Modeling permafrost degradation to estimate [619079]

Modeling ​ ​ permafrost ​ ​ degradation ​ ​ to ​ ​ estimate
the ​ ​ irreversibility ​ ​ of ​ ​ runaway ​ ​ climate ​ ​ change

Alexander ​ ​ Price

Abstract:
The ​ ​ goal ​ ​ of ​ ​ my ​ ​ research ​ ​ was ​ ​ to ​ ​ develop ​ ​ a ​ ​ model ​ ​ that ​ ​ foresees ​ ​ the ​ ​ change ​ ​ in ​ ​ the ​ ​ warming
climate ​ ​ using ​ ​ permafrost ​ ​ thaw ​ ​ and ​ ​ transportation ​ ​ emissions. ​ ​ This ​ ​ is ​ ​ important ​ ​ because ​ ​ it ​ ​ can ​ ​ help
the ​ ​ field ​ ​ of ​ ​ climate ​ ​ change ​ ​ to ​ ​ a ​ ​ great ​ ​ extent ​ ​ by ​ ​ giving ​ ​ projections. ​ ​ These ​ ​ projections ​ ​ include
amounts ​ ​ of ​ ​ carbon ​ ​ emissions, ​ ​ and ​ ​ how ​ ​ this ​ ​ could ​ ​ change ​ ​ the ​ ​ increase ​ ​ in ​ ​ temperature. ​ ​ Based ​ ​ on
broad ​ ​ studies, ​ ​ and ​ ​ models, ​ ​ there ​ ​ will ​ ​ be ​ ​ a ​ ​ general ​ ​ increase ​ ​ in ​ ​ the ​ ​ amount ​ ​ of ​ ​ permafrost
degradation. ​ ​ With ​ ​ the ​ ​ current ​ ​ trend, ​ ​ I ​ ​ expect ​ ​ to ​ ​ see ​ ​ an ​ ​ exponential ​ ​ increase ​ ​ in ​ ​ the ​ ​ degradation,
and ​ ​ therefore, ​ ​ the ​ ​ carbon ​ ​ emissions. ​ ​ This ​ ​ will ​ ​ vary ​ ​ as ​ ​ new ​ ​ studies ​ ​ come ​ ​ about ​ ​ with ​ ​ new
information. ​ ​ The ​ ​ information ​ ​ my ​ ​ model ​ ​ contains ​ ​ could ​ ​ be ​ ​ a ​ ​ great ​ ​ help ​ ​ for ​ ​ researchers ​ ​ in ​ ​ this
field. ​ ​ The ​ ​ unique ​ ​ timeline ​ ​ with ​ ​ unique ​ ​ data ​ ​ can ​ ​ be ​ ​ key ​ ​ in ​ ​ the ​ ​ fight ​ ​ against ​ ​ climate ​ ​ change. ​ ​ It
does ​ ​ this ​ ​ by ​ ​ showing ​ ​ how ​ ​ much ​ ​ the ​ ​ emissions ​ ​ are ​ ​ increasing, ​ ​ and ​ ​ what ​ ​ that ​ ​ is ​ ​ doing ​ ​ to ​ ​ the ​ ​ global
climate. ​ ​ I ​ ​ have ​ ​ studied ​ ​ past ​ ​ models ​ ​ and ​ ​ information ​ ​ that ​ ​ has ​ ​ to ​ ​ do ​ ​ with ​ ​ wetland ​ ​ sources ​ ​ of
carbon, ​ ​ as ​ ​ well ​ ​ as ​ ​ transportation ​ ​ trends. ​ ​ To ​ ​ start, ​ ​ I ​ ​ created ​ ​ a ​ ​ conceptual ​ ​ model ​ ​ of ​ ​ a ​ ​ basic
permafrost ​ ​ process. ​ ​ Then ​ ​ I ​ ​ created ​ ​ one ​ ​ regarding ​ ​ permafrost ​ ​ degradation. ​ ​ Finally, ​ ​ with ​ ​ help ​ ​ from
my ​ ​ mentor, ​ ​ Dr. ​ ​ Quinton ​ ​ of ​ ​ Wilfrid ​ ​ Laurier ​ ​ University, ​ ​ I ​ ​ created ​ ​ a ​ ​ predictive ​ ​ model ​ ​ in ​ ​ Excel. ​ ​ It
used ​ ​ data ​ ​ from ​ ​ a ​ ​ Permafrost ​ ​ data ​ ​ bank ​ ​ my ​ ​ mentor ​ ​ gave ​ ​ me ​ ​ access ​ ​ to, ​ ​ and ​ ​ a ​ ​ data ​ ​ bank ​ ​ on ​ ​ U.S.
transportation ​ ​ emissions ​ ​ I ​ ​ received ​ ​ access ​ ​ to. ​ ​ I ​ ​ then ​ ​ needed ​ ​ to ​ ​ manipulate ​ ​ the ​ ​ timeline ​ ​ prediction
so ​ ​ it ​ ​ would ​ ​ equate ​ ​ to ​ ​ a ​ ​ global ​ ​ scale. ​ ​ With ​ ​ that ​ ​ number ​ ​ and ​ ​ knowledge ​ ​ of ​ ​ global ​ ​ carbon ​ ​ limits, ​ ​ I
was ​ ​ able ​ ​ to ​ ​ draw ​ ​ a ​ ​ global ​ ​ habitability ​ ​ timeline ​ ​ from ​ ​ this ​ ​ model.

