Institutul de Speologie Emil Racoviță, 13 Septembrie 13, 50711 București, Romania victorgheorghiuyahoo.co.uk [302234]

ROMANIA

Vasile Decu*, Oana Teodora Moldovan§$, Christian JUBERTHIE**, Sanda IEPURE§***, Ion TABACARU*, Traian BRAD§$, Ionuț POPA*, Victor Gheorghiu*, George NĂZĂREANU****

*Institutul de Speologie "Emil Racoviță", 13 Septembrie 13, 50711 București, Romania; [anonimizat]

**Encyclopédie Biospéologique, Edition. 1 [anonimizat], 09190 [anonimizat]

§Institutul de Speologie "Emil Racoviță", Clinicilor 5, 400006 Cluj-Napoca, Romania; [anonimizat]

$[anonimizat] 24-26, 400425 Cluj-Napoca, Romania

***[anonimizat], José Beltrán Martínez 2, 46980 Paterna, Valencia, Spain; [anonimizat]

****Muzeul de Științe Naturale “Grigore Antipa”, Șoseaua Kiseleff 1, 011341, București, Romania; [anonimizat]

Corresponding author: Oana Teodora Moldovan [anonimizat]

I – INTRODUCTION

I.1 – Karst regions in Romania

Limestone rocks are distributed in Romania on a surface area of only 5,500 km2 representing 2.3% of the country's surface (Goran & Onac, 2019). They are generally on plateaus and plains with Pliocene and Quaternary sediments. Limestone is visible mainly in the Southern Carpathians (1,597 km2), the Apuseni Mountains (1,074 km2), the Eastern Carpathians (776 km2) and Dobrogea (953 km2). Limestone also outcrops in the plateaus of Transylvania and Moldova under isolated shreds (Fig. 1).

Fig. 1. Map of the karst regions of Romania. a = limestones and dolomites; b = karst developed on salt and gypsum;
c = volcanic rock karst (Modified after Bleahu and Rusu, 1965; Bleahu, 1972).

Most of the limestone is Jurassic (Dogger and Malm) and Cretaceous (especially Neocomian) (2,085 km2); they predominate in the Southern Carpathians (1,227 km2). There are also limestones and crystalline dolomites from Paleozoic (797 km2), Triassic (779 km2), and Neozoic (739 km2). The last is mostly concentrated in Dobrogea (673 km2). [anonimizat]. The heterogeneous distribution of karstic rocks makes the development of endokarst in the country's most important orogenic units highly unequal. The analysis was done on 6,816 caves known in 1981, which remained significant even if the number of caves exceeds 12,000 at present (Bleahu, 2019). More than 70% of the inventoried caves are less than 50 m long. [anonimizat] (1.92 caves/km2 for a country average of 1.52 caves/km2). [anonimizat]. (2.32 caves/km2), with the leading of Bihor Mts. (4.85 caves/km2). The density is lower to 1.22 caves/km2 in the Eastern Carpathians and to 0.09 caves/km2 in Dobrogea. The hierarchy of large karst regions is the same if established on the density of subterranean systems. It is of 260.6 m/km2 for the Apuseni Mountains, 155.8 m/km2 for the Southern Carpathians, 76.1 m/km2 [anonimizat] 5.9 m/km2 for Dobrogea (Goran, 1982, 1989).

[anonimizat], [anonimizat]. The first two are in the present represented by a covered, thus fossil, relief. The development of karst forms during the third phase depended mainly on the uplift movement characterizing the Carpathians during the end of Oligocene – beginning of Miocene (the Savian stage) and Pliocene – Lower Pleistocene (the Rhodano-Walachian stage) (Bleahu & Rusu, 1965).

I.2 – Climatic data

The life conditions in the subterranean habitats are marked by the significant heterogeneity of the Romanian karst. The country surface is characterized by continental temperate climate, between the southern 11˚C isotherm and the northern 8˚C isotherm, with an average of 640 mm in annual precipitations. The Adriatic Sea to the south-west and the Black Sea to the south-east buffer the continental character of the climate in South Banat and Dobrogea, respectively. In these regions, the climate has sub-mediterranean and litoral influences with a rise of the mean temperature and a decrease of precipitations compared to the other Romanian regions. The Mediterranean influences are felt up to the Timiș and Crișul Alb corridor, which are replaced to the north by the dominant Atlantic air masses.

The caves are distributed at different altitudes from the Peștera de la Piatra (Peștera means cave in Romanian) which opens at 2 m a.s.l. in Dobrogea to the Peștera de la Vârful Lespezi din Ciortea at 2,424 m a.s.l. in the Făgăraș Mts., with, nevertheless, certain discontinuities. The statistical analysis emphasizes three levels of densities for non-submersed caves, between 300 and 800 m (75% of caves), between 900 and 1,100 m, and between 1,250 and 1,500 m a.s.l. Caves with submerged passages are also concentrated between 300 and 800 m a.s.l. Further, it appears that caves in the Apuseni Mts. are at higher altitudes than those at the western side of the Southern Carpathians.

More than 70% of the caves develop in the beech forest subzone (or beech-oak), on brown, rendzins, and degraded rendzins soils, which are very rich in endogean fauna.

The general rule of the cave temperature is that it equals the thermic average of the temperature at the surface. A 1-2˚C error is accepted, and caves with bidirectional intermittent ventilation are excluded (Racoviță, 1975, 1984a). In Romania, the mean value of the caves' temperature is of 8˚C. For example, in Peștera Limanu the temperature is 13.5˚C, but only 4.5-6.5˚C in the caves of the Scărișoara Plateau (Bihor Mts.), at 1,100 m a.s.l. The submediterranean climatic influence in the south-west of the country (Oltenia and Banat) and the Southern Dobrogea, which lowers from west to the east, is amplified by the presence of the limestone at the surface, playing the role of a thermic reservoir and influencing the cave temperature and fauna evolution.

The quantity of condensation water was measured in two caves of the Cloșani area (Southern Carpathians) and it was 800 ml/m2/year. In the Ghețarul (Ice Cave) de la Scărișoara (Apuseni Mountains) it reached 160 cm3/m2/48h (Decu et al., 1982a; Racoviță et al., 1985).

I.3 – Biospeleological provinces and zones

Transversal valleys are the zoogeographic barriers that define four biospeleological provinces in the Romanian Carpathians: I – the Eastern and the Southern Carpathians up to the Olt valley; II – the Southern Carpathians, between the Olt and the corridor formed by the valleys of Timiș and lower Cerna; III – Banat Mountains, west of the corridor represented by the Timiș and Cerna valleys; IV – the Apuseni Mountains between the valleys of the Mureș and the Crișul Repede. A Vth province is Dobrogea, which is completely isolated from the Carpathian chain.

The provinces (I-V) are divided into biospeleological zones (1-25) based on endemic cave taxa (Fig. 2) and corresponding to major relief units. The endemic taxa have the value of biological indicators. The majority of these fauna elements are the beetles, which represent more than half of the terrestrial subterranean fauna.

The cave fauna of the Southern Carpathians and Banat is more adapted than the fauna of the Apuseni Mts., where the number of troglophiles is higher. The explanation can be possibly linked to a warmer and dryer climate in the southern part of the country.

Caves with troglobionts are located at a medium elevation of 300-750 m a.s.l. in the Southern Carpathians and Banat, and of 300-1300 m in the Apuseni Mountains. The same altitude intervals correspond to stations of M.S.S. with troglobiont Coleoptera.

Fig. 2. Map of biospeological provinces (I – V; in red) and zones (1 – 25; in yellow) of Romania. I = Eastern and Southern Carpathians up to the Olt River: 1- Țibleș, Maramureș, Rodnei, Rarău, Bârgău, Bistrița and Giurgeu Mountains (Mts.), Preluca and Purcăreț-Boiul Mare Massifs; 2 – Ceahlău and Hăghimaș Mts.; 3 – Vârghiș Basin, Perșani, Ciucaș, Piatra Mare, Postăvaru, Bucegi and Piatra Craiului Mts.; 4 – Făgăraș Mts. II = Southern Carpathians between the Olt River and the Timiș-Cerna corridor: 5 – Stogu-Vânturarița, Lotru and Cibin Mts., 6 – Căpățânii and Parâng Mts.; 7 – Sebeș Mts.; 8 – Jiul de Vest Basin; 9 – Vâlcan Mts. (between Bistrița and Jiul Rivers); 10 – Vâlcan Mts. (between Bistrița and Motru Rivers) 11 – Mehedinți Mts. (between Orzești – Șteiul Cozii and Piatra Mare a Cloșanilor Massifs – Baia de Aramș); 12 – Mehedinți Plateau; 13 – Cerna Basin; 14 – Cernei-Godeanu (North and South of Cornereva Depression) and Țarcu Mts.; 15 – Poiana Ruscăi Mts. III = Western Carpathians south of the Mureș River (Banat Mountains): 16 – Almaj Mts.; 17 – Western Banat Mts.; IV = Western Carpathians north of the Mures River (Apuseni Mountains): 18 – Gilău and Metaliferi Mts.; 19 – Trascău Mts.; 20 – Bihor Mts.; 21 – Codru-Moma Mts.; 22 – Pădurea Craiului Mts. V = Dobrogea: 23 – North Dobrogea province; 24 – Central Dobrogea province; 25 – South Dobrogea province. (After Decu, 1967, 1980; Decu et al., 1969, Decu et Iliffe, 1984).

Province I – Eastern and Southern Carpathians up to the Olt valley

The first province with four zones is poor in troglobiont fauna. Only seven troglobionts or possible troglobionts are known. They belong to Nesticus and Leptyphantes spiders, Neobisium pseudoscorpions, Romanosoma diplopods, and the Trechinae Duvalius (Duvalidius) procerus group and Duvaliopsis.

Province II – the Southern Carpathians from the Olt valley to the Timiș-Cerna corridor

The second province with 11 zones has a more diversified fauna, mainly distributed in the Jiu basin. The endemic troglobionts are isopods (Trichoniscus and Haplophthalmus), pseudoscorpions (Neobisium), araneids (Troglohyphantes and Centromerus), diplopods (Trachysphaera, Polydesmus, Trichopolydesmus, Dacosoma, Lamellotyphlus, Napocodesmus, and Anthroleucosoma), chilopods (Lithobius and Harpolithobius) and beetles, Trechinae [Duvalius (Duvaliotes) of budai group], and Leptodirinae (Mehadiella, Sophrochaeta, Tismanella, and Closania).

There is also the endemic Duvalius (Duvalidius) merkli group, with an uncertain status of troglobiont or troglophile.

Province III – Banat Mountains

The third province with two zones, has only a few troglobiont elements, all concentrated in the mountains of the Western Banat. They are isopods (Banatoniscus), diplopods (Banatodesmus, Banatosoma, Banatoiulus), chilopods (Lithobius), and beetles [Duvalius (Duvaliotes) milleri and Banatiola].

Province IV – Apuseni Mountains

The fourth province with five zones, with a much stronger endokarstic development, is also very rich in troglobitic fauna, most of the species being in Bihor and Pădurea Craiului mountains. The endemics are among pseudoscorpions (Neobisium), spiders (Centromerus, Nesticus, Troglohyphantes), isopods (Biharoniscus and Haplophthalmus), diplopods (Trachysphaera and Typhloiulus), chilopods (Monotarsobius), and mostly beetles [Chaetoduvalius, Duvalius (Duvaliotes) redtenbacheri group, Drimeotus, Pholeuon, and Protopholeuon].

Province V – Dobrogea

This province with three zones has a quite diversified and very original troglobitic fauna caused by its isolation. Until 1986, only pseudoscorpions (Acanthocreagris), spiders (Caviphantes), isopods (Caucasonethes), diplopods (Trachysphaera and Apfelbeckiella) and beetles (Trechus) were known. The discovery of the Peștera Movile ecosystem raised its originality drastically by the identification of numerous terrestrial and aquatic new species (see also Subchapter V.1).

II – History of biospeleology in Romania

II.1 – The period 1856-1920

The studies on cave fauna of Romania started in the second half of the 18th century in Transylvania and Banat, under the Austrian-Hungarian occupation. The first information was compiled by Austrian and Hungarian zoologists, especially on Coleoptera. The oldest works are those of Miller (1856) and Hampe (1856) who described a Drimeotus kovacsi from the Igrița Cave and a Pholeuon angusticolle of the Zmeilor Cave from Onceasa, respectively. These species are Leptodirini (Bathysciinae) beetles of the Apuseni Mountains. From the first cave, two other troglobionts were described: the Trechinae beetle Duvalius redtenbacheri by E & J. Frivaldszky (1857), and the spider Nesticus biroi by Kulczynski (1859). The discovery of these two species is linked to archeological and paleontological surveys in caves at that time.

The description of the first troglobionts of Banat, the Bathysciinae beetles Sophrochaeta insignis and S. reitteri, found in two caves of the Cerna Valley, Peștera Mare de la Soroniște and Peștera de la Bobot, is due to J. Frivaldszky (1880, 1884). Another troglobiont, the diplopod Trichopolydesmus eremitis, was described by Verhoeff (1898) from the Hoților Cave in Băile Herculane.

Reitter, Csiki, Biró and others, made occasionally observations in caves. Consequently, the inventory of troglobitic beetles in the Carpathian Mountains was represented by only about fifteen species before 1911. From 1911 to the World War I a considerable increase of interest for the “rarity” of the subterranean world was seen; a new generation of zoologists, among whom Breit, Moczarsky, Mihók, Knirsch, Bokor and many others have undertaken very active investigations. The result was indeed spectacular; the number of cave beetles was raised to 83 in 1914 (Jeannel, 1923). Unfortunately, before Jeannel, some of the descriptions were too hasty to resist a thorough revision, and most of the "new" species were synonymized. Csiki described twice the same species placing it under different genera, even if they came from the same cave (for example, Anophthalmus mihoki, Duvalius redtenbacheri biroi, Anophthalmus csatoi, and Duvalius sziladyi). Moreover, these descriptions were generally accompanied by vague information or even wrong information on the locality, thus making it impossible to define the distribution range.

The fortuitous manner of faunistic research in caves before 1920 has taken even more fragmentary knowledge of other groups. Nevertheless, some taxonomists took care to compile regional synthesis. One can mention in this regard the works of Chyzer and Kulczynsky on spiders, Thalhammer on flies, Daday and Verhoeff on myriapods, Bielz and Mehely on bats, etc. (see Wolff, 1934-1938).

II. 2 – The period 1920-1949

After hesitating starts, the study of cave fauna had known an unprecedented development from 1920 on, when the Institute of Speleology was established at the University of Cluj (Transylvania). Emile Racovitza established this Institute after the reorganization of the University in Transylvania, which came as an accomplishment of Romania's territorial unity on the 1st of December 1918.

This Institute, the first that studied the cave domain in the world, had as fundament the well-known publication of Emile Racovitza “Essai sur les problèmes biospéologiques" (Essay on biospeological problems) published in 1907, when Racovitza acted as deputy director of the Arago Laboratories in France. The "Essay" is the work that founded a new scientific discipline, the Biospeology (Biospéologie in French, in original).

Racovitza invited the French scientist René Jeannel, the known entomologist and biogeographer, as deputy director of the Institut. In 1922, Racovitza also asked Pierre-Alfred Chappuis to join the team at the Institute of Speleology. Racovitza started his research program with the collaboration of an increasing number of specialists and organizing the international initiative known under the name of “Biospeologica”. The exploration of 800 caves in Europe (Romania, France, Spain including Baleares, ex-Yugoslavia) and in Africa (Algeria) resulted in a collection with 20,000 samples and the publication of 41 volumes in the Archives de Zoologie expérimentale et générale, under the common title Biospeologica.

