachabilityin live S-systems
Theorem7 (reachability)
Let(N,M0)bea stronglyconnected S-systemand M one of itsmarkings. M is
reachable iff M (S) =M0(S)
MSD (2020) Lecture4 40/ 41
SpecialClassesofPetri Nets S-systems
Reachabilityin live S-systems
Theorem7 (reachability)
Let(N,M0)bea stronglyconnected S-systemand M one of itsmarkings. M is
reachable iff M (S) =M0(S)
(0,0,0,1,1)reachable fromthe initialmarking.
MSD (2020) Lecture4 40/ 41
SpecialClassesofPetri Nets S-systems
Propertiesof S-systems
Lemma1
Let(N,M0)bea connected S-system. Avector i :S→Zisa P-invariantof N iff
i= (x,x,…,x).
MSD (2020) Lecture4 41/ 41
SpecialClassesofPetri Nets S-systems
Propertiesof S-systems
Lemma1
Let(N,M0)bea connected S-system. Avector i :S→Zisa P-invariantof N iff
i= (x,x,…,x).
Theorem8
Let(N,M0)bea stronglyconnected S-systemand M a marking. M ∈[M0/an}bracketri}ht ⇔forevery
P-invarianti: i ·M=i·M0
MSD (2020) Lecture4 41/ 41
Copyright Notice
© Licențiada.org respectă drepturile de proprietate intelectuală și așteaptă ca toți utilizatorii să facă același lucru. Dacă consideri că un conținut de pe site încalcă drepturile tale de autor, te rugăm să trimiți o notificare DMCA.
Acest articol: Modelsof DistributedSystems [629491] (ID: 629491)
Dacă considerați că acest conținut vă încalcă drepturile de autor, vă rugăm să depuneți o cerere pe pagina noastră Copyright Takedown.