Introduction:
Climate ​ ​ change ​ ​ is ​ ​ becoming ​ ​ a ​ ​ well ​ ​ known ​ ​ problem ​ ​ across ​ ​ the ​ ​ world. ​ ​ However ​ ​ few
people ​ ​ associate ​ ​ this ​ ​ problem ​ ​ with ​ ​ the ​ ​ thawing ​ ​ of ​ ​ the ​ ​ permafrost. ​ ​ Permafrost ​ ​ is ​ ​ a ​ ​ thick ​ ​ layer ​ ​ of
soil ​ ​ below ​ ​ the ​ ​ active ​ ​ layer, ​ ​ that ​ ​ stays ​ ​ frozen ​ ​ throughout ​ ​ the ​ ​ year, ​ ​ for ​ ​ at ​ ​ least ​ ​ two ​ ​ years. ​ ​ Within
the ​ ​ permafrost, ​ ​ is ​ ​ carbon ​ ​ stored ​ ​ as
methane(CH4), ​ ​ and ​ ​ carbon ​ ​ dioxide
(CO2). ​ ​ There ​ ​ is ​ ​ about ​ ​ 850 ​ ​ gigatons
of ​ ​ carbon ​ ​ in ​ ​ the ​ ​ Earth’s
atmosphere. ​ ​ A ​ ​ gigaton ​ ​ is ​ ​ equal ​ ​ to
the ​ ​ weight ​ ​ of ​ ​ about ​ ​ 100,000 ​ ​ school
buses, ​ ​ or ​ ​ one ​ ​ billion ​ ​ tons. ​ ​ Currently
stored ​ ​ in ​ ​ the ​ ​ permafrost ​ ​ is ​ ​ about
1400-1700 ​ ​ gigatons ​ ​ of ​ ​ carbon.
Some ​ ​ scientists ​ ​ predict ​ ​ that ​ ​ by ​ ​ the ​ ​ year ​ ​ 2200, ​ ​ the ​ ​ permafrost ​ ​ could ​ ​ add ​ ​ about ​ ​ 190 ​ ​ billion ​ ​ tons ​ ​ of
carbon ​ ​ to ​ ​ the ​ ​ atmosphere. ​ ​ This ​ ​ would ​ ​ impact ​ ​ the ​ ​ temperature ​ ​ which ​ ​ I ​ ​ will ​ ​ get ​ ​ into ​ ​ in ​ ​ my ​ ​ results
section. ​ ​ This ​ ​ is ​ ​ an ​ ​ extremely ​ ​ relevant ​ ​ problem ​ ​ and ​ ​ has ​ ​ only ​ ​ obtained ​ ​ a ​ ​ large ​ ​ amount ​ ​ of ​ ​ press ​ ​ in
the ​ ​ last ​ ​ couple ​ ​ of ​ ​ years. ​ ​ A ​ ​ possible ​ ​ reason ​ ​ for ​ ​ this ​ ​ is ​ ​ that ​ ​ it ​ ​ takes ​ ​ place ​ ​ near ​ ​ the ​ ​ northern ​ ​ and
southern ​ ​ poles. ​ ​ Even ​ ​ though ​ ​ this ​ ​ is ​ ​ the ​ ​ case, ​ ​ it ​ ​ is ​ ​ still ​ ​ affecting ​ ​ the ​ ​ whole ​ ​ world.
Permafrost ​ ​ is ​ ​ found ​ ​ on ​ ​ land ​ ​ and ​ ​ below ​ ​ the ​ ​ ocean ​ ​ floor. ​ ​ To ​ ​ reiterate, ​ ​ it ​ ​ is ​ ​ found ​ ​ in ​ ​ areas
where ​ ​ temperatures ​ ​ rarely ​ ​ rise ​ ​ above ​ ​ freezing. ​ ​ This ​ ​ means ​ ​ permafrost ​ ​ is ​ ​ often ​ ​ found ​ ​ near ​ ​ the
poles. ​ ​ This ​ ​ would ​ ​ be ​ ​ in ​ ​ Arctic ​ ​ regions ​ ​ such ​ ​ as ​ ​ Greenland, ​ ​ the ​ ​ U.S. ​ ​ state ​ ​ of ​ ​ Alaska, ​ ​ Russia,
China, ​ ​ and ​ ​ Eastern ​ ​ Europe.
Permafrost ​ ​ consists ​ ​ of ​ ​ soil, ​ ​ gravel, ​ ​ and ​ ​ sand,
usually ​ ​ bound ​ ​ together ​ ​ by ​ ​ ice. ​ ​ The ​ ​ thickness ​ ​ can
range ​ ​ from ​ ​ 1 ​ ​ meter ​ ​ to ​ ​ more ​ ​ than ​ ​ 1,000
meters(3,281 ​ ​ feet). ​ ​ Frozen ​ ​ ground ​ ​ is ​ ​ not ​ ​ always ​ ​ the
same ​ ​ as ​ ​ permafrost. ​ ​ A ​ ​ layer ​ ​ of ​ ​ soil ​ ​ that ​ ​ freezes ​ ​ for
more ​ ​ than ​ ​ 15 ​ ​ days ​ ​ per ​ ​ year ​ ​ is ​ ​ called ​ ​ seasonally
frozen ​ ​ ground. ​ ​ A ​ ​ layer ​ ​ of ​ ​ soil ​ ​ that ​ ​ freezes ​ ​ between
one ​ ​ and ​ ​ 15 ​ ​ days ​ ​ a ​ ​ year ​ ​ is ​ ​ called ​ ​ intermittently
frozen ​ ​ ground. ​ ​ Again, ​ ​ permafrost ​ ​ is ​ ​ frozen ​ ​ for ​ ​ two
years ​ ​ or ​ ​ more. ​ ​ Although ​ ​ all ​ ​ permafrost ​ ​ is ​ ​ frozen ​ ​ for