It is also worth mentioning the works of Racovitza on isopods, Jeannel on beetles, Chappuis on crustaceans, Fage on spiders, P. de Beauchamp on triclads and hirudins, Roewer on opilionids, Bezzi on flies, Absolon on springtails, Brölemann on diplopods, Matic on chilopods, Feider and Mironescu on mites, Botosaneanu on trichopters. Racovitza gathered all the works in nine volumes of Travaux de l’Institut de Spéologie de Cluj (1926-1948). The biospeleological campaigns started in 1921 and took part until 1931 in the most important Romanian karstic regions: the Apuseni Mountains and the Southern Carpathians. About 160 caves were explored in the first region by Racovitza, Jeannel, Chappuis, Winkler, Pușcariu, and Roth, and 90 caves in the second unit (the Banat, Oltenia, and Hunedoara) by the first five mentioned above and Mallasz (Jeannel & Racovitza, 1929; Chappuis & Jeannel, 1951). Outside these regions, in 1926, Chappuis collected fauna from Limanu Cave in Dobrogea and, in 1925, Pușcariu collected in Peștera Mare de la Merești in the Eastern Carpathians. The pioneer of fauna researches in caves of the Southern Carpathians (Oltenia) and Dobrogea was the Romanian zoologist C. N. Ionescu which published several papers between 1912 and 1925, and in 1913 he published "Biospéologie des Carpates Méridionales" (Biospeleology of Southern Carpathians).

The Institute of Speleology in Cluj and Romanian caves were visited by the Austrian entomologist Winkler, the eminent French prehistorian H. Breuil who discovered for the first time remains of the Paleolithic culture in Transylvania (Breuil, 1925), and the Belgian biospeleolog R. Leruth (1939). With the material collected by Leruth, several papers were published by P. de Beauchamp, Boettger, Collart, Cooreman, Leruth, Lengersdorf, Motaș, Tollet, etc.

The Institute represented before World War II one of the international centers in Biospeleology. After E. Racovitza passed away in 1947, P.-A. Chappuis assured the direction of the Institute until 1949, before moving to France as a deputy director of the Laboratoire souterrain du C.N.R.S. in Moulis. With him, Biospeologica returned to France, under the direction of Jeannel and Chappuis.

II. 3 – The period 1949-1956

The Institute of Speleology continued the researches with a new generation of scientists. In Cluj, a team composed by Mihai Șerban (former assistant of Racovitza), Dan Coman and their collaborators started the interdisciplinary studies of caves, especially in Ghețarul de la Scărișoara (Șerban et al., 1948).

II. 4 – The period 1956- 2020

The Institute of Speleology was reorganized in 1956 with the main headquarter in București and a branch in Cluj. Professor C. Motaș, freed after political detention as a member of a social-democratic party, was named and remained director until 1963. T. Orghidan succeeded as director until 1985 and changed the name of the Institute to "Emil Racoviță" Institute of Speleology. In 1990, the Institute became part of the Romanian Academy.

After 1956 and throughout the 20th century, the exploration of caves and the study of their fauna continued. Among the numerous published papers, the contribution of M. Șerban, Dumitrescu, Orghidan, Tanasachi, Avram, Georgescu, E. Șerban, Ș. Negrea, A. Negrea, Botosaneanu, Dancău, Sencu, V. Decu, A. Decu, Racoviță, Pleșa, Moldovan, Popa, A. Nae, I. Nae, etc. (see References).

Orghidan, Motaș, Botea, Botosaneanu, Danielopol, Pleșa, Iepure, Moldovan, Brad, Meleg etc. studied the structure and functioning of the aquatic communities in caves and hyporheic zone of surface rivers, while Dumitrescu, A. Decu, V. Decu, Motaș, A. Negrea, S. Negrea, Racoviță, Gruia, Moldovan, Bucur (Buzilă), etc. those on terrestrial subterranean communities.

In 1947, Motas started the study of hydracari from the phreatic zone, as the precursor of the hyporheic zone described by Orghidan almost ten years later (1955, 1959).

The morphology, anatomy, sensorial and exocrine equipment, cytology, genetics, as much as reproduction and development have been part of the works of A. and V. Decu, Racoviță, Tabacaru, Giurgincă, Avram, Pleșa, Georgescu, Moldovan, Bucur (Buzilă), etc.

Studies of zoogeography on subterranean fauna in Romania have been undertaken by Dancău, Decu, Gruia, Negrea, Tabacaru, Giurgincă, Moldovan etc.

Juberthie, Delay, Decu and Racoviță, in 1981, started studies on the Mesovoid Subterranean Substratum (M.S.S., Milieu Souterrain Superficiel in French, in original) and other superficial subterranean habitats, which were continued especially by Racoviță and collaborators in Transylvania, and Decu and collaborators in Oltenia and Dobrogea. The transition habitats between the subterranean environment and the surface, such as the superficial lithoclasic environment was described in 1964 by Orghidan and Dumitrescu, and the slope scree environment was studied by Ilie, Nițu and collaborators.

M. Șerban, Racoviță, Decu, Moldovan, Borda, Iepure, Plăiașu, Băncilă and their collaborators realized experiments and studies on the living conditions in the subterranean habitats.

Racoviță, Decu, Moldovan and collaborators have studied the protection and conservation of caves and subterranean ecosystems, together with the reorganization and the functioning of ecosystems developed on forested or deforested limestones.

In 1986, the discovery of the first chemoautotrophic cave in the world, Peștera Movile in Dobrogea by C. Lascu led to a series of works on its fauna, origin of resources and functioning of its ecosystem, by Bernasconi, Boghean, Racoviță, Pleșa, Čurčić, Decu, Georgescu, Giurginca, Gruia, Sarbu, Manoleli, Tabacaru, Hillebrand-Voiculescu, Brad, etc.

Biospeleological expeditions.

Numerous members of the Institute of Speleology took part in biospeleological expeditions in Europe, America and Middle East. In Bulgaria (Botosaneanu, Decu and Rusu in 1963; Orghidan and Burghele in 1966; Dancău in 1975); in ex-Yugoslavia (Căpușe, Dancău, Danielopol, Dumitrescu, Juvara-Balș, Orghidan and Terzea in 1967); in Cuba (Botosaneanu, Decu and Negrea in 1969 and 1973; Orghidan in 1970 and 1973; Racoviță in 1969; Coman in 1973); in Mallorca (Dumitrescu, Georgescu, Orghidan and Tabacaru in 1971); in Venezuela (Orghidan in 1975; Decu and Orghidan in 1982); in Israel (Căpușe, Decu, A. and S. Negrea in 1990; Decu, Iavorschi, Nitzu and Gheorghiu in1995).

The results were published in several papers and under the following titles: Résultats des expéditions biospéologiques cubano-roumaines à Cuba (Volumes I – IV, 1973-1983), Fauna hipogea y hemiedáfica de Venezuela y de otros paises de América del Sur (Volume I, 1987), Soil Fauna of Israel (1995).

The Institute of Speleology maintained strong scientific relationships with the Laboratoire souterraine du CNRS in Moulis (France) during four decades of collaboration. Exchanges of scientists, common studies, programs and missions were undertaken during the cooperation. In the same framework, the editing of the three volumes of Encyclopaedia Biospeologica (2,294 pages in total), first edition, by Juberthie (Moulis) and Decu (București) was done with the help of more than 150 collaborators from the entire world.

Cave Ecology, a collection of chapters on different aspects of diversity and classification of cave habitats and cave fauna, evolution and adaptation of cave fauna, and conservation problems was published with the collaboration of many authors from all over the world and under the coordination of Moldovan, Kováč and Halse (2018).

The first two decades of the 21st century brought also a different, more interdisciplinary approach to the study of cave fauna in the Institute. Thus, Moldovan and collaborators discovered and used fossil invertebrates and microorganisms from cave sediments for paleoclimatic, paleoenvironmental and paleohydrologic reconstructions (Moldovan et al., 2011, 2016; Epure et al., 2014, 2017). Researches on Peștera Movile and ice deposits from caves also benefitted from development in molecular techniques for the study of microorganisms (see Chapter III and Sub-chapter V.1).

The Institute of Speleology is the editor of four speleological journals: Travaux de l'Institut de Spéologie Emile Racovitza (1963-present); Theoretical and Applied Karstology (1983-2004); Miscellanea Speologica Romanica (1989, 1990); Ecocarst (1999-2005).

III – Subterranean fauna

Subterranean fauna of Romania belongs to different aquatic and terrestrial groups, the most numerous being Trombidiformes and Copepoda, and Coleoptera and Araneae, respectively (see Table I and Fig. 3). The first inventory of cave fauna was done by Decu & Negrea (1969). The more recent were published in the last decade, as a list of endemic cave species (Nitzu et al., 2016) and a database with identified troglobionts and stygobionts (Moldovan et al., 2020b, c)

Table I. Stygobiont and troglobiont taxa, specifics and possible, of Romania.

Fig. 3. Relative diversity of the stygobiontic and troglobiontic fauna groups in Romania.

III. 1 – Groundwater fauna

From the Romanian aquatic subterranean representatives, 253 taxa have been mentioned until present. They belong to different groups (Table II).

Table II. Stygobiont taxa, specifics, and probably, from Romania; ?●= probable stygobiont.

Phylum Nematoda

Family Chronogasteridae

Chronogaster troglodytes Poinar & Sarbu, 1994

Family Panagrolaimidae

Panagroilaimus n. sp.

Family Rhabditidae

Protorhabditis n. sp.

PHYLUM ARTHROPODA

SUBPHYLUM CHELICERATA

CLASS ARACHNIDA

ORDER TROMBIDIFORMES

Family Halacaridae

Lobohalacarus weberi (Walter, 1947)

Parasoldanellonyx typhlops Viets, 1933

Soldanellonyx chappuisi Walter, 1919

Family Stygothrombidiidae

Charanothrombium racovitzai Motaș & Tanasachi, 1946

Stygothrombium chappuisi Walter, 1947

Family Anisitsiellidae

Bandakia corsica E. Angelier, 1951

Family Arrenuridae

Arrenurus haplurus Viets, 1925

Arrenurus lundbladianus Motaș & Tanasachi, 1958

Family Athienemanniidae

Phreatohydracarus mosticus Tanasachi & Orghidan, 1955

Stygohydracarus subterraneus Walter, 1947

Stygohydracarus troglobius Viets, 1932

Family Aturidae

Albaxona lundbladi Motaș & Tanasachi, 1948

Albaxona minuta Szalay, 1944

?●Aturus fontinalis Lundblad, 1930

Aturus karamani Viets, 1936

Aturus paucisetus Motaș & Tanasachi, 1946

Axonopsis inferorum Motaș & Tanasachi, 1947

Axonopsis vietsi Motaș & Tanasachi, 1947

Frontipodopsis reticulatifrons Szalay, 1945

Erebaxonopsis brevis Motaș et Tanasachi, 1947

Kongsbergia alata Szalay, 1945

Kongsbergia bombifrons Szalay, 1945

Kongsbergia clypeata Szalay, 1945

Kongsbergia dentata Motaș & Tanasachi, 1958

Kongsbergia d-motasi Motaș & Tanasachi, 1958

Kongsbergia pectinigera Motaș & Tanasachi, 1946

Kongsbergia pectinigera sinusa Motaș & Tanasachi, 1947

Kongsbergia pusilla Motaș & Tanasachi, 1946

Kongsbergia ruttneri Walter, 1930

Letaxona cavifrons Szalay, 1943

Family Bogatiidae

Bogatia maxillaris Motaș & Tanasachi, 1948

Family Chappuisididae

Chappuisides hungaricus Szalay, 1943

Chappuisides thienemanni Motaș, 1959

Family Feltriidae

Feltria cornuta paucipora Szalay, 1946

Feltria mira (Motaș & Tanasachi, 1948)

Feltria pectinifera Szalay, 1946

?●Feltria romijni Besseling, 1930

Family Hungarohydracaridae

Balcanohydracarus alveolatus Motaș & Tanasachi, 1948

Hungarohydracarus subterraneus Szalay, 1943

Family Hydryphantidae

Dacothyas savulescui Motaș, 1959

Tartarothyas fonticola (Motaș & Tanasachi, 1957)

Tartarothyas micrommata Viets, 1934

Wandesia stygophila Szalay, 1944

Wandesia thori Schechtel, 1912

Family Hygrobatidae

Atractides cisternarum (Viets, 1935)

Atractides elegans (Motaș & Tanasachi, 1948)

?●Atractides ellipticus Maglio, 1909

?●Atractides jeanneli Motaș & Tanasachi, 1947

Atractides latipalpis (Motaș & Tanasachi, 1948)

Atractides latipes (Szalay, 1935)

Atractides microphthalmus (Motaș & Tanasachi, 1946)

Atractides nodipalpis (Thor, 1899)

Atractides orghidani (Motaș & Tanasachi, 1948)

Atractides magnirostris (Motaș & Tanasachi, 1948)

Atractides phreaticus (Motaș & Tanasachi, 1948)

Atractides primitivus (Walter, 1947)

Atractides prosiliens (Motaș & Tanasachi, 1948)

Atractides pumilus (Szalay, 1946)

Atractides pygmaeus (Motaș & Tanasachi, 1948)

Atractides sokolowi (Motaș & Tanasachi, 1948)

Atractides subterraneus obovalis (Szalay, 1946)

Atractides szalayi (Motaș & Tanasachi, 1948)

Family Limnesiidae

Kawamuracarus chappuisi Motaș & Tanasachi, 1946

Family Mideopsidae

Mideopsis fonticola Tanasachi & Orghidan, 1955

Mideopsis longipalpis Szalay, 1945

Mideopsis orbicularis Müller, 1776

Family Momoniidae

Stygomomonia latipes Szalay, 1943

Family Neoacaridae

Neoacarus hibernicus Halbert, 1944

Neoacarus stygobius Motaș & Tanasachi, 1947

Family Torenticolidae

Torenticola andrei (E. Angelier, 1949)

Torenticola jeanneli Motaș & Tanasachi, 1947

Torenticola madritensis (Viets, 1930)

Torenticola ramigera Szalay, 1947

Torenticola ungeri Szalay, 1927

Torenticola vaga Szalay, 1947

SUBPHYLUM CRUSTACEA

CLASS BRANCHIOPODA

ORDER DIPLOSTRACA

SUBORDER Cladocera

Family Macrothricidae

Mocrothrix bialatus Motaș & Orghidan, 1948

CLASS MAXILLOPODA

SUBCLASS Copepoda (compiled by S. Iepure)

ORDER CYCLOPOIDA

Family Cyclopidae

Acanthocyclops balcanicus bisaetosus Iepure, 2001

Acanthocyclops phreaticus (Chappuis, 1928)

Acanthocyclops kieferi (Chappuis, 1925)

Acanthocyclops milotai Iepure & Defaye, 2008

Acanthocyclops plesai Iepure, 2001

Acanthocyclops reductus reductus (Chappuis, 1925)

Acanthocyclops reductus propinquus Pleșa, 1957

Acanthocyclops stygius deminutus (Chappuis, 1925)

Acanthocyclops stygius stygius (Chappuis, 1924)

Acanthocyclops transylvanicus Iepure & Oargă, 2011

Diacyclops languidoides clandestinus (Kiefer, 1926)

Diacyclops languidoides hypnicola Gurney, 1927

Eucyclops graeteri graeteri (Chappuis, 1927)

Eucyclops graeteri intermedius (Damian, 1955)

Eucyclops graeteri subterraneus (Graeter, 1907)

Eucyclops macrurus damianae (Patkovski, 1971)

Eucyclops subterraneus scythicus Pleșa, 1989

Graeteriella unisetigera (Graeter, 1908)

Speocyclops lindbergi Damian, 1957

Speocyclops troglodytes (Chappuis, 1923)

ORDER HARPACTICOIDA

Family Ameiridae

Nitocrella calcaripes Damian & Botosaneanu, 1954

Nitocrella hirta Chappuis, 1923

Nitocrella hirta bucarestiensis Damian & Botosaneanu, 1954

Family Canthocamptidae

Bryocamptus (Rheocamptus) unisaetosus Kiefer, 1930

Bryocamptus (Rheocamptus) spinulosus Borutzky, 1934

Ceuthonectes serbicus Chappuis, 1924

Elaphoidella damianae Kiefer, 1967

?●Elaphoidella elaphoides (Chappuis, 1924)

Elaphoidella gracilis serrulata Damian & Botosaneanu, 1954

Elaphoidella juxtaputealis (Damian & Botosaneanu, 1954)

Elaphoidella phreatica (Chappuis, 1925)

Elaphoidella pseudophreatica (Chappuis, 1928)

Elaphoidella putealis (Chappuis, 1925)

Elaphoidella romanica Kulhavy, 1969

Elaphoidella simplex Chappuis, 1944

Elaphoidella winkleri (Chappuis, 1928)

Maraenobiotus brucei carpathicus Chappuis, 1928

Spelaeocamptus spelaeus (Chappuis, 1925)

Family Chappuisidae

Chappuisius inopinus Kiefer, 1938

Family Parastenocarididae

Parastenocaris aquaeductus Chappuis, 1925

Parastenocaris banaticus Damian, 1957

Parastenocaris chappuisi Șerban, 1960

Parastenocaris clujensis Chappuis, 1925

Parastenocaris jeanneli Chappuis, 1924

Parastenocaris karamani brevicauda Damian, 1958

Parastenocaris latisetosus Damian & Botosaneanu, 1954

Parastenocaris minuta Chappuis, 1925

Parastenocaris nana Chappuis, 1925

Parastenocaris pannonica Török, 1935

Parastenocaris phreatica Chappuis, 1936

Parastenocaris subterranea Damian, 1958

Parastenocaris uncinatus Damian & Botosaneanu, 1954

CLASS Ostracoda (compiled by S. Iepure)

ORDER PODOCOPIDA

Family Candonidae

Cryptocandona kieferi (Klie, 1938)

Cryptocandona matris (Sywula, 1976)

Fabaeformiscandona breuili (Paris, 1920)

Cryptocandona racovitzai Iepure, Namiotko & Danielopol, 2008

Fabaeformiscandona brisiaca (Klie, 1938)

Mixtacandona botosaneanui Danielopol, 1978

Mixtacandnua chappuisi (Klie, 1943)

Mixtacandona pietrosanii Danielopol & Cvetkov, 1978

Mixtacandona loffleri Danielopol, 1978

Mixtacandona tabacarui Danielopol & Cvetkov, 1978

Nannocandona afinis faba Ekman, 1914

Phreatocandona motasi Danielopol, 1973

Typhlocypris eremita (Vejdovsky, 1880)

Typhlocypris serbani Danielopol, 1982

Typhlocypris danubialis Iepure, Namiotko & Danielopol, 2007

Typhlocypris transylvanica Iepure, Namiotko & Danielopol, 2007

Typhlocypris zschokkei (Wolf, 1919)

Family Cyprididae

Cavernocypris subterranea (Wolf, 1920)

Family Darwinulidae

Vestalenula boteai (Danielopol, 1970)

Family Limnocytheridae

Kovalevskiella phreaticola (Danielopol, 1965)

CLASS MALACOSTRACA

SUPERORDER Syncarida

ORDER BATHYNELLACEA

Family Bathynellidae

Antrobathynella stammeri (Jakobi, 1954)

Bathynella boteai Șerban, 1971

Bathynella motrensis Șerban, 1971

Bathynella natans Vejdovsky, 1882

Bathynella orghidani Șerban, 1989

Bathynella paranatans Șerban, 1971

Bathynella plesai Șerban, 1971

Bathynella scythica Botosaneanu & Damian, 1956

Bathynella vaducrisensis Șerban, 1975

Family Parabathynellidae

Parabathynella motasi Dancău & Șerban, 1963

Parabathynella stygia Chappuis, 1926

SUPERORDER PERACARIDA

Order Amphipoda

Family Bogidiellidae

Bogidiella albertimagni Herzog, 1933

Bogidiella skopljensis (S. Karaman, 1933)

Family Niphargidae (compiled by T. Brad)

Niphargus affinis Dobreanu, Manolache & Pușcariu 1953

Niphargus alutensis Dancău, 1971

Niphargus andropus Schellenberg, 1940

Niphargus bajuvaricus Schellenberg, 1932

Niphargus baloghi Dudich, 1940

Niphargus banaticus Dobreanu & Manolache, 1936

Niphargus bihorensis Schellenberg, 1940

Niphargus carpathicus Dobreanu, Manolache & Pușcariu, 1939

Niphargus cavernicolus Dobreanu & Manolache, 1957

Niphargus dacicus Dancău, 1963

Niphargus dalmatinus Schaferna 1922

Niphargus dancaui Brad, Fiser, Flot & Sarbu, 2015

Niphargus decui Karaman & Sarbu, 1995

Niphargus dobrogicus Dancău, 1964

Niphargus effosus Dudich, 1943

Niphargus elegans Garbini, 1894

Niphargus foreli Humbert, 1877

Niphargus gallicus Schellenberg, 1935

Niphargus hebereri Dancău, 1970

Niphargus hrabei S. Karaman, 1932

Niphargus incertus Dobreanu, Manolache & Pușcariu, 1951

Niphargus inopinatus Schellenberg, 1932

Niphargus jovanovici Karaman, 1931

Niphargus jurinaci S. Karaman, 1950

Niphargus korosensis Dudich, 1943

Niphargus laticaudatus Schellenberg, 1940

Niphargus meridionalis Dobreanu & Manolache, 1942

Niphargus moldavicus Dobreanu, Manolache & Pușcariu, 1953

Niphargus molnari Méhely, 1927

Niphargus multipennatus Sket, 1956

Niphargus pannonicus S. Karaman, 1950

Niphargus parapupetta Karaman, 1984

Niphargus petrosani Dobreanu & Manolache, 1933

Niphargus phreaticolus Motaș, Dobreanu & Manolache, 1948

Niphargus ponoricus Dancău, 1963

Niphargus pseudokochianus Dobreanu, Manolache & Pușcariu, 1953

Niphargus puteanus (Koch, 1836)

Niphargus romanicus (Dobreanu & Manolache, 1942)

Niphargus serbicus Karaman, 1960

Niphargus somesensis Motaș, Dobreanu & Manolache, 1948

Niphargus stygius Schiödte, 1847

Niphargus stygocharis Dudich, 1943

Niphargus tenuicaudatus Schellenberg, 1940

Niphargus transsylvanicus Schellenberg, 1934

Niphargus valachicus Dobreanu, 1933

Niphargus variabilis (Dobreanu, Manolache & Pușcariu, 1953)

Pontoniphargus racovitzai Dancău, 1970

Pontoniphargus ruffoi Karaman & Sarbu, 1996

ORDER Isopoda

Family Asellidae

Asellus aquaticus infernus Turk-Prevorčnik & Blejec, 1998

Proasellus baznosanui (R. & M. Codreanu, 1962)

Proasellus danubialis (R. & M. Codreanu, 1962)

Proasellus elegans (R. & M. Codreanu, 1962)

Stygasellus phreaticus (Chappuis, 1943)

Family Microcerberidae

Microcerberus plesai Chappuis & Delamare, 1958

Family Lepidocharontidae

Microcharon acherontis Chappuis, 1942

Microcharon motasi Șerban, 1964

Microcharon oltenicus Șerban, 1964

Microcharon orghidani Șerban, 1964

subphylum hexapoda

class insecta

order hemiptera

infraorder nepomorpha

Family Nepidae

Nepa anophthalma Decu, Gruia & Sarbu, 1994

Phylum annelida

class polychaeta

order haplodrili (Archiannelida)

Family Nerillidae

Troglochaetus beranecki Delachaux, 1921

class clitellata

subclass Hirudinea

Family Haemopidae

Haemopis caeca Manoleli, Klemm & Sarbu, 1998

Subclass Oligochaeta

Family Haplotaxidae

Delaya bureschi Michaelsen, 1725

Family Lumbriculidae

Lamprodrilus michaelseni carpaticus Botea, 1978

Trichodrilus pragaensis Vejdovsky, 1875

Phylum Mollusca

class Gastropoda

Family Moitessieridae

Paladilhiopsis carpathica (Soòs, 1940)

Bythiospeum leruthi (C. Boettger, 1940)

Bythiospeum transsylvanica (Rotarides, 1943)

Family Cochliopidae

Semisalsa dobrogica (Grossu & Negrea, 1989)

Phylum PLATYHELMINTHES

CLASS RHABDITOPHORA

Order Tricladida

Family Dendrocoelidae

Dendrocoelum (Apodendrocoelum) brachyphallus (de Beauchamp, 1929)

Dendrocoelum (Apodendrocoelum) lipophallus (de Beauchamp, 1929)

Dendrocoelum (Eudendrocoelum) botosaneanui del Papa, 1965

Dendrocoelum (Dendrocoelides) alexandrinae Codreanu & Balcesco, 1970

Dendrocoelum (Dendrocoelides) atricostrictum Codreanu & Balcesco, 1967

Dendrocoelum (Dendrocoelides banaticum Codreanu & Balcesco, 1967

Dendrocoelum (Dendrocoelides) chappuisi (de Beauchamp, 1932)

Dendrocoelum (Dendrocoelides) clujanum Codreanu, 1943

Dendrocoelum (Dendrocoelides) debeauchampianum Codreanu & Balcesco, 1967

Dendrocoelum (Dendrocoelides) orghidani Codreanu & Balcesco, 1967

Dendrocoelum (Dendrocoelides) polymorphum Codreanu & Balcesco, 1967

Dendrocoelum (Dendrocoelides) racovitzai de Beauchamp, 1949

Dendrocoelum (Dendrocoelides) sphaerophallus (de Beauchamp, 1929)

Dendrocoelum (Dendrocoelides) stenophallus Codreanu & Balcescu, 1967

Dendrocoelum (Dendrocoelides) tismanae Codreanu & Balcesco, 1967

Dendrocoelum (Paleodendrocoelum) geticum Codreanu & Balcesco, 1970

Dendrocoelum (Paleodendrocoelum) romanodanubiale (Codreanu, 1949)

Dendrocoelum (Polycladodes) affine Codreanu & Balcesco, 1970

Dendrocoelum (Polycladodes) album (Steinmann, 1910)

Dendrocoelum (Polycladodes) voinovi (Codreanu, 1929)

Family Planariidae

Atrioplanaria racovitzai (de Beauchamp, 1928)

Fig. 4. A. Haplodrili. Nerillidae: Troglochaetus beranecki; B. Hirudinea. Haemopidae: Haemopis caeca; C. Nematoda. Chronogasteridae: Chronogaster troglodytes; D. Gastropoda. Moitessieridae: Heleobia dobrogica; E. Ostracoda. Candonidae: Cryptocandona vavrai, F. Phreatocandona motasi, G. Limnocytheridae: Kovalevskiella phreaticola; H. Copepoda. Cyclopidae: Acanthocyclops reductus propinquus, I. Harpacticoidae: Moraria poppei (After Damian-Georgescu, 1970).

NEMATODA

(ALTHERR, 1971; COMAN, 1961, 1969; EDER, 1994; POINAR & SARBU, 1994; POPOVICI, 2011)

Chronogasteridae: Chronogaster troglodytes described from Peștera Movile is the first described stygobiont Nematoda of Romania (Fig. 4C). It lives in the floating fungal matt and the thermo-mineral sulfurous water. The population is composed of hermaphrodite females that feed on bacteria associated with fungi. Two other new species belonging to Protorhabditis and Panagrolaimus were found in the same habitat.

Other nematodes, frequent in caves, are stygophiles also found in soils, detritus, guano, corpses, and surface freshwaters. For example, Anatonchidae – Anatonchus filicaudatus from the interstitial of Vadu Crișului and Vântului caves rivers and surface rivers (Mișid), Trypiloididae – Tripyla glomerans, and Trischistomatidae with Trischistoma monohystera.

Fig. 5. Trombodiformes. Aturidae: A. Axonopsis inferorum, male, ventral view, modified after Motas & Tanasachi (1947), B. Erebaxonopsis brevis male, ventral view; C. Hungarohydracaridae: Hungarohydracarus subterraneaus, female, ventral view; D. Stygotrombiidae: Charonotrombium racovitzai, ventral view; E. Aturidae: Albanoxa lundbladi, male, ventral view; F. Hygrobatidae: Atractides orghidani, male, ventral view.

TROMBIDIFORMES (HYDRACARI)

(CIMPEAN & PAVELESCU, 2002-2003; MOTAS, 1962; MOTAS & TANASACHI, 1962a, b; MOTAS et al., 1939, 1946, 1947, 1958, 1962a, b; SCHWOERBEL in BOTOSANEANU, 1986; SCHWARZ et al., 1998, in JUBERTHIE & DECU 1994-2001; TANASACHI & ORGHIDAN, 1955)

Seventy-four species of hydracari belonging to 16 families are inventoried from caves, phreatic habitats, and the hyporheic zone, where they are very abundant.

All the hydrachnells and four species of Halacaridae live in the hyporheic zone, except Phreatohydracarus mosticus and maybe Mideopsis fonticola found in the of Hunedoara county. The Stygotrombiidae inhabit different subterranean habitats. Some Trombidiformes species can be mentioned:

Anisitsiellidae: Bandakia corsica, hyporheic;

Arrenuridae: Arrenurus haplurus, A. lundbladianus, microphthalmic, hyporheic of the Argeș and Mureș rivers;

Athienemanniidae, with three species: Phreatohydracarus mosticus, reduced eyes, phreatobiont in wells of Hunedoara; Stygohydracarus subterraneus; S. troglobius;

Aturidae: Albanoxa lundbladi (Fig. 5E); A. minuta; Axonopsis inferorum (Fig. 5A); A. vietsi; Aturus fontinalis; A. karamani; A. paucisetus; Erebaxonopsis brevis (Fig. 5B), hyporheic and springs; Frontipodopsis reticulatifrons, with a very elongated body; seven species of Kongsbergia, of which: K. bombifrons, endemic in the interstitial of the Apuseni Mts.; K. d-motasi, rivers in Banat and Transylvania;

Stygothrombiidae: two species, of which Charonothrombium racovitzai (Fig. 5D), endemic, depigmented, eyeless, elongated body, hyporheic of the Crișul Repede river;

Mideopsidae: three species of Mideopsis, of which M. fonticola, eyeless;

Momoniidae: Stygomomonia latipes, microphthalmic, with a quite wide distribution;

Halacaridae: Lobohalacarus weberi quadriporus, Parasoldanellonyx typhlops, and two species of eyeless Soldanellonyx;

Limnesiidae: Kawamuracarus chappuisi, the hyporheic zone in Bihor Mts.;

Bogatiidae: Bogatia maxilaris, discovered in the interstitial of the Olt and Bogata rivers;

Chappuisididae: two species of Chappuisides of which C. hungaricus, microphthalmic, swim setae absent;

Feltriidae: three species of Feltria of which F. pectinigera, interstitial of Iada stream;

Hungarohydracaridae: two species: Balcanohydracarus alveolatus, hyporheic in Banat; Hungarohydracarus subterraneus (Fig. 5C), microphthalmic, swim setae absent;

Hydryphantidae: Tartarothyas fonticola, reduced eyes, interstitial in Banat and Transylvania; T. micrommata; Wandesia stygophila; eyeless, interstitial in Prahova and Hațeg; W. thori;

Hygrobatidae: 16 species and among them: Atractides elegans; A. latipalpis; A. orghidani (Fig. 5F); A. sokolovi; the three last species are endemic and were sampled in the interstitial of rivers in the Southern Carpathians.