this ​ ​ amount ​ ​ of ​ ​ time, ​ ​ it ​ ​ does ​ ​ not ​ ​ always ​ ​ form ​ ​ in ​ ​ one
solid ​ ​ sheet. ​ ​ There ​ ​ are ​ ​ two ​ ​ major ​ ​ ways ​ ​ to ​ ​ describe ​ ​ the
distribution: ​ ​ continuous ​ ​ and ​ ​ discontinuous.
Continuous ​ ​ permafrost ​ ​ is ​ ​ a ​ ​ continuous ​ ​ sheet ​ ​ of
frozen ​ ​ material. ​ ​ It ​ ​ extends ​ ​ under ​ ​ all ​ ​ surfaces ​ ​ except
large ​ ​ bodies ​ ​ of ​ ​ water ​ ​ in ​ ​ the ​ ​ area. ​ ​ The ​ ​ part ​ ​ of ​ ​ Russia
known ​ ​ as ​ ​ Siberia ​ ​ has ​ ​ continuous ​ ​ permafrost.
Discontinuous ​ ​ permafrost ​ ​ is ​ ​ broken ​ ​ up ​ ​ into ​ ​ separate
areas. ​ ​ Some ​ ​ permafrost, ​ ​ in ​ ​ the ​ ​ shadow ​ ​ of ​ ​ a ​ ​ mountain
or ​ ​ thick ​ ​ vegetation, ​ ​ stays ​ ​ all ​ ​ year. ​ ​ In ​ ​ other ​ ​ areas ​ ​ of
discontinuous ​ ​ permafrost, ​ ​ the ​ ​ summer ​ ​ sun ​ ​ melts ​ ​ the
permafrost ​ ​ for ​ ​ several ​ ​ weeks ​ ​ or ​ ​ months. ​ ​ The ​ ​ land ​ ​ near ​ ​ the ​ ​ southern ​ ​ shore ​ ​ of ​ ​​ ​ the ​ ​ Hudson ​ ​ Bay ​ ​ in
Canada ​ ​ has ​ ​ discontinuous ​ ​ permafrost.
The ​ ​ thawing ​ ​ of ​ ​ permafrost ​ ​ will ​ ​ have ​ ​ two ​ ​ detrimental ​ ​ impacts ​ ​ in ​ ​ the ​ ​ future. ​ ​ Like ​ ​ stated
previously, ​ ​ as ​ ​ permafrost ​ ​ thaws, ​ ​ carbon ​ ​ is ​ ​ released ​ ​ into ​ ​ the ​ ​ atmosphere ​ ​ in ​ ​ the ​ ​ form ​ ​ of ​ ​ CH4 ​ ​ and
CO2. ​ ​ This ​ ​ process ​ ​ leads ​ ​ to ​ ​ more ​ ​ climate ​ ​ change ​ ​ and ​ ​ is ​ ​ an ​ ​ example ​ ​ of ​ ​ a ​ ​ vicious ​ ​ cycle. ​ ​ A ​ ​ vicious
cycle ​ ​ is ​ ​ a ​ ​ sequence ​ ​ where ​ ​ two ​ ​ or ​ ​ more ​ ​ elements ​ ​ intensify ​ ​ and ​ ​ aggravate ​ ​ each ​ ​ other, ​ ​ leading ​ ​ to ​ ​ a
worsening ​ ​ of ​ ​ the ​ ​ situation. ​ ​ In ​ ​ this ​ ​ case, ​ ​ the ​ ​ rise ​ ​ in ​ ​ temperature ​ ​ is ​ ​ leading ​ ​ to ​ ​ more ​ ​ permafrost
thaw, ​ ​ and ​ ​ the ​ ​ permafrost ​ ​ thaw ​ ​ is ​ ​ leading ​ ​ to ​ ​ an ​ ​ increase ​ ​ in ​ ​ carbon ​ ​ emissions, ​ ​ which ​ ​ is ​ ​ leading ​ ​ to
an ​ ​ increase ​ ​ in ​ ​ temperature.
The ​ ​ other ​ ​ way ​ ​ the ​ ​ thawing ​ ​ permafrost ​ ​ could ​ ​ be
deadly ​ ​ is ​ ​ when ​ ​ permafrost ​ ​ melts, ​ ​ the ​ ​ land ​ ​ above
sinks ​ ​ and ​ ​ changes ​ ​ shape. ​ ​ Sinking ​ ​ land ​ ​ can
damage ​ ​ buildings ​ ​ and ​ ​ infrastructure ​ ​ such ​ ​ as
roads, ​ ​ airports, ​ ​ and ​ ​ water ​ ​ and ​ ​ sewer ​ ​ pipes. ​ ​ It
also ​ ​ affects ​ ​ ecosystems. ​ ​ For ​ ​ example, ​ ​ in ​ ​ this
photo ​ ​ a ​ ​ forest ​ ​ where ​ ​ the ​ ​ trees ​ ​ are ​ ​ leaning ​ ​ or
falling ​ ​ over ​ ​ because ​ ​ the ​ ​ permafrost ​ ​ underneath
them ​ ​ has ​ ​ melted.