Torrenticolidae: six species of Torenticola and among them T. jeanneli, depigmented and flattened.

Cladocera

(DUMONT & NEGREA, 1996; NEGREA, 1994b, 2003b)

Macrothricidae: Macrothrix bialatus eyed species known only from the type-locality, the hyporheic zone of the Bogata River. It is probably a stygobiont.

Chydoridae: Seven species, mostly belonging to Alona, all stygophiles.

Copepoda

(BOTOSANEANU & DAMIAN, 1955; CHAPPUIS, 1925; DAMIAN-GEORGESCU, 1963, 1970; FIERS & MOLDOVAN, 2008; IEPURE, 1998-1999, 2000, 2001; IEPURE & DEFAYE, 2008; IEPURE & OARGA, 2011; JUBERTHIE & DECU, 1968; LESCHER-MOUTOUÉ, ROUCH, in BOTOSANEANU, 1986; MELEG et al., 2009, 2011a, b; MOLDOVAN et al., 2007; PLESA, 1958, 1967, 1969b, 1987, 1989; PLESA & BULZILA, 2000; PLESA et al., 1964, 1996 ; ZINCENCO, 1971)

Copepods are among the most diverse groups of crustaceans in Romanian groundwater that colonized all types of subterranean habitats, i.e. caves, springs, the hyporheic zone of rivers. They are represented by 106 species and subspecies, of which 60 taxa belong to Harpacticoida and 46 to Cyclopoida. Almost half of copepods species are endemics.

Cyclopoida Cyclopidae

Among the stygobiontic cyclopoids the following species can be mentioned: Acanthocyclops is the most specious cyclopoid genus and includes ten species and subspecies, with eight endemics: A. balcanicus bisaetosus, caves, Apuseni Mts.; A. kieferi, hyporheic, Apuseni Mts.; A. plesai, Fața Răchiții Cave, Apuseni Mts.; A. reductus reductus caves and phreatic in Transylvania; A. reductus propinquus caves in Apuseni Mts., reproductive activity with a maximum at the end of autumn and a minimum during summer (Pleșa, 1969a; Fig. 4H); A. reductus Peștera Măgura, Apuseni Mts.; A. stygius deminutus, caves and phreatic, endemic for the Apuseni Mts.; A. transylvanicus Ungurului Cave, Transylvania; – Acanthocyclops stygius stygius, caves and phreatic, Transylvania; – A. milotai, caves in Banat Mts.; – A. phreaticus, wells in Babadag, Dobrogea; Diacyclops with: D. clandestinus, caves and hyporheic zone of rivers in Transylvania, the Someșan Plateau, and Banat; D. hypnicola, the hyporheic zone of rivers in Transylvania and Gura Ponicovei Cave (Banat); Eucyclops: E. graeteri, caves, and springs in Apuseni Mts.; E. graeteri damianae, springs, Banat; E. g. intermedius, springs, Transylvania Plateau, Banat; E. g. scythicus, endemic species, Peștera Movile, Dobrogea; Graeteriella: G. unisetigera, caves in Apuseni Mts.; Speocyclops: S. lindbergi, Peștera Hoților in Băile Herculane, Banat; S. troglodytes, caves in Apuseni Mts.

Harpacticoida

Ameiridae: Three stygobiontic taxa: Nitocrella calcaripes, tap water in București; N. hirta, wide distribution in Balkans; N. h. bucarestiensis, tap water in București.

Canthocamptidae: Bryocamptus unisaetosus, numerous caves in Romania and tap water in Cluj; B. spinulosus, mosses, and springs in mountain areas; Ceuthonectes serbicus, caves, and springs, wide distribution in Europe; Elaphoidella with nine stygobionts and one possible stygobiont: E. damianae, tap water in Bucuresti; E. elaphoides, wide distribution in Europe, probably stygobiont; E. gracilis serrulata, tap water in București; E. juxtaputealis, tap water in București; E. phreatica, caves in Banat, Bihor Mts., tap water in Cluj, phreatic of Dobrogea; E. pseudophreatica, caves in Banat; E. putealis, tap water in Cluj; E. romanica, Buhui and Gaura Porcariului caves, Banat; E. simplex, wells and hyporheic zone of the Criș basin; E. winkleri, Peștera de Sus de la Corbești, Bihor Mts; Maraenobiotus bruccei carpathicus, caves, wide distribution in Europe; Moraria poppei, stygophile, wide distribution in Europe (Fig. 4I); Spelaeocamptus spelaeus, numerous caves in the Apuseni Mts, spring in the Criș basin, tap water in Cluj.

Chappuisiidae: Chappuisius inopinus, tap water in București.

Parastenocarididae: Parastenocaris includes 12 species, all stygobionts: P. aquaeductus, tap water in Cluj and interstitial; P. banaticus, Peștera Hoților in Băile Herculane, Banat; P. chappuisi, Dobrogea, hyporheic zone; P. clujensis, tap water in Cluj; P. jeanneli, tap water in București; P. karamani brevicauda, tap water in București; P. latisetosus, tap water in București; P. minuta, tap water in Cluj; P. nana, phreatic of Dobrogea, tap water in Cluj; P. pannonica, Dobrogea and tap water in București and Constanta; P. phreatica, wide distribution in Romania; P. subterranea, tap water in București; P. uncinatus, tap water in București.

Ostracoda

(DANIELOPOL, 1965, 1978, 1982, 1980a, 1982; Danielopol & CVETKOV, 1979; DANIELOPOL & HARTMANN-SCHRÖDER in BOTOSANEANU, 1986; IEPURE, 2007; IEPURE et al., 2007, 2008; PLESA et al., 1996)

Fourteen representatives of Candonidae, one Cyprididae, one Limnocytheridae, and one Darwinulidae are known from Romania. They were collected in caves, wells, interstitial, and springs in several places in the country. The valves of these species are transparent, and the eyes are lacking.

Candonidae: Cryptocandona kieferi with wide distribution in the Danube basin, was found in Meziad Cave (Transylvania) and well at Lumina (Dobrogea); C. matris in wells and interstitial, a well in Lumina (Dobrogea); C. vavrai Kaufmann, 1900 (Fig. 4E); C. racovitzai in a well in Șuncuiuș (Apuseni Mts.); Fabaeformiscandona breuili; F. brisiaca; Mixtacandona botosaneanui, Zamonița Cave and wells in Banat; M. chappuisi, wells and interstitial of the Criș and Drăgan basins, Transylvania; M. pietrosanii, wells in Petroșani near Giurgiu, and at Lumina near Constanța, Dobrogea; M. loffleri, wells in the SW of the Danube at Virciorova, Moldova Noua and on the former Ada Kaleh Island (Danube River); M. tabacarui, wells near Mangalia, Dobrogea; Nannocandona afinis fabra, interstitial; Phreatocandona motasi, wells in the Olt valley (Fig. 4F); Typhlocypris eremita, wide distribution; – T. serbani from wells in Southern Romania; T. danubialis, well in the former Ada Kaleh Island; T. zschokkei, wells and interstitial.

Cyprididae: Cavernocypris subterranea, in Huda lui Papară Cave (Transylvania), and spring in Moldova basin (northern Romania).

Limnocytheridae: Kovalevskiella phreaticola (Fig. 4G), hyporheic and phreatic in Pãdurea Craiului Mts. and Vadu Crișului Cave, in Transylvania.

Darwinulidae: Vestalenula boteai, hyporheic zone in Banat.

BATHYNELLACEA

(BOTOSANEANU, 1959, 1986 (ed.); DANCAU & SERBAN, 1963; SCHMINKE in BOTOSANEANU, 1986; BOTOSANEANU & DAMIAN, 1955; PLESA, 1969a; SERBAN, 1965, 1966, 1971, 1972, 1975, 1976, 1989; CAMACHO, 2006)

The groundwater syncarids belong to two families, with stygobionts, eyeless and depigmented taxa.

Bathynellidae: Bathynella has seven endemic species: B. boteai, B. paranatans and B. vaducrisensis from interstitial of the Crișul Repede basin, Transylvania; B. motrensis, interstitial of the Motru River, Cloșani, Oltenia; B. orghidani, hyporheic of the Cheia River; B. plesai, Peștera Cloșani, Oltenia; B. scythica, tap water București, Constanța and Peștera Isverna, Oltenia; Antrobathynella, with A. stammeri, phreatic, interstitial, widespread in Europe (Fig. 6A).

Parabathynellidae: represented by Parabathynella with two species: P. motasi, endemic for Peștera Tismana; P. stygia, caves, springs, phreatic, interstitial.

Amphipoda

(BRAD et al., 2015; CARAUSU, DOBREANU & MANOLACHE, 1955; DANCAU, 1963, 1964, 1970, 1971, 1972; DANCAU & E. SERBAN, 1963; DOBREANU & MANOLACHE, 1936, 1942; G. KARAMAN & RUFFO, 1986; KARAMAN & SARBU, 1993, 1995)

Amphipods are numerous in the groundwaters of Romania, with more than 40 reported taxa.

Bogidiellidae: These groundwater amphipods are represented in Romania by two stygophiles: Bogidiella albertimagni, hyporheic, springs in the Cerna Valley; B. skopljensis, hyporheic, Bihor Mts. (Fig. 7C).

Crangonyctidae: Synurella coeca, endemic stygophile, also found in the groundwater of the northern Eastern Carpathians and Cluj region; S. intermedia, sampled in the phreatic in the north Eastern Carpathians.

Fig. 6. Bathynellacea. A. Antrobathynellla stammeri (drawing by E. Șerban). Isopoda terrestria. B. Haplophthalmus tismanicus, C. Armadillidium tabacarui, D. Trachelipus troglobius, E. Trichoniscus vandeli, F. Mesoniscus graniger graniger (drawing by M. Gruia).

Fig. 7. Amphipoda. Niphargidae: A. Niphargus casparyi (after Karaman, 1982), B. Niphargus valachicus; C. Bogidiellidae: Bogidiella skopljensis.

Niphargidae: They are represented by 47 species of Niphargus and two species of Pontoniphargus: Niphargus affinis, Peștera de sub Față de la Roșcani, in Poiana Ruscă Mountains; N. alutensis, the smallest of the genus, hyporheic of the Olt River; N. andropus, caves in Bihor, Pădurea Craiului and Șureanu Mts; N. bajuvaricus, caves, wells, hyporheic in the Vâlcea region; N. baloghi, springs in the region of Baia Mare; N. banaticus, wells in the regions of Timișoara, Brașov, Ploiești, București; N. bihorensis, caves in Pădurea Craiului Mts.; N. carpathicus, described from the regions of Ploiești and Suceava; N. casparyi, sampled in wells along Bela Reca river at Mehadia (Fig. 7A); N. cavernicolus, present in Peștera Ialomiței, Bucegi Mountains; N. dacicus, interstitial of the Bărbat River; N. dalmatinus, present in springs close to Baia Mare (Băile Usturoi); N. dancaui, wells in Mangalia and Peștera Movile; N. decui, wells south of Mangalia, Dobrogea; N. dobrogicus, wells near Schitu, 2 Mai, South Dobrogea; N. effosus, hyporheic in the regions of Cluj and Oradea; N. elegans, present in springs in the region of Baia Mare; N. foreli, one mention in Peștera de la Ponor; N. gallicus, wells in Dobrogea and Oltenia; N. hebereri, observed in a well near the Black Sea coast; N. hrabei, regions of București, Galați and southern Dobrogea; N. incertus, hyporheic of the Plai and Sighiștel valleys, Bihor Mts. and in wells and hyporheic along Crișul Repede river, Pădurea Craiului Mts.; N. inopinatus, wells and hyporheic alon Someșul Mic river, Gilău Mts.; N. jovanovici, wells at Clinceanca, South Prahova; N. jurinaci, wells and caves in the depression of Hațeg, Hunedoara, streams in southern Romania; N. korosensis, hyporheic of the Crișul Repede River, Oradea region; N. laticaudatus, caves, Bihor and Pădurea Craiului Mts.; N. meridionalis, wells in Dobrogea; N. moldavicus, hyporheic of Suceava and Bârlad regions; N. molnari, streams in Sinaia region; N. multipenatus, Vârciorova; N. pannonicus, Peștera Gaura cu Muscă; N. parapupetta, Berzasca, Plavișevița; N. petrosani, wells at Petroșani, near the Danube; N. phreaticolus, hyporheic in Bacău, Cluj, Pitești, Hunedoara and Baia Mare regions; N. ponoricus, wells in the plain of Hațeg, Hunedoara; N. pseudokochianus, Peștera de sub Față de la Roșcani, in Poiana Ruscă Mts.; – N. puteanus, Sibiu; N. romanicus, wells in Făget-Tirnave, Eastern Romania and other habitats in Romania, including the hyporheic zone, caves in Trascău Mts., hyporheic of Arieș river, wells along Someș river; N. serbicus, Clinceanca; N. somesensis, hyporheic zone near Cluj (Someșul Rece River); N. stygius, Sibiu, Stângăceaua, Strehaia, Broșteni; N. stygocharis, wells and hyporheic of the Crișul Repede river; N tenuicaudatus, caves and wells in Bihor and Pădurea Craiului Mts.; N. transsylvanicus, known from alpine lakes in Retezat Mts., caves, wells and hyporheic in Maramureș and in Bihor, Muntele Mare, Pădurea Craiului and Trascău Mts.; N. valachicus, Baia Mare, Galați, București (Fig. 7B); N. variabilis, caves in the regions of Hațeg, Craiova and Oradea; Another genus is Pontoniphargus, with P. racovitzai, endemic in Mangalia region, known from Peștera Movile and wells in Mangalia and P. ruffoi, described from a small sulfurous spring near the village Hagieni, 10 km from Mangalia and which does not seem connected to the aquifer of Movile.

Fig. 8. Isopoda aquatica. Asellidae: A. Asellus aquaticus infernus, B. Proasellus baznosanui; C. Microcerberidae: Microcerberus plesai (Drawing by C. Pleșa).

Isopoda

(M. & R. CODREANU, in MOTAS et al., 1962a, 1962b; HENRY et al. in BOTOSANEANU, 1986; NEGOESCU, 1989; PLESA, 1969a, 1996; SERBAN, 1964; TURK, SKET & SARBU, 1996; TABACARU, 2011; TURK & BLEJEC, 1998)

The ten species found in different subterranean environments belong to Asellidae, Microparasellidae, and Microcerberidae.

Asellidae: Proasellus is represented by three species: P. basnosanui (Fig. 8B), wells, springs, hyporheic; P. danubialis; P. elegans, hyporheic and wells, Băile Herculane; Stygasellus phreaticus, hyporheic of the Crișul Repede River.

There is a stygobitic population of Asellus aquaticus infernus (Fig. 8A) in the groundwater of southern Dobrogea, and the sulfurous water of Peștera Movile. Several aquatic ecotones of the Mangalia area are inhabited by a mixture of epigean and hypogean Asellus.

Lepidocharontidae: Microcharon is well represented with four stygobionts in phreatic and interstitial habitats, M. acherontis, phreatic of the Criș basin in Transylvania; M. motasi, interstitial of Poneasca and Nera rivers (Banat); M. oltenicus, interstitial of Motru Mare River in Oltenia; M. orghidani, wells in the Ponor, Hațeg region.

Microcerberidae: Microcerberus plesai (Fig. 8C), Tertiary relict discovered in the interstitial of the subterranean stream of Peștera de la Vadu-Crișului in the Pădurea Craiului Mts. This stygobiont is adapted to interstitial and has the pereiopods 1 to 5 directed anteriorly to move forward, and the pereiopods 6 and 7 directed posteriorly to move backward. It reproduces all year round (Pleșa, 1969, 1996).

DECAPODA

(BACESCU, 1967; DECU, 2011; HOBBS, 1998, in JUBERTHIE & DECU, 1994-2001)

Astacidae: A single decapod, Austropotamobius torrentium, was found in rivers of Romania. It is a stygophile and cryoresistant, known from several caves in Banat and Apuseni Mts.

HEMIPTERA

(DECU et al., 1994a; POLHEMUS et al., 1994)

Nepidae: Nepa anophtalma (see Fig. 31A in Sub-chapter V.1), described from Peștera Movile. The only stygobiont heteropteran with reduced eyes with specks of pigments and reduced semi-elytra, the optical nerves are present, the body is yellowish-brown.

HAPLODRILI (Archiannelida)

(PLESA, 1977)

Nerillidae: The single species of the genus, relict of Tertiary seas, Troglochaetus beranecki (Fig. 4A), was sampled in subterranean rivers of Bihor and Pădurea Craiului Mts. in Transylvania, and the interstitial of several rivers of Southern and Eastern Carpathians and Moldova.

Hirudinea

(ManoLEli, 1994; ManoLEli, KLEMM & SARBU, 1998)

Haemopidae: a new eyeless species, Haemopis caeca, with depigmented tegument (colored in red by a pigment probably with hemoglobin), was discovered in Peștera Movile in Dobrogea (Fig. 4B). It was also found in a sulfurous spring 4 km north of the cave. In Movile, it feeds on the oligochaetes Allolobophora. Before this discovery, Haemopis had eight Nearctic species, and one Palearctic, H. sanguisuga.

OLIgochaeta

(BOTEA, 1968, 1970a, b, 1973a, b, 1977; BOTEA & BOTOSANEANU, 1966; BOTEA & PLESA, 1968; CIMPEAN & PAVELESCU, 2002-2003; JUGET & DUMNICKA, 1986; MELEG et al., 2009; POP, in GODEANU (ed.), 2011)

Haplotaxidae: among the stygobiont species found until the present, Delaya bureschi is the most important. The species is known from few caves in Banat, where it lives in the silty bottom of the water basins; Haplotaxis gordioides is Holarctic and stygophile.

Lumbriculidae: it is a typical aquatic family. The two stygobionts are Lamprodrilus michaelseni carpaticus, from springs and Trichodrilus pragaensis, of the interstitial in the Someș basin.

Gastropoda

(BERNASCONI, 1991; BOLE & VELKOVRH in BOTOSANEANU, 1986; GROSSU & NEGREA, 1968, 1989, LOOSJES & NEGREA, 1968; NEGREA, 1974, 1979, 1994; NEGREA & RIEDEL, 1968)

Cochliopidae: Semisalsa dobrogica depigmented, eyeless from Peștera Movile (Fig. 4D). It looks for food on the surface or in the sediments under the mesothermal sulfurous water.

Moitessieriidae: three stygobionts Paladilhiopsis carpathica, Bythiospeum leruthi, and B. transsylvanicum were sampled in caves of the Apuseni Mts.

NEMERTEA

Motaș & E. Șerban in 1965 and Botosaneanu in 1979 sampled a large number of eyeless and depigmented Nemertina flushed from the karstic zone by the storm waters. Unfortunately, the material remained undetermined. According to Botosaneanu, it can be Prostoma hercegovinensis.

Tricladida

(Beauchamp de, 1929, 1940; CODREANU & BALCESCU, 1967a, 1967b, 1968, 1970; GOURBAULT, 1971 and in BOTOSANEANU, 1986)

The tricladids have a regional distribution and marked endemism. 22 species, almost all endemic for Romania, were described.

Dendrocoelidae: Dendrocoelum is represented by 21 blind and depigmented species, except D. (Polycladodes) album of springs (South Dobrogea), depigmented but with normal eyes; D brachyphallus, caves in Apuseni Mts.; D. lipophallus, Iara spring (Turda); D. alexandrinae, river spring in Buzău, Urlătoarea resurgence; D. atricostrictum, Reșița, Carașova, springs; D, banaticum, Oravița spring, Brădulețul de Jos; D. chappuisi, wells, Babadag (Dobrogea); D. clujanum, wells, Cluj; D. debeauchampianum, Orșova spring; D. obstinatum, Peștera Movile and wells in the area; D. orghidani, Duțu Cave, Banat; D. polymorphum, wells, Central and Meridional Dobrogea; D. racovitzai, Lazului Cave, Oltenia; D. sophaerophallus, caves, Hunedoara; D. stenophallus, caves, Mehedinți and Vâlcan Mts; D. tismanae, Monastery Tismana Cave; D. botosaneanui, caves, Banat; D. geticum, phreatic near București; D. romanodanubiale, Danube Gorges, ponto-caspian relict; D. affine, hyporheic, Argeș river; D. album, springs, South Dobrogea; D. voinovi, springs, Southern Carpathians.

Planariidae: Atrioplanaria racovitzai was sampled in caves (Apuseni Mts.), springs, and the phreatic habitat. The species is depigmented, with small eyes.

III. 2 – Terrestrial subterranean fauna

The number of specific and probable troglobionts is more than 300, and their degree of endemism is more pronounced than that of stygobionts (Table I and Fig. 3). There are 90% troglobionts compared to 60% stygobionts from all terrestrial and aquatic taxa, respectively. About 80% of troglobionts were found in only 1 to 3 caves.

The groups with troglobitic representatives are presented in Table III together with the significant troglophiles and subtroglophiles (sensu Pavan-Ruffo, see in Sket, 2008).

Table III. Troglobiont taxa, specifics and possible, inhabiting caves and MSS; ●● = troglobiont inhabiting both caves and MSS; ?● = probable troglobiont from caves; ?● possible troglobiont from MSS.

Phylum arthropoda

subphylum chelicerata

class arachnida

order Pseudoscorpiones

Family Chthoniidae

?●Chthonius decui Georgescu & Capuse, 1994

●●Chthonius monicae Boghean, 1989

?●Chthonius scyticus Georgescu & Capuse, 1994

Chthonius vandeli Dumitresco et Orghidan, 1964

●Mundochthonius decui Dumitrescu & Orghidan, 1970

Family Neobisiidae

?● Acanthocreagris callaticola Dumitrescu & Orghidan, 1964

Neobisium beieri Dumitrescu & Orghidan, 1970

?● Neobisium biharicum Beier, 1939

?● Neobisium blothroides (Tömösvary, 1882)

Neobisium brevipes (J. Frivaldszky, 1865)

?● Neobisium brevipes montanum Beier, 1939

Neobisium closanicus Dumitrescu & Orghidan, 1970

Neobisium leruthi Beier, 1939

Neobisium maxbeieri Dumitrescu & Orghidan, 1970

Neobisium minutum (Tömösvary, 1882)

?●Roncus babadochiae Ćurčić & Dimitrijevic, 2005

Roncus ciobanmos Ćurčić, Poinar & Sarbu, 1993

?● Roncus craciun Ćurčić & Dimitrijevic, 2005

?● Roncus decui Ćurčić & Dimitrijevic, 2005

Roncus dragobete Ćurčić, Poinar & Sarbu, 1993

●?● Roncus zeumos Ćurčić & Dimitrijevic, 2005

order Palpigradi

Family Eukoeneniidae

Eukoenenia condei Orghidan, Georgescu & Sarbu, 1982

Eukoenenia margaretae Orghidan, Georgescu & Sarbu, 1982

Eukoenenia cf. austriaca Hansen, 1905

Family Rhagidiidae

Poecilophysis spelaea (Wankel, 1861)

?●Rhagidia longipes Trägardh, 1912

supraorder parasitiformes

order mesostigmata

Family Uropodidae

Chiropturopoda cavernicola Hutzu, 1997

order trombidiformes

Family Labidostommatidae

?●Labistoma motasi Iavorschi, 1992

order sarcoptiformes

suborder oribatida

Family Hermanniellidae

?●Hermanniella multipora Sitnikova, 1973

Family Lohmanniidae

?●Papillacarus ondriasi Mahunka, 1974

Family Oppiidae

●?● Lasiobelba pontica Vasiliu & Ivan, 2011

Multioppia callatisiana Vasiliu & Ivan, 2011

order Araneae

Family Hahniidae

Hahnia caeca (Georgescu & Sarbu, 1992)

Family Linyphiidae

Centromerus chappuisi Fage, 1931

Centromerus dacicus Dumitrescu & Georgescu, 1980

?●Leptyphantes centromeroides carpaticus Dumitrescu & Georgescu, 1970

Leptyphantes constantinescui Georgescu, 1989

Troglohyphantes herculanus (Kulczynski, 1894)

?●Troglohyphantes jeanneli Dumitrescu & Georgescu, 1970

Troglohyphantes orghidani Dumitrescu & Georgescu, 1977

?●Troglohyphantes racovitzai Dumitrescu, 1970

Family Nesticidae

Kryptonesticus georgescuae Nae, Sarbu & Weiss, 2018

Carpathonesticus spelaeus (Szombathy, 1917)

Family Liocranidae

●●Agraecina cristiani (Georgescu, 1989)

subphylum myriapoda

class Chilopoda

order lithobiomorpha

Family Lithobiidae

?● Harpolithobius dentatus Matic, 1957

Harpolithobius oltenicus Negrea, 1962

Lithobius dacicus (Matic, 1959)

Lithobius decapolitus Matic, Negrea & Prunescu, 1962

?● Monotarsobius spelaeus (Negrea, 1963)

class Diplopoda

order glomerida

Family Glomeridae

Trachysphaera biharica (Ceuca, 1961)

??●Trachysphaera costata (Waga, 1857)

Trachysphaera dobrogica (Tabacaru, 1960)

Trachysphaera jonescui (Brölemann, 1914)

Trachysphaera jonescui isvernae Tabacaru, 1989

Trachysphaera jonescui tismanae Tabacaru, 1989

Trachysphaera orghidani (Tabacaru, 1958)

Trachysphaera racovitzai (Tabacaru, 1960)

order julida

Family Julidae

●●Archiboreoiulus n. sp.

Apfelbeckiella dobrogica Tabacaru, 1966

Banatoiulius troglobius Tabacaru, 1985

Lamellotyphlus mehedintzensis (Tabacaru, 1976)

Typhloiulus (Spelaeoblaniulus) serbani Ceuca, 1956

Typhloiulus (S.) serbani unilineatus (Ceuca, 1961)

order chordeumatida

Family Anthroleucosomatidae

Anthroleucosoma banaticum Verhoeff, 1899

Anthroleucosoma (Heteranthroleucosoma) spelaea Ceuca, 1964

Banatosoma ocellatus (Tabacaru, 1967)

Dacosoma motasi Tabacaru, 1967

Family Haaseidae

●●Haasea hungaricum orientale (Tabacaru, 1965)

Hylebainosoma cavernicola (Ceuca, 1967)

order polydesmida

Family Polydesmidae

?● Polydesmus microcomplanatus Negrea & Tabacaru, 1958

Polydesmus (Spanobrachium) oltenicus Negrea & Tabacaru, 1958

Trachysphaera spelaea (Tabacaru, 1960)

Family Trichopolydesmidae

Banatodesmus jeanneli (Tabacaru, 1980)

Napocodesmus florentzae Tabacaru, 1975

Trichopolydesmus eremitis Verhoeff, 1898

subphylum crustacea

class malacostraca

order Isopoda

suborder oniscidea

Family Armadillidiidae

●Armadillidium tabacarui Gruia, Iavorschi & Sarbu, 1998

Family Mesoniscidae

●● Mesoniscus graniger graniger (Frivaldszky, 1865)

●●Mesoniscus graniger dragani Giurginca, 2001

Family Philosciidae

?●Chaetophiloscia sicula Verhoeff, 1908

Family Scleropactidae

●Kithironiscus dobrogicus Tabacaru & Giurginca, 2003

Family Trachelipodidae

Trachelipus troglobius Tabacaru & Boghean, 1989

Family Trichoniscidae

Banatoniscus karbani Tabacaru, 1991

Biharoniscus fericeus Tabacaru, 1973

Biharoniscus racovitzai Tabacaru, 1963

Caucasonethes vandeli Tabacaru, 1993

●●Caucasonethes n. sp.

Haplophthalmus caecus Radu, Radu & Cadariu, 1955

Haplophthalmus movilae Gruia & Giurginca, 1998

Haplophthalmus tismanicus Tabacaru, 1970

Thaumatoniscellus orghidani Tabacaru, 1973

●?●Trichoniscus inferus Verhoeff, 1908

Trichoniscus racovitzai Tabacaru, 1994

Trichoniscus tuberculatus Tabacaru, 1996

Trichoniscus vandeli Tabacaru, 1996

subphylum hexapoda

class Collembola

order poduromorpha

Family Hypogastruridae

Acherontides spelaeus (Ionescu, 1922)

Acherontides tanasachiae (Gruia, 1969)

Acherontiella cassagnaui (Thibaud, 1963)

Mesogastrura ojcoviensis (Stach, 1919)

Family Onychiuridae

Argonychiurus bogheani (Gruia, 1989)

Deharvengiurus orghidani (Gruia, 1967)

Deuteraphorura banatica (Gruia, 1965)

● Deuteraphorura closanica (Gruia, 1965)

Deuteraphorura meziadica (Gruia, 1972)

●● Deuteraphorura romanica (Gruia, 1965)

Deuteraphorura traiani Gruia & Popa, 2004-2005

Onychiurus boldorii (Denis, 1938)

Onychiurus movilae Gruia, 1989

Onychiuroides multisetis (Gruia, 1971)

Onychiuroides postumicus (Bonet, 1931)

Orthonychiurus ancae (Gruia, 1971)

Protaphorura borzica (Gruia, 1999)

order entomobryomorpha

Family Entomobryidae

Heteromurus noseki Mutt & Stomp, 1980

●Pseudosinella problematica Gisin & da Gama, 1971

Pseudosinella racovitzai Gisin & Gama, 1971

Family Oncopoduridae

Oncopodura pegyi Gruia, 1994

●?●Oncopodura vioreli Gruia, 1989

Family Tomoceridae

Plutomurus unidentatus (Börner, 1932)

Family Neelidae

Megalothorax draco Papáč & Kováč, 2013

class Diplura

Family Campodeidae

●● Campodea (Dicampa) neuherzi Condé, 1996

?●Campodea spelaea Ionescu, 1955

?●Plusiocampa elongata Ionescu, 1955

●● Plusiocampa euxina Condé, 1996

●● Plusiocampa isterina Condé, 1996

class insecta

order Coleoptera

superorder adephaga

Family Carabidae Trechinae

?● Chaetoduvalius saetosus amblygonus Jeannel, 1926

?●Duvaliopsis transylvanicus Csiki, 1902

Duvalius (Duvalidius) gr. merkli:

?●Duvalius (Duvalidius) gaali Mallasz, 1928

?● Duvalius poporogui Decu, 1973

Duvalius (Duvalidius) gr. procerus:

?● Duvalius delamarei Decu, 1967

?● Duvalius deubelianus Csiki, 1903

?● Duvalius onaci Moldovan, 1993

Duvalius (Duvaliotes) gr. budai:

Duvalius budai Kenderesy, 1879

Duvalius budai baznosanui Mallasz, 1928

Duvalius budai lepsii Mallasz, 1928

Duvalius chicioarae Jeannel, 1930

Duvalius coiffaiti Decu,1967

?●Duvalius hegedüsi J. Frivaldszky, 1887

?●Duvalius hegedüsi closanensis Jeannel, 1928

●● Duvalius hegedüsi jonescui Jeannel, 1919

Duvalius herculis J. Frivaldszky, 1887

Duvalius milleri J. Frivaldszky, 1862

Duvalius nannus Jeannel, 1931

Duvalius oltenicus Jeannel, 1919

Duvalius spiessi Jeannel & Mallasz, 1928

Duvalius spiessi decoui Casale & Laneyrie, 1982

Duvalius spinifer Jeannel, 1928

Duvalius spinifer tismanae Jeannel, 1928

Duvalius stilleri Reitter, 1913

Duvalius stilleri cernisorensis Decu,1962

Duvalius stilleri longulus Jeannel, 1928

Duvalius voitestii Jeannel, 1930

Duvalius (Duvaliotes) gr. redtenbacheri

?● Duvalius cognatus longicollis Jeannel, 1928

●?● Duvalius cognatus nuptialis Csiki, 1912

?● Duvalius cognatus reissi Mihók, 1911

?● Duvalius hickeri Knirsch, 1913

●Duvalius hickeri infernus Knirsch, 1913

?●Duvalius mallaszi Csiki, 1901

Duvalius mondibularis Jeannel, 1930

Duvalius paroecus csikii Mihok, 1912

Duvalius paroecus mocsaryi Csiki, 1913

Duvalius paroecus montisblidarii Jeannel, 1928

Duvalius paroecus montistartari Jeannel, 1928

Duvalius paroecus taxi Breit, 1911

Duvalius redtenbacheri E. & J. Frivaldszky, 1857

Duvalius redtenbacheri almosi Bokor, 1921

Duvalius redtenbacheri angustatus Jeannel, 1928

Duvalius redtenbacheri bihariensis Csiki, 1911

Duvalius redtenbacheri biroi Csiki, 1905

Duvalius redtenbacheri jeanneli Winkler, 1933

Duvalius redtenbacheri vidaretensis Bokor, 1921

?●Duvalius scarisoarae Knirsch, 1913

Duvalius sziladyi Csiki, 1904

Duvalius sziladyi anubris Bokor, 1913

Duvalius sziladyi dilatatus Bokor, 1913

Duvalius sziladyi pseudoparoecus Csiki, 1905

Family Carabidae Scaritinae

●● Clivina subterranea Decu, Nitzu & Juberthie, 1994

superorder polyphaga

Family Leiodidae Leptodirini

Phyletic line Sophrochaeta Reitter, 1885

Banatiola vandeli Decu, 1967

Closania orghidani Decou, 1959

Closania winkleri Jeannel, 1928

Closania winkleri elongata Jeannel, 1930

Closania winkleri planicollis Jeannel, 1930

?●Mehadiella paveli (J. Frivaldszky, 1880)

Sophrochaeta chappuisi Jeannel, 1930

Sophrochaeta dacica Ieniștea, 1955

●Sophrochaeta globosa Jeannel, 1928

●● Sophrochaeta insignis J. Fridvaldszky, 1880

●● Sophrochaeta insignis zoltani Csiki, 1913

Sophrochaeta jeanneli Decou, 1959

●Sophrochaeta kovalitzkyi Knirsch, 1913

Sophrochaeta longicornis Jeannel, 1931

●Sophrochaeta merkli J. Fridvaldszky, 1883

●Sophrochaeta mihoki Bokór, 1921

Sophrochaeta motasi Decou, 1959

Sophrochaeta obtusa Jeannel, 1931

Sophrochaeta oltenica Jeannel, 1930

Sophrochaeta oltenica densepunctata Jeannel, 1931

Sophrochaeta orghidani Ieniștea, 1955

Sophrochaeta racovitzai Decou, 1959

Sophrochaeta reitteri J. Fridvaldszky, 1884

Sophrochaeta reitteri mallaszi Bokor, 1928

Sophrochaeta reitteri parallela Jeannel, 1928

Sophrochaeta reitteri retezati Mallász, 1928

●Sophrochaeta rothi Jeannel, 1924

Sophrochaeta subaspera Jeannel, 1928

Sophrochaeta subaspera articolis Jeannel, 1931

Tismanella chappuisi Jeannel, 1928

Tismanella chappuisi arcuata Jeannel, 1930

Tismanella chappuisi convexipennis Jeannel, 1930

Tismanella chappuisi diversa Decou, 1961

Tismanella winkleriana Jeannel, 1931

Phyletic line Drimeotus Miller, 1856

Drimeotus (Bihorites) hickeri Knirsch, 1913

●Drimeotus (Bihorites) laevimarginatus Moczarski, 1912

Drimeotus (Bihorites) laevimarginatus acuticollis Jeannel, 1923

Drimeotus (Bihorites) laevimarginatus cryophilus Jeannel, 1923

Drimeotus (Bihorites) laevimarginatus csikii Mihók, 1912

Drimeotus (Bihorites) laevimarginatus dieneri Bokor, 1913

Drimeotus (Bihorites) laevimarginatus hungaricus Csiki, 1912

Drimeotus (Bihorites) laevimarginatus montistartari Jeannel, 1930

Drimeotus (Bihorites) laevimarginatus subterraneus Knirsch, 1913

●Drimeotus (Bihorites) winkleri Jeannel, 1923

Drimeotus (Bihorites) mihoki Csiki, 1912

Drimeotus (Bihorites) mihoki condoricus Knirsch, 1913

Drimeotus (Bihorites) mihoki corlatensis Jeannel, 1930

Drimeotus (Bihorites) mihoki rothi Jeannel, 1923

?●Drimeotus (Bihorites) mihoki similis Bokor, 1913

Drimeotus (Drimeotinus) attenuatus Bokor, 1913

Drimeotus (Drimeotinus) attenuatus montiscetii Jeannel, 1930

Drimeotus (Drimeotinus) ormayi Reitter, 1889

Drimeotus bokori Csiki, 1911

●Drimeotus breiti Jeannel, 1923

Drimeotus chyzeri Biró, 1897

Drimeotus chyzeri vicinus Jeannel, 1930

Drimeotus entzi Biró, 1897

Drimeotus entzi chappuisi Winkler, 1933

Drimeotus entzi gracilis Jeannel, 1930

Drimeotus horvathi Biró, 1897

Drimeotus kovacsi Miller, 1856

Drimeotus octaviani Moldovan, 1997

Drimeotus osoiensis Moldovan, 2000

Drimeotus plesai Moldovan, 2000

Drimeotus puscariui Jeannel, 1930

Drimeotus racovitzai Moldovan, 2000

Drimeotus thoracicus (Knirsch, 1913)

●●Drimeotus viehmanni (Ieniștea, 1955)

Drimeotus (Fericeus) kraatzi J. & E. Frivaldszky, 1857

Drimeotus (Trichopharis) blidarius Knirsch, 1925

Pholeuon (Mesopholeuon) comani Ieniștea, 1955

Pholeuon (Parapholeuon) angustiventre Racoviță, 1996

Pholeuon (Parapholeuon) gracile Frivaldszky, 1861

Pholeuon (Parapholeuon) gracile bokorianum Csiki, 1911

Pholeuon (Parapholeuon) gracile chappuisi Jeannel, 1930

Pholeuon (Parapholeuon) moczaryi Csiki, 1911

Pholeuon angusticolle Hampe, 1856

Pholeuon angusticolle alunensis Racoviță, 2009

Pholeuon angusticolle arpadi Csiki, 1912

Pholeuon angusticolle bihariense Csiki, 1912

Pholeuon angusticolle gujai Racoviță, 2009

Pholeuon angusticolle longicornis Racoviță, 2009

Pholeuon angusticolle mihoki Csiki, 1911

Pholeuon knirschi Breitt, 1911

Pholeuon knirschi albacensis Racoviță, 2005

Pholeuon knirschi brachynotos Jeannel, 1923

Pholeuon knirschi brevicule Jeannel, 1923

Pholeuon knirschi cetatensis Jeannel, 1930

Pholeuon knirschi christiani Racoviță, 2005

Pholeuon knirschi convexum Knirsch, 1913

Pholeuon knirschi dieneri Mihók, 1912

Pholeuon knirschi elemeri Csiki, 1912

Pholeuon knirschi glaciale Jeannel, 1923

Pholeuon knirschi gyleki Moczarski, 1912

Pholeuon knirschi intermittens Knirsch, 1913

Pholeuon knirschi onaci Racoviță, 2006

●●Pholeuon knirschi proserpinae Knirsch, 1913

Pholeuon knirschi serbani Ieniștea, 1955

Pholeuon knirschi vartopensis Racoviță, 2005

Pholeuon leptoderum E. & J. Frivaldszky, 1857

Pholeuon leptoderum attila Csiki, 1912

Pholeuon leptoderum biroi Csiki, 1912

Pholeuon leptoderum fagensis Racoviță, 2010

Pholeuon leptoderum hazayi J. Frivaldszky, 1884

Pholeuon leptoderum janitor Jeannel, 1923

Pholeuon leptoderum jeanneli Racoviță, 2010

Pholeuon leptoderum moldovani Racoviță, 2010

Pholeuon leptoderum nanus Racoviță, 2010

Pholeuon leptoderum problematicus Racoviță, 2010

Pholeuon leptoderum winkleri Jeannel, 1923

Protopholeuon hungaricum Csiki, 1904

Family Staphylinidae

Bryaxis dolosus Poggi & Sarbu, 2013

?● Bryaxis goliath (Jeannel, 1922)

Decumarellus sarbui Poggi, 1994

●● Medon dobrogicus Decu & Georgescu, 1994

?●Medon paradobrogicus Decu & Georgescu, 1994

Tychobythinus sulphydricus Poggi & Sarbu, 2013

order Diptera

suborder brachycera

Family Sphaeroceridae

?● Crumomyia hungarica Duda, 1938

Phylum mollusca

class Gastropoda

Family Argnidae

?● Agardhiella crasslabris (Grossu & Negrea, 1968)

?● Agardhiella densicostata (Grossu & Negrea, 1968)

?● Agardhiella grossui (Zilch, 1958)

?● Agardhiella nana (Grossu & Negrea, 1968)

?● Agardhiella parreyssi armata (Clessin, 1887)

Family Oxychilidae

?● Daudebardia (Libania) spelaea Grossu, 1960

Oligochaeta

(BOTEA, 1970a, 1970b, 1973a).

The caves in Romania do not have troglobionts in this group. There are only troglophiles, of which the Lumbricidae: Eiseniella tetraedra; Bimastos rubidus; Aporrectodea rosea; Octolasium lacteum. Enchytraeus buchholzi belongs to Enchytraeidae.

Gastropoda

(GROSSU & NEGREA, 1968; LOOSJES & NEGREA, 1968; NEGREA, 1974, 1979, 1994)

Orculidae: five endemic species belonging to Agardhiella, A. crassilabris; A. densicostata; A. grossui; A. nana; A. parreyssi armata, were found in caves of Oltenia and are probably troglobionts.

Daudebardiidae: of Oltenia also originates a sixth species, of Gastropoda, probably troglobiont, Daudebardia spelaea.

The most frequent are troglophile taxa: Laciniaria plicata with European distribution (Clausiliidae); Oxychilus glaber striarius and Troglovitrea argintarui, more frequently in caves than at surface (Zonitidae); Spelaeodiscus triaria, in the Carpathian Mountains (Spelaeodiscidae).

Isopoda

(GIURGINCA, 2000-2001a, b, 2009; GIURGINCA et al., 1998-1999, 2003, 2007, 2009, GRUIA & GIURGINCA, 1998; GRUNER & TABACARU, 1963; TABACARU, 1963a, 1969b, 1970b, 1973, 1991, 1993, 1994, 1996a, b; TABACARU & BOGHEAN, 1989; TABACARU et al., 2002-2003; TABACARU & DANIELOPOL, 1996; TABACARU & GIURGINCA, 2003)

Eighteen troglobitic species are known and belong to Armadillidiidae, Mesoniscidae, Sleropactidae, Trachelipodidae, and Trichoniscidae.

Armadillidiidae: Armadillidium tabacarui (Figs. 5C and 32A) with reduced eyes was described from Peștera Movile and the M.S.S. where is rather abundant.

Mesoniscidae: Mesoniscus graniger (Fig. 5F), blind and depigmented, is very common in caves of Banat and mostly in those of Apuseni Mts. The species and the subspecies M. g. dragani are frequent in M.S.S. M. g. dragani was found in caves of the Sighiștel valley and Peștera Urșilor de la Chișcău. M. graniger is the most frequent and abundant terrestrial isopod in caves and M.S.S. in Romania.

Trachelipodidae: Trachelipus troglobius is depigmented, with extremely reduced and depigmented eyes, described from Peștera Movile (Fig. 5D). This species is large and the only troglobiont representative of a widely distributed genus with more than 50 species. It is worth mentioning T. trilobatus, troglophile and thermophile, which inhabits Peștera lui Adam.

Trichoniscidae: all are endemic, blind, and depigmented. The troglobionts are: Banatoniscus karbani, cave in Banat; Biharoniscus fericeus, Ferice Cave, Apuseni Mts.; B. racovitzai, Cîmpeneasca Cave, Apuseni Mts.; Caucasonethes vandeli, Peștera Liliecilor de la Gura Dobrogei; Caucasonethes with a small species in Peștera Movile and its surrounding network of voids, a very ancient tribe of Laurasian origin, with the majority of taxa being troglobitic; Haplophthalmus caecus, Peștera din Valea Bibarțului, Ampoiu basin, Apuseni Mts.; H. movilae, described from Peștera Movile, where is present in high number, and from the cleithric surrounding network of voids; H. tismanicus, Peștera de la Mănăstirea Tismana, Oltenia (Fig. 5B); The caves and M.S.S. of the Cerna Valley and valleys in Oltenia are populated by three species of Trichoniscus, blind and depigmented: T. racovitzai, cave system of Topolnița and numerous caves in the Southern Carpathians (Vâlcan Mts., Mehedinți Mts., Mehedinți Plateau); T. vandeli (Fig. 5E), caves in the Vâlcan Mts.; T. tuberculatus, Peștera Cloșani; Trichoniscus inferus, a possible troglobiont, frequent in caves and M.S.S., between Cerna and Olt valleys, with a variable coloration and ocelli, three ovigerous females were found in the M.S.S, T. dancaui, Cloșani area caves, troglophilic species, with ocelli and slightly pigmented.

Scleropactidae: Kithironiscus dobrogicus, from the voids around Peștera Movile, the first species of the family known from Romania. The genus is troglobiont, anophthalmic and depigmented, and belongs to a family with Gondwanan distribution.

Philosciidae: Chaetophiloscia sicula, boreholes near Peștera Movile and the Obanul Mare sinkhole.

Pseudoscorpions

(BEIER, 1939; BOGHEAN, 1989; CURCIC et al., 1993, 2004-2005a, 2004-2005b, 2005, 2006; DUMITRESCU & ORGHIDAN, 1964, 1969a, 1970; GEORGESCU & CAPUSE, 1994)

The pseudoscorpions represent, together with opilionids, the most important predators of Romanian caves. All the troglobionts are endemic, anophthalmic or microphthalmic, and depigmented. The troglobionts, from caves, M.S.S., and the voids near Peștera Movile, belong to Chthonius (4 species), Mundochthonius (1 species), Acanthocreagris (1 species), Neobisium (7 species), and Roncus (6 species).