Methodology:
In ​ ​ the ​ ​ beginning ​ ​ of ​ ​ this ​ ​ process, ​ ​ it ​ ​ was ​ ​ completely ​ ​ necessary ​ ​ to ​ ​ obtain ​ ​ profound
information ​ ​ on ​ ​ my ​ ​ topics. ​ ​ This ​ ​ would ​ ​ be ​ ​ in ​ ​ the ​ ​ general ​ ​ fields ​ ​ of ​ ​ transportation ​ ​ emissions. ​ ​ During
the ​ ​ process ​ ​ of ​ ​ gaining ​ ​ knowledge, ​ ​ I ​ ​ made ​ ​ many ​ ​ conceptual ​ ​ models ​ ​ of ​ ​ various ​ ​ processes ​ ​ related
to ​ ​ both ​ ​ fields. ​ ​ I ​ ​ then, ​ ​ with ​ ​ help ​ ​ from ​ ​ my ​ ​ mentor, ​ ​ created ​ ​ a ​ ​ sheet ​ ​ in ​ ​ excel ​ ​ with ​ ​ the ​ ​ components
that ​ ​ make ​ ​ up ​ ​ permafrost, ​ ​ as ​ ​ well ​ ​ as ​ ​ graphs ​ ​ that ​ ​ contain ​ ​ processes ​ ​ and ​ ​ the ​ ​ components ​ ​ of
permafrost. ​ ​ Next, ​ ​ after ​ ​ many ​ ​ calculations, ​ ​ I ​ ​ created ​ ​ a ​ ​ table ​ ​ that ​ ​ calculates ​ ​ the ​ ​ amount ​ ​ of ​ ​ CO2
emissions ​ ​ from ​ ​ the ​ ​ permafrost ​ ​ and ​ ​ transportation ​ ​ emissions ​ ​ data. ​ ​ These ​ ​ calculations ​ ​ were
primarily ​ ​ to ​ ​ convert ​ ​ the ​ ​ data ​ ​ from ​ ​ a ​ ​ small ​ ​ scale ​ ​ to ​ ​ a ​ ​ global ​ ​ scale. ​ ​ The ​ ​ purpose ​ ​ of ​ ​ this ​ ​ was ​ ​ to
figure ​ ​ out ​ ​ the ​ ​ emissions ​ ​ line ​ ​ for ​ ​ the ​ ​ habitability ​ ​ timeline ​ ​ part ​ ​ of ​ ​ my ​ ​ model. ​ ​ I ​ ​ used ​ ​ excel ​ ​ and
google ​ ​ sheets ​ ​ to ​ ​ compile ​ ​ all ​ ​ of ​ ​ my ​ ​ data.