Chthoniidae: Chthonius decui, troglobiont, voids near Peștera Movile; C. monicae, depigmented, anophthalmic, Peștera Movile and voids near the cave (Fig. 9D); C. scyticus, voids near Peștera Movile; C. vandeli, troglobiont, the chitinous parts of the body are pinkish, small eyes anteriorly, posterior eyes reduced to depigmented spots, the dark zone of the Peștera Liliecilor de la Gura Dobrogei; Mundochthonius decui, posterior eyes absent and anterior eyes as ocular spots, M.S.S. at Virtoape, Oltenia. The roglophile species are: C. motasi, in caves and fissures of the green schists in the central and northern part of Dobrogea; C. tetrachelatus, from the caves Limanu and Liliecilor de la Gura Dobrogei, but also under rocks and in the fissures near the caves.

Neobisiidae: Acanthocreagris callaticola, probably troglobiont, Peștera de la Limanu in Dobrogea (Fig. 9C). Four species and subspecies of Neobisium populate the Apuseni Mts.: N. brevipes, N. brevipes montanum (probably troglobiont), N. biharicum (Fig. 9B) and N. leruthi; N. blothroides, is a troglobiont, endemic from Peștera Cloșani and the numerous caves in the Mehedinți Mts., at 600-800 m a.s.l.; N. minutum, troglobiont, frequent in caves of Oltenia. Two other species are known from the Southern Carpathians: N. maxbeieri, Peștera Topolnița; N. closanicus, anophthalmic adult, Peștera Cloșani and seven other caves (Fig. 9A). Six species of Roncus are known: R. ciobanmos, two eyes reduced at spots, and R. dragobete, eyes reduced at spots from Peștera Movile, both also found near the cave. They are blind and depigmented and can be considered troglobionts. Other troglobionts or possible troglobionts species of Roncus are: R. babadochiae, Peștera Lazului; R. craciun, a cave in the Sebeș Mts.; R. decui, Peștera Gura Cetății in Hunedoara; R. zeumos, Peștera Topolnița.

Opiliones

(AVRAM, 1968, 1972, 1973, 1976; AVRAM & DUMITRESCU, 1969; BĂNCILĂ & PLĂIAȘU, 2009; BĂNCILĂ et al., 2018 ; MARTENS, 1978; MOTAȘ et al., 1967 ; PLĂIAȘU et al., 2017)

In general, the most frequent species in caves are found in those located in the humid mountain forests. Three troglophile species are most commonly found.

Phalangodidae: Holoscotolemon granulatus (Fig. 10A), depigmented, with reduced eyes, from caves in the Carpathians, especially the north-west of Oltenia, where they feed on Leptodirinae beetles. Adult males, females, and young individuals can be found from the entrance to the deepest cave zone (for example, 1,500 m deep in Peștera Topolnița). At the surface, it lives in mountain areas, under the stones, in mosses and litter. A spawning of 16 eggs, 0,75 mm in diameter were observed in a cave.

Nemastomatidae: Paranemastoma sillii (Fig. 10C), pigmented and with eyes, frequent at the entrance and the intermediary zone of caves in the Southern Carpathians and the Apuseni Mts. During winter, the subtroglophilic species gather in the lower part of the walls. Clutches and youngs at all levels of development can be found in caves, which is original compared to other Nemastomatidae from other European caves (Decu & Herdlicka, 1978). The embryonary and post-embryonary development was described by Avram (1973): 26 eggs for a clutch on average.

Ischyropsalidae: Ischyropsalis dacica was sampled in caves of the Eastern Carpathians, Banat, and Mehedinți Mts, and from Peștera cu lapte de la Runcu; I. manicata (Fig. 10D), troglophile, has a wide distribution in the Carpathians.

Phalangiidae: Gyas annulatus (Fig. 10B), subtroglophile, at the entrance of twilight zone of caves, known from twenty caves in the Carpathians.

AranEae

(DECU, 1998; DUMITRESCU, 1979, 1980; DUMITRESCU & Georgescu, 1970, 1977, 1980, 1981; Georgescu, 1973, 1989, 1994; Georgescu & Sarbu, 1992; GIURGINCA et al, 2009; MOTAS et al, 1967; NAE, 2012; NEGREA & NEGREA, 1968, 1972)

33 troglobionts and neotroglobionts are known, of which 25 inhabit the Carpathians and 5 the Dobrogea.

Fig. 9. Pseudoscorpiones. Neobisiidae: A. Neobisium closanicus, B. Neobisium biharicum, C. Acanthocreagris callaticola (A-C drawings by M. Georgescu); Chthoniidae: D. Chthonius monicae.

Hahniidae: in Peștera Movile lives Hahnia caeca, eyeless and depigmented, with cephalothorax and legs colored in light yellow and a white abdomen (Fig. 11B).

Fig. 10. Opiliones. A. Phalangodidae: Holoscotolemon granulatus; B. Phalangiidae: Gyas annulatus; C. Nemastomatidae: Paranemastoma sillii; D. Ischyropsalidae: Ischyropsalis manicata (Drawings by S. Avram).

Fig. 11. Araneae. A. Linyphiidae: Centromerus dacicus, female; B. Hahniidae: Hahnia caeca, female; C. Nesticidae: Nesticus ionescui, male; D. Liocranidae: Agraecina cristiani (Drawings by M. Georgescu).

Linyphiidae: Three of the family genera are very well represented. Centromerus with two troglobionts and endemic species, C. dacicus, blind with a yellow testaceous body, distributed in caves of the Cloșani area in Oltenia (Fig. 11A), the clutch has one egg, rarely 2 or 3; C. chappuisi, depigmented and with small eyes finely bordered in black, from the Apuseni Mts. Caves; two other troglophilic species must be added, C. albidus and C. jacksoni; Leptyphantes with one troglobiont, L. constantinescui, blind and depigmented from Peștera Movile and another troglophilic subspecies with eyes, L. bureschi carpaticus from Peștera Fundata in the Southern Carpathians; Troglohyphantes with four troglobitic and endemic species, T. jeanneli, eyes slightly reduced from a cave in the Mehedinți Mts.; T. orghidani, Peștera de la Gura Plaiului (Southern Carpathians) (Fig. 12C); T. racovitzai, depigmented but with eyes surrounded by black pigment, from several caves in the Apuseni Mts., north from the Mureș valley; T. herculanus, species with eyes surrounded by black pigment, from caves of the Southern Carpathians and the Banat Mts., also found in the M.S.S.; Porrhomma convexum (Fig. 12B) is present in the Carpathians (especially the Apuseni Mts); P. kolosvary and P. microphthalmum are considered troglobionts in Romania.

Fig. 12. Araneae. A. Micryphantidae: Caviphantes dobrogica; B. Linyphiidae: Porrhomma convexum; C. Troglohyphantes orghidani (Drawings by M. Georgescu).

Liocranidae: one troglobiont, Agraecina cristiani, depigmented but with eyes at juvenile instars and some adults were described from Peștera Movile and dry wells in Mangalia (Fig 11D). It feeds with collembolans and young isopods; reaches maturity after 6-8 months; the cocoon has 5-8 eggs; the mortality of juveniles is high (Weiss & Sarbu, 1994).

Micryphantidae: a single representative, Caviphantes dobrogica, known from a cave in Central Dobrogea (Fig. 12A). It is a troglophile, depigmented, and with eyes.

Mysmenidae: single troglophilic species, Trogloneta granulum, depigmented but with eyes, was collected in several caves of the Southern Carpathians and the Apuseni Mts.

Nesticidae: represented by Carpathonesticus, Kryptonesticus, and Nesticus in Romania, with 18 species, found in more than 200 caves. Seventeen species are endemic in the Southern Carpathians and the Apuseni Mts. Most of the species are troglophiles known only from caves, with well-developed eyes, and the cephalothorax colored from light yellow to rusty yellow. The depigmentation is variable in species and individuals up to complete disappearance of the melanin pigment and the abdominal spots. The species of the Southern Carpathians are: Carpathonesticus puteorum, several caves of the Sebeș Mts., in Hunedoara (depigmented or pigmented cephalothorax); C. simoni, caves of the Bistrița gate (Stogu-Vinturarița massif), and the Comarnicilor Gorges (rusty yellow cephalothorax, eyes with black border); Nesticus balacescui, caves in Tătarului Gorges, massif of Bucegi, 1,700 m a.s.l.; N. carpaticus, Peștera lui Adam, Parâng Mts.; N. cernensis, caves in the Cerna valley; N. constantinescui, caves of the Piatra Craiului Mts. (all these species with advanced pigmentation, eyes with black pigments); N. diaconui, Peștera Muierii, in the Căpăținii Mts. (cephalothorax rusty yellow, eyes with brown border); N. ionescui (Fig. 11C), Peștera Cloșani; N. orghidani, two caves of the Olteț river, Căpăținii Mts. (both species with light rusty yellow cephalothorax, eyes with a brown-reddish border); N. wiehlei, caves of the Soci and Sușița Verde valleys (testaceous yellow cephalothorax, eyes bordered in brown). Species of the Apuseni Mts. Are: Carpathonesticus biroi, caves in the Pădurea Craiului Mts. with testaceous yellow cephalothorax, eyes with brown border), N. fodinarum, caves in the Sighiștel valley, Bihor Mts.; C. hungaricus, caves in the Trascău Mts. with testaceous yellow cephalothorax, eyes with light brown border hardly visible); C. racovitzai, troglobiont known from three caves and a surface site, between limestone blocks; C. spelaeus, testaceous yellow cephalothorax, eyes with light brown-reddish border, from caves in the Bihor Mts., also found between limestone blocks at the surface; Nesticus plesai, Pestera Urșilor, Bihor Mts. The two last species have rusty yellow cephalothorax and eyes bordered in black. The geographic distribution shows the abundance of these species in the massifs of Bihor, Banat, in the Southern Carpathians from the Cerna valley to the Bucegi Mts., and their absence in the Eastern Carpathians from northern Moldova. Kryptonesticus georgescuae, troglobiont blind and depigmented, known only from Peștera Movile; it is the species with most troglobiomorphic features of this genus.

Fig. 13. Palpigradi: A. Eukoenenia margaretae; Acari: B. Rhagidia longipes (Drawing by V. Iavorschi), C. Chiropturopoda cavernicola, D. Lasiobelba pontica, dorsal view.

Theridiidae: Carniella brignilli, troglobiont, lightly pigmented and with anterior eyes reduced, described from Peștera Movile.

Tetragnathidae: only troglophile species. The most common are Meta menardi, Metellina merianae, less frequent in Romanian caves, and M. bourneti found only in Dobrogea. Meta menardi is one of the main components of the parietal association in Romania, and it lacks only in the Apuseni Mts.

PalpigradiDA

(CONDÉ, 1998; GEORGESCU & DECU, 1994; ORGHIDAN, GEORGESCU & SARBU, 1982)

Eukoeneniidae: Three species of Eukoenenia were found in Romanian caves: E. cf. austriaca, from a cave in the Vâlcan Mts.; E. condei, from caves in the Jiu valley; E. margaretae, many caves in the Mehedinți Mts. (Fig. 13A). E. condei and E. margaretae were collected only in caves, at the surface of the water, and on humid flowstone.

Fig. 14. Diplopoda. Trachysphaeridae: A. Trachysphaera orghidani, B. Trachysphaera costata (Drawing by I. Tabacaru); Polydesmidae: C. Polydesmus oltenicus (Drawing by Ș. Negrea). Chilopoda. Lithobiidae: D. Lithobius decapolitus (Drawing by Ș Negrea); Cryptopidae: E. Cryptops anomalans (Drawing by Ș. Negrea).

Acari terrestria

(COOREMAN, 1951; DECU et al., 1974; FEIDER, 1970; HUTZU, 1997; IAVORSCHI, 1992; Ivan & Vasiliu, 2010; PALACIOS-VARGAS et al., 1998; Vasiliu & Ivan, 2011; Zacharda, 1978)

Several taxa, troglophile or guanophile, were found in caves. Still, only a quite reduced number is eyeless and depigmented and can represent troglobionts.

Oribatida: Lasiobelba pontica, endemic relict, troglobiont, thermophile from Peștera Movile, and voids around the cave (Fig. 13D); Hermanniella multipora, Multioppia callatisiana (endemic), or Papillacarus ondriasi were detected in the two boreholes near Peștera Movile. These last three species can be considered cleithrophilic; they are eyeless, but the lack of eyes in oribatids is phyletic (see also Sub-chapter V.1).

Rhagidiidae: Poecilophysis spelaea, common in European caves, with populations that are considered, by some authors, as glacial relicts; Rhagidia longipes (Fig. 13B); Traegaardhia dalmatina.

Uropodidae: Chiropturopoda cavernicola, thermophile and guanophagous, endemic relict, the dominant population in the cave (Fig. 13C); Trichouropoda orbicularis, troglophile and guanophagous, both species very abundant in Peștera lui Adam in Băile Herculane (see Sub-chapter V.3).

Parasitidae: Pergamasus crassipes, Macrocheles penicilliger, Euriparasitus emarginatus, Stratiolaelaps scimitus, and other species are known. They are guanophile and zoophagous, and feed on small arthropods, eggs, and nematodes.

ACARI PARASITI

(DUSBABEK, 1998; FEIDER & MIRONESCU, 1970; Georgescu, 1968; JUVARA, 1967)

Ixodidae: the most common ectoparasite is Ixodes vespertilionis, where the females are parasites on bats all over the country.

Spinturnicidae: ectoparasites on bats are also Spinturnix myoti; S. vespertilionis; S. psi, found in Dobrogea, Oltenia, and Banat.

Chilopoda

(ILIE, 2003, 2007; MATIC, 1966, 1968, 1972; NEGREA, 1964, 1969, 1993, 1994a, 1997, 2003a; NEGREA & MINELLI, 1994)

The chilopods are less numerous than diplopods in Romanian caves. The five species found in caves belong to Cryptopidae and Lithobiidae.

Cryptopidae: Cryptops hortensis and C. anomalans (Fig. 14E) were found in Romania's two warm caves: Adam and Movile. The two species have wide distribution at the surface. C. hortensis is probably troglophile and C. anomalans, with a Pontic and Mediterranean distribution, were also found on the surface in the northern half of Dobrogea. In the central part of this province, the species inhabits the network of voids in limestone from where some individuals enter in Peștera Movile. The individuals from Movile are not morphologically different than individuals inhabiting fissures or the surface. The anophthalmy and depigmentation of Cryptopidae are phyletic.

Lithobiidae: Lithobius dacicus, endemic in Banat caves; L. decapolitus, endemic in the Southern Carpathians (Fig. 14D); Harpolithobius oltenicus, endemic in the Southern Carpathians. Two other species are probably troglobionts, Harpolithobius dentatus, from Banat and north-east of ex-Yougoslavia and Monotarsobius spelaeus from the Apuseni Mts. Except for L. dacicus and H. oltenicus, which are anophthalmic, the others have ocelli.

Diplopoda

(CEUCA, 1958; JUBERTHIE-JUPEAU & TABACARU, 1968; NEGREA & TABACARU, 1958; NITZU et al., 2010; TABACARU, 1963b, 1965, 1966, 1968a, b, 1969a, 1970a, 1975, 1976, 1980, 1983-1987, 1985, 1989, 1990; TABACARU et al., 1962, 1964, 2002-2003; VERHOEFF, 1898)

It is the myriapods group with the most numerous troglobitic elements (25 taxa). All the troglobionts and the possible troglobionts are endemic, blind and depigmented, and belong to the following families: Anthroleucosomatidae, Trachysphaeridae, Polydesmidae, Trichopolydesmidae, Haaseidae, and Julidae.

The majority of troglobitic diplopods from Dobrogea belong to lines with the Mediterranean and sub-mediterranean distribution. Only Archiboreiulus has a boreal-alpine origin and Romanosoma an alpine origin. The origin and migrations of the subterranean Diplopoda are represented in Fig. 15.