Results:

Here ​ ​ is ​ ​ one ​ ​ of ​ ​ the ​ ​ conceptual ​ ​ models ​ ​ I ​ ​ created. ​ ​ It ​ ​ is ​ ​ of ​ ​ permafrost ​ ​ make ​ ​ up. ​ ​ The ​ ​ key ​ ​ info ​ ​ is ​ ​ the
bottom ​ ​ left ​ ​ where ​ ​ it ​ ​ states ​ ​ what ​ ​ makes ​ ​ up ​ ​ permafrost. ​ ​ Creating ​ ​ this ​ ​ was ​ ​ key ​ ​ in ​ ​ understanding
how ​ ​ this ​ ​ system ​ ​ of ​ ​ permafrost ​ ​ and ​ ​ how ​ ​ it ​ ​ thaws ​ ​ really ​ ​ works.

Data ​ ​ Table. ​ ​ Here ​ ​ I ​ ​ manipulated ​ ​ Stefan’s ​ ​ Equation ​ ​ and ​ ​ used ​ ​ the ​ ​ steric ​ ​ dimensionless ​ ​ constant ​ ​ as
my ​ ​ x ​ ​ value, ​ ​ or ​ ​ changing ​ ​ variable. ​ ​ Black, ​ ​ given ​ ​ values, ​ ​ blue, ​ ​ predicted. ​ ​ This ​ ​ was ​ ​ not ​ ​ relevant ​ ​ for
the ​ ​ research ​ ​ I ​ ​ did ​ ​ however ​ ​ it ​ ​ helped ​ ​ with ​ ​ understanding ​ ​ the ​ ​ modelling ​ ​ aspects.

Thaw ​ ​ depth ​ ​ using ​ ​ strictly ​ ​ permafrost ​ ​ thaw ​ ​ data ​ ​ and ​ ​ regression ​ ​ to ​ ​ create ​ ​ this. ​ ​ Uses ​ ​ data ​ ​ from ​ ​ 1st
two ​ ​ columns.

Using ​ ​ year ​ ​ and ​ ​ stefan's ​ ​ manipulated ​ ​ equation ​ ​ to ​ ​ use ​ ​ this. ​ ​ Same ​ ​ basic ​ ​ principle ​ ​ as ​ ​ last ​ ​ one ​ ​ but
with ​ ​ 1st ​ ​ and ​ ​ 3rd ​ ​ column. ​ ​ Bottom ​ ​ left ​ ​ is ​ ​ ice ​ ​ loss ​ ​ while ​ ​ refreezing. ​ ​ Very ​ ​ Basic.

This ​ ​ sheet ​ ​ combines ​ ​ thaw ​ ​ depth ​ ​ data ​ ​ with ​ ​ transportation ​ ​ emissions ​ ​ data. ​ ​ This ​ ​ is ​ ​ the ​ ​ beginning ​ ​ of
the ​ ​ actual ​ ​ research.

Official ​ ​ Emissions ​ ​ model. ​ ​ Took ​ ​ thaw ​ ​ data ​ ​ and ​ ​ combined ​ ​ with ​ ​ emissions ​ ​ data ​ ​ to ​ ​ receive ​ ​ the
numbers ​ ​ on ​ ​ the ​ ​ Y ​ ​ axis. ​ ​ Accepted ​ ​ my ​ ​ hypothesis.

The ​ ​ second ​ ​ part ​ ​ of ​ ​ my ​ ​ thesis ​ ​ was ​ ​ answered ​ ​ here ​ ​ in ​ ​ this ​ ​ part ​ ​ of ​ ​ it. ​ ​ The ​ ​ Global ​ ​ Habitability
timeline. ​ ​ Key ​ ​ information. ​ ​ In ​ ​ the ​ ​ year ​ ​ 2115-2116, ​ ​ the ​ ​ earth ​ ​ will ​ ​ see ​ ​ a ​ ​ 10.6 ​ ​ degree ​ ​ (F) ​ ​ increase ​ ​ in
global ​ ​ temperature ​ ​ if ​ ​ current ​ ​ trends ​ ​ stay ​ ​ the ​ ​ same.

Discussion/Conclusion:
This ​ ​ research ​ ​ is ​ ​ just ​ ​ the ​ ​ start ​ ​ of ​ ​ something ​ ​ bigger. ​ ​ This ​ ​ combination ​ ​ of ​ ​ natural ​ ​ and
human ​ ​ induced ​ ​ factors ​ ​ of ​ ​ carbon ​ ​ emissions ​ ​ provides ​ ​ for ​ ​ a ​ ​ more ​ ​ accurate ​ ​ way ​ ​ of ​ ​ understanding
the ​ ​ greenhouse ​ ​ effect, ​ ​ and ​ ​ therefore ​ ​ climate ​ ​ change. ​ ​ Over ​ ​ the ​ ​ past ​ ​ three ​ ​ years, ​ ​ this ​ ​ specific ​ ​ topic
has ​ ​ become ​ ​ more ​ ​ relevant ​ ​ as ​ ​ people ​ ​ are ​ ​ now ​ ​ seeing ​ ​ the ​ ​ true ​ ​ severity ​ ​ of ​ ​ it. ​ ​ This ​ ​ is ​ ​ mainly
calculated ​ ​ by ​ ​ the ​ ​ number ​ ​ of ​ ​ articles ​ ​ published ​ ​ then ​ ​ and ​ ​ now. ​ ​ There ​ ​ is ​ ​ only ​ ​ so ​ ​ much ​ ​ a ​ ​ model ​ ​ can
do. ​ ​ It ​ ​ can ​ ​ monitor ​ ​ the ​ ​ problem, ​ ​ but ​ ​ it ​ ​ cannot ​ ​ do ​ ​ anything ​ ​ to ​ ​ prevent ​ ​ or ​ ​ stop ​ ​ this ​ ​ issue.
In ​ ​ the ​ ​ future, ​ ​ I ​ ​ would ​ ​ like ​ ​ to ​ ​ do ​ ​ much ​ ​ more ​ ​ than ​ ​ modelling. ​ ​ However, ​ ​ in ​ ​ the ​ ​ near ​ ​ future, ​ ​ I
need ​ ​ to ​ ​ perfect ​ ​ my ​ ​ various ​ ​ models, ​ ​ and ​ ​ make ​ ​ them ​ ​ as ​ ​ accurate ​ ​ as ​ ​ possible. ​ ​ This ​ ​ will ​ ​ allow ​ ​ me ​ ​ to
have ​ ​ a ​ ​ stronger ​ ​ base, ​ ​ and ​ ​ a ​ ​ greater ​ ​ incentive ​ ​ to ​ ​ go ​ ​ and ​ ​ do ​ ​ field ​ ​ work. ​ ​ Whether ​ ​ that ​ ​ be ​ ​ in ​ ​ the
northern ​ ​ permafrost ​ ​ region, ​ ​ or ​ ​ in ​ ​ an ​ ​ oil ​ ​ drilling ​ ​ area, ​ ​ or ​ ​ in ​ ​ a ​ ​ car ​ ​ manufacturing ​ ​ plant, ​ ​ all ​ ​ could
lead ​ ​ to ​ ​ finding ​ ​ the ​ ​ coveted ​ ​ solution ​ ​ to ​ ​ climate ​ ​ change.
The ​ ​ present ​ ​ study ​ ​ shows ​ ​ an ​ ​ increasing ​ ​ growth ​ ​ in ​ ​ CO2 ​ ​ emissions. ​ ​ And ​ ​ one ​ ​ that ​ ​ is
projected ​ ​ to ​ ​ keep ​ ​ increasing ​ ​ if ​ ​ current ​ ​ trends ​ ​ stay ​ ​ the ​ ​ same. ​ ​ Although ​ ​ this ​ ​ has ​ ​ produced ​ ​ similar
results ​ ​ to ​ ​ experiments ​ ​ regarding ​ ​ emissions, ​ ​ this ​ ​ is ​ ​ unique ​ ​ in ​ ​ the ​ ​ factors ​ ​ it ​ ​ uses. ​ ​ This ​ ​ study ​ ​ can ​ ​ be
useful ​ ​ in ​ ​ many ​ ​ fields ​ ​ of ​ ​ science ​ ​ and ​ ​ can ​ ​ help ​ ​ further ​ ​ missions ​ ​ for ​ ​ that ​ ​ purpose.

References:
Osterkamp, ​ ​ T. ​ ​ E., ​ ​ Jorgenson, ​ ​ M. ​ ​ T., ​ ​ Schuur, ​ ​ E. ​ ​ A., ​ ​ Shur, ​ ​ Y. ​ ​ L., ​ ​ Kanevskiy, ​ ​ M. ​ ​ Z., ​ ​ Vogel, ​ ​ J. ​ ​ G.,
& ​ ​ Tumskoy, ​ ​ V. ​ ​ E. ​ ​ (2009). ​ ​ Physical ​ ​ and ​ ​ ecological ​ ​ changes ​ ​ associated ​ ​ with ​ ​ warming ​ ​ permafrost
and ​ ​ thermokarst ​ ​ in ​ ​ Interior ​ ​ Alaska. ​ ​​ Permafrost ​ ​ and ​ ​ Periglacial ​ ​ Processes, ​ ​ ​​ 20 ​ (3), ​ ​ 235-256.
doi:10.1002/ppp.656
Lawrence, ​ ​ D. ​ ​ M., ​ ​ Slater, ​ ​ A. ​ ​ G., ​ ​ Tomas, ​ ​ R. ​ ​ A., ​ ​ Holland, ​ ​ M. ​ ​ M., ​ ​ & ​ ​ Deser, ​ ​ C. ​ ​ (2008). ​ ​ Accelerated
Arctic ​ ​ land ​ ​ warming ​ ​ and ​ ​ permafrost ​ ​ degradation ​ ​ during ​ ​ rapid ​ ​ sea ​ ​ ice ​ ​ loss. ​ ​​ Geophysical ​ ​ Research
Letters, ​ ​ ​​ 35 ​ (11). ​ ​ doi:10.1029/2008gl033985
Connon, ​ ​ R. ​ ​ F., ​ ​ Quinton, ​ ​ W. ​ ​ L., ​ ​ Craig, ​ ​ J. ​ ​ R., ​ ​ Hanisch, ​ ​ J., ​ ​ & ​ ​ Sonnentag, ​ ​ O. ​ ​ (2015). ​ ​ The ​ ​ hydrology
of ​ ​ interconnected ​ ​ bog ​ ​ complexes ​ ​ in ​ ​ discontinuous ​ ​ permafrost ​ ​ terrains. ​ ​​ Hydrological ​ ​ Processes,
29 ​ (18), ​ ​ 3831-3847. ​ ​ doi:10.1002/hyp.10604
Wright, ​ ​ N., ​ ​ Hayashi, ​ ​ M., ​ ​ & ​ ​ Quinton, ​ ​ W. ​ ​ L. ​ ​ (2009). ​ ​ Spatial ​ ​ and ​ ​ temporal ​ ​ variations ​ ​ in ​ ​ active
layer ​ ​ thawing ​ ​ and ​ ​ their ​ ​ implication ​ ​ on ​ ​ runoff ​ ​ generation ​ ​ in ​ ​ peat-covered ​ ​ permafrost ​ ​ terrain.
Water ​ ​ Resources ​ ​ Research ​ ​ Water ​ ​ Resour. ​ ​ Res., ​ ​ 45(5). ​ ​ doi:10.1029/2008wr006880
Anisimov, ​ ​ O. ​ ​ (n.d.). ​ ​ Potential ​ ​ feedback ​ ​ of ​ ​ thawing ​ ​ permafrost ​ ​ to ​ ​ the ​ ​ global ​ ​ climate ​ ​ system
through ​ ​ methane ​ ​ emission. ​ ​​ Environ. ​ ​ Res. ​ ​ Lett. ​ ​ Environmental ​ ​ Research ​ ​ Letters, ​ ​ ​ 045016-045016.
Christensen, ​ ​ T. ​ ​ (n.d.). ​ ​ Thawing ​ ​ sub-arctic ​ ​ permafrost: ​ ​ Effects ​ ​ on ​ ​ vegetation ​ ​ and ​ ​ methane
emissions. ​ ​​ Geophys. ​ ​ Res. ​ ​ Lett. ​ ​ Geophysical ​ ​ Research ​ ​ Letters ​ .
Anisimov ​ ​ O ​ ​ A, ​ ​ Lavrov ​ ​ S ​ ​ A ​ ​ and ​ ​ Reneva ​ ​ S ​ ​ A ​ ​ 2005a ​ ​ Emission ​ ​ of ​ ​ methane ​ ​ from ​ ​ the ​ ​ Russian
frozen ​ ​ wetlands ​ ​ under ​ ​ the ​ ​ conditions ​ ​ of ​ ​ the ​ ​ changing ​ ​ climate ​ ​​ Problems ​ ​ of ​ ​ Ecological ​ ​ Modeling
and ​ ​ Monitoring ​ ​ of ​ ​ Ecosystems ​ ​ ​ ed ​ ​ Y ​ ​ Izrael ​ ​ (St ​ ​ Petersburg: ​ ​ Hydrometeoizdat) ​ ​ pp ​ ​ 124–42
Walter ​ ​ B ​ ​ P, ​ ​ Heimann ​ ​ M ​ ​ and ​ ​ Matthews ​ ​ E ​ ​ 2001 ​ ​ Modeling ​ ​ modern ​ ​ methane ​ ​ emissions ​ ​ from
natural ​ ​ wetlands ​ ​ 1. ​ ​ Model ​ ​ description ​ ​ and ​ ​ results ​ ​​ J. ​ ​ Geophys. ​ ​ Res.—Atmos. ​ ​ ​ 106 ​ ​ 34189–206
University ​ ​ of ​ ​ Cambridge. ​ ​ (2015, ​ ​ September ​ ​ 21). ​ ​ Emissions ​ ​ from ​ ​ melting ​ ​ permafrost ​ ​ could ​ ​ cost
$43 ​ ​ trillion. ​ ​ ScienceDaily. ​ ​ Retrieved ​ ​ September ​ ​ 22, ​ ​ 2015
DOE/Lawrence ​ ​ Berkeley ​ ​ National ​ ​ Laboratory. ​ ​ (2015, ​ ​ October ​ ​ 5). ​ ​ Simpler ​ ​ way ​ ​ to ​ ​ estimate
feedback ​ ​ between ​ ​ permafrost ​ ​ carbon, ​ ​ climate: ​ ​ Scientist ​ ​ leads ​ ​ effort ​ ​ to ​ ​ shed ​ ​ light ​ ​ on ​ ​ a ​ ​ potentially
huge ​ ​ player ​ ​ in ​ ​ the ​ ​ planet's ​ ​ climate.

Similar Posts