Anthroleucosomidae: Anthroleucosoma banaticum from caves in Banat and northern Oltenia; A. spelaea, from caves in the Cerna Valley, north of Oltenia; Banatosoma ocellatum from caves in the Banat Mts., Southern Carpathians; Dacosoma motasi, caves in the Căpățânii Mts., Southern Carpathians.

Haaseidae: Hylebainosoma cavernicola, troglobiont, from caves of Eastern Carpathians (Rodnei Mts); Haasea hungaricum orientale, from Banat and Oltenia, a troglobiont frequent in caves and M.S.S.

Julidae: Apfelbeckiella dobrogica, Movile and Casian plateau caves in Dobrogea, it is the northmost representative of the genus; Archiboreoiulius n. sp., Peștera Movile and dry wells of Mangalia; Banatoiulus troglobius, caves of Banat; Lamellotyphlus mehedintzensis, Southern Carpathians, Cerna valley; Typhloiulus serbani Peștera Vântului and Eastern Carpathians; T. s. unilineatus, Apuseni Mts.

Trachysphaeridae: six species and two subspecies belong to Trachysphaera, the most frequent diplopod in limestone area and Romanian caves, T. biharica, Apuseni Mts.; T. dobrogica, Dobrogea; T. jonescui, Southern Carpathians, with two subspecies, T. j. isvernae, and T. j. tismanae; T. orghidani, the Southern Carpathians and Cerna valley (Fig. 14A); T. racovitzai, caves in the Căpăținii Mts.; T. spelaea, caves of Parâng and Căpăținii Mts.; T. costata, a possible troglobiont with pigmented ocelli, inhabits the whole Carpathian range (Fig. 14B).

Polydesmidae: Polydesmus oltenicus, troglobiont, Southern Carpathians (Fig. 14C); P. microcomplanatus, a doubtful troglobiont; Brachydesmus, caves of Banat with the troglophile species, B. troglobius.

Trichopolydesmidae: Banatodesmus jeanneli, caves in Banat; Napocodesmus florentzae in Oltenia; Trichopolydesmus eremitis frequent in caves of north-western Oltenia and Cerna valley.

Fig. 15. Probable migration routes for the Diplopoda lineages into the Carpathians and Dobrogea: I and II = North-Western Carpathians (II = Oriental Beskids); III = Eastern Carpathians; IV = Apuseni Mountains; V = Southern Carpathians; VI = Banat Mountains; VII = Carpathians from South of Danube (Stara Planina). Lineages with troglobionts: 1 = Anthroleucosomidae; 2 = Typhloiulini; 3 = North-east-alpine lineages (ex. Haaseidae, Orobainosoma hungaricum); 4 = Original North Carpathian lineages; 5 and 6 = Possible migrations of the original lineages of Bohemia; 7 = Original Dinaric lineages (ex. Trachysphaeridae and Trichopolydesmidae); 8 = Pachyiulini (Apfelbeckiella) (After Tabacaru, 1964, 1969a; Tabacaru et al., 2002 – 2003, completed and modified by I. Tabacaru).

Collembola

(GRUIA, 1967, 1969, 1971, 1976, 1989, 1994, 1996, 1998, 2000; GRUIA & ILIE, 2000-2001; GRUIA & POPa, 2004-2005; NITZU et al., 2007, 2010, 2014; PAPÁČ & KOVÁČ, 2013; POPA, 2010)

They are the best represented apterygots in the subterranean environment of Romania, with more than 110 species. Only 22 species are troglobionts, including 4 guanobionts.

Hypogastruridae: represented by guanobionts, Mesogastrura ojcoviensis, very common in caves with guano from Banat and Oltenia (Fig. 16B). It prefers loose, old, moldy guano with a 6-7 pH; Pseudacherontides spelaeus, depigmented and blind, common in caves with guano from the Carpathians. It is a characteristic and dominant species for fresh guano deposits; Acherontides tanasachiae, endemic species for Romania, found only in two caves (Dodoconi, Izverna); Acherontiella cassagnaui, numerous on guano from caves in Southern Dobrogea (Romania; Fig. 16A).

Onychiuridae: 13 species of this family in Romanian caves, with 11 endemic species, Argonychiurus bogheani, Deharvengiurus orghidani; Deuteraphorura banatica; D. closanica (Fig. 16C); D. meziadica; D. romanica; D. traiani; Onychiuroides multisetis; Onychiurus movilae; Orthonychiurus ancae; Protaphorura borzica; Onychiuroides postumicus and Onychiurus boldorii have European distribution; Deuteraphorura fimetaria from Southern Carpathians; D. hategana from Carpathians; D. silvaria in all the country; Micraphorura multiperforata, Ghețarul de la Scărișoara and M.S.S. of Scărișoara Plateau; Onychiuroides subgranulosus, caves of the Retezat Mts., such as Alunii Negri at 4°C; O. pseudogranulosus lives at 25°C in Peștera lui Adam; O. granulosus, Carpathians; Protaphorura armata caves all over the country. One interesting species found in scree deposits is the troglophile Deharvengiurus denisi, recorded only in the Piatra Craiului and Leaota Mts.

Entomobryidae: two troglobionts, endemic for Romania. Heteromurus noseki, caves of the Southern Carpathians and the M.S.S. near Peștera Cloșani (Mehedinți Mts.); Pseudosinella racovitzai, Cioclovina and Ponorici-Cioclovina cu Apa caves. The most striking troglophile are recorded from Dobrogea, Entomobrya pasaristei on the bat and bird guano in the caves’ entrance; Heteromurus nitidus; H. sexoculatus, Peștera Hoților and voids in limestone in southern Dobrogea; Pseudosinella sexoculata frequent in Movile and Limanu caves, voids in limestone, and soil; Pseudosinella crenelata and P. manuelae, guanophiles, prefer older guano of caves of the Southern Carpathians; and P. octopunctata in all the country.

Oncopoduridae: Oncopodura pegyi, caves of the Apuseni Mountains, blind and depigmented, elongated claws and antennal organs as adaptations to caves; O. vioreli, probably a troglophile, blind and depigmented, Peștera Movile, and the fissures near this cave.

Tomoceridae: Plutomurus unidentatus, caves of Eastern Carpathians and Apuseni Mts., pigmented eyes and body and wide distribution.

Neelidae: Megalothorax draco, troglobiont, Peștera Drǎcoaia, Bihor Mountains; Neelus murinus, in all the country.

Arrhopalitidae: Arrhopalites bifidus; Pygmarrhopalites terricola in caves; P. pygmaeus in caves and M.S.S. of Southern Carpathians; P. ornatus in M.S.S. of the Piatra Craiului Massif.

Sminthuridae: Neelus murinus, in all the country.

Fig. 16. Collembola. Hypogastruridae: A. Acherontiella cassagnaui, B. Mesogastrura ojcoviensis; Onychiuridae: C. Deuteraphorura closanica (Drawings by M. Gruia).

Diplura

(CONDE, 1993, 1996; Ionescu, 1955; SENDRA et al., 2012)

The group has depigmented, blind and hygrophilic species found in caves.

Campodeidae: three troglobitic species or possible troglobionts are endemic for Peștera Movile and the voids near Movile, Campodea neuherzi; Plusiocampa euxina; P. isterina. Two others, probably troglobitic, species are Campodea spelaea, caves in Apuseni Mts. And Plusiocampa elongate, caves in Banat; Campodea suensoni, troglophilic caves of the Southern Carpathians and the Apuseni Mts., also very frequent in soils.

Thysanura

(DECU, 1998; HOLLINGER, 1971, 1978; MOTAS et al., 1967)

The species from Romanian caves belong in general to Machilidae. They are found in high numbers during winter, in the caves' entrance. They can be considered hibernating subtroglophiles. The two most frequent species are
Trigoniophthalmus banaticus and T. alternatus.

Trichoptera

(BOTOSANEANU, 1966; BOUVET, 1977; DECU, 1998; DECU & NEGREA, 1969; MOTAS et al., 1967)

Six subtroglophile species of Stenophylax (Limnephilidae) are estivating in Romanian caves, except Dobrogea because of the dryer climate in this province; Stenophylax permistus and S. vibex-meridionalis are frequent in caves in most of the karst regions of the country (especially in the Southern Carpathians); S. mitis is the rarest species that inhabit caves in Banat and Oltenia; S. sequax and S. testacea are well represented in caves of the Apuseni Mts.

In March, the trichopterans of both sexes with the abdomen full of lipids enter the cold and humid caves. In October/November, they leave the caves to lay eggs in the nearby streams (Fig. 17). Copulation, diapause, and maturation of ovules take place during the subterranean phase.

Lepidoptera

(CAPUSE & GEORGESCU, 1962a, b, 1963; DECU, 1998; DECU & NEGREA, 1969; GEORGESCU, 1964; MOTAS et al., 1967; TURQUIN, 1994)

A cosmopolite species of Tineidae, Monopis crocicapitella, troglophilic-guanophilic, was mentioned from caves of Dobrogea. The species is parasitized by Hemiteles flavigaster (Hymenoptera).

Some subtroglophilic species are found in caves during winter or summer. As hymenopterans and trichopterans, lepidopterans do not show adaptative traits. Among the most frequent species are Scoliopteryx libatrix (Noctuidae), more abundant in caves during winter, Triphosa sabaudiata, T. dubitata (Geometridae), and Digitivalva pulicariae (Acrolepidae), found in high number in Oltenia. In dry and ventilated caves, Aglais io (Nymphalidae) estivate or hibernate.

Scoliopteryx libatrix is encountered in general on the ceiling and the upper part of the passages, choosing warm and humid air currents. Triphosa sabaudiata and T. dubitata prefer the lower part of the cave walls, the first in warmer caves and the second in colder caves (Fig. 17).

Fig. 17. A. Diagram of the subterranean and epigean ecological phases (average length) of the main subtroglophiles from Oltenia (South-West Romania); B. General diagram of the air circulation in the entrance area of the horizontal caves, during summer and winter (ex. a.c. = exogenous air current; en. a.c. = endogenous air current; w. a.c. = warm air current; l. a.c. = lukewarm air current; c. a.c. = cool air current; c.z. a.c. = crossing zone of the air current) (After Decu, 1998).

Diptera

(BURGHELE-BALACESCU, 1965, 1966; BURGHELE-BALACESCU & AVRAM, 1966; BERTEANU & GHEORGHIU, in GODEANU (red.). 2011; COLLART, 1940, 1941; DECU-BURGHELE, 1962, 1963a, b; DECU, 1973, 1998; DECU & DECU, 1961b; DECU & HERDLICKA, 1978; LENGERSDORF & LERUTH, 1940; MOTAS et al., 1967; MATILE, 1962, 1994; TOLLET, 1955)

The imagos of dipterans, together with trichopterans, hymenopterans, and lepidopterans are the main component of the parietal association in the cave's entrance and the twilight zone. From these four groups, the dipterans are the most abundant in caves and belong to trogloxenes, troglophiles, and subtroglophiles (most of them).

The subtroglophiles remain on caves' walls or ceiling in dependence of air circulation type, from the inside or the exterior of the caves, during summer or winter (see the scheme in Fig. 17 of air circulation in the twilight zone). The estivating species remain at the base of the walls and the hibernating species in the upper part of the walls or the ceiling, away from the entrance zone and the surface climate influences.

A troglophile species, Speolepta leptogaster (Bolithophilidae) have larvae that spin web traps on walls and, according to some specialists, predators. Two others, Corynoptera ofenkaulis and Neosciara forficulata (Sciaridae), are distributed in caves of Europe. Among the summer subtroglophiles, the following can be mentioned: Tarnania fenestralis (Mycetophilidae), Limonia nubeculosa (Limoniidae), Eccoptomera emarginata (Helomyzidae).

The most frequent hibernating species are Exechiopsis magnicauda (Mycetophilidae), Culex pipiens (Culicidae) widely distributed and very often accompanied by another Culicidae, Theobaldia annulata, Rhymosia fasciata, Helomyza captiosa – the most frequent Helomyzidae in the subterranean environment of Europe where it prefers cold caves -, and Tarnania fenestralis, the Mycetophilidae with predominant summer and winter generations.

Excepting some individuals of Tarnania fenestralis, T. dziedzickii, and Culex pipiens, none of those mentioned above species was found in Dobrogea. The"guano fly", Thelida atricornis (Helomyzidae), troglophilic, and guanophilic, is frequent in Romanian caves. The wings muscles are reduced, and its flight is short, more like jumping (Decu, 1998). Another troglophilic dipteran is Crumomyia hungarica (Sphaeroceridae) which lives in caves of the Apuseni Mts.

Caves with bats have ectoparasitic dipterans that belong to Nycteribiidae (Nycteribia biarticulata, N. schmidli, Penicillidia dufouri, etc., to mention the most common).

HYMENOPTERA

(COLLART, 1941; CONSTANTINEANU, 1959; A. dECU & v. DECU, 1964; DECU & RACOVITA, 1994; MOTAS et al., 1967)

The most frequent and abundant cave hymenopterans belong to Ichneumonidae (Hemiteles and Amblyteles genera) and to Proctotrupidae (Exallonyx longicornis).

Hemiteles is present with the troglophilic H. flavigaster in caves with guano from Dobrogea, where it pests the lepidopteran Monopis crocicapitella. The species of Exallonyx and Amblyteles (A. quadripunctorius, A. armatorius and A. palliatorius) are subtroglophiles. A. quadripunctorius and E. longicornis inhabit caves in the entire country with a maximum number of the first species in July and October. The two other species of Amblyteles are less frequent and populate, especially caves in Transylvania.

The ecological cave phase of subtroglophilic hymenopterans has a summer quiescence and a winter diapause (see Fig. 17). Only females enter caves and choose small horizontal cavities or the base of pits.

PSOCOPTERA

(Badonnel & LIENHARD, 1994)

The psocopterans are rare in Romanian caves. They inhabit preferentially old and relatively dry guano, covered with fungi. The most common species are Prionoglaris stygia (Prionoglarididae) and Psyllipsocus ramburii (Psyllipsocidae). A troglophilic species, collected in caves of Dobrogea, is the only with adaptative features. The female has a pale body with reduced eyes, absent ocelli, rudimentary wings, and reduced nervation.

SIPHONAPTERA

(BEAUCOURNU et al., 1998; PRUNESCU C. & R. PRUNESCU, in Godeanu (ed.), 2011; SUCIU, 1968, 1970, 1973)

Ischnopsyllidae: ectoparasites of bats that lay eggs in the soil and guano of caves; their larvae and nymphs develop in caves. Three species were collected in Romanian caves: Ischnopsyllus hexactenus parasite on Barbastella sp. and Rhinolophus hipposideros; Nycteridopsylla eusarca parasite on Nyctalus noctula, and Rhinolophopsyllauni pectinata, the most common on many bats, the most parasitized being Rhinolophus blasii.

Coleoptera

(BUCUR, 2007; BUZILA et al., 2000-2001; DECU, 1959a, b, 1961a, b, 1962, 1963, 1964, 1967, 1980; DECU et al., 1963, 1968, 1969, 1984, 1994; DECU & BOTOSANEANU, 1964; FEJER & MOLDOVAN, 2013 ; IENISTEA, 1955; JEANNEL, 1923, 1924, 1928a, b, 1930a, b, 1931a, b; MALLASZ, 1928; MOLDOVAN, 1989, 1993, 1997, 1997a, 1998, 2000a, b, 2002, 2003, 2007, 2008; MOLDOVAN et al., 2007; NITZU & JUBERTHIE, 1996; NITZU, 1997, 1998, 2013; NITZU et al., 1998, 2003, 2010, 2011; PLESA et al., 1996; POGGI, 1994, 2013; POGGI & DECU, 1992; RACOVITA, 1971, 1984b, 1985, 1995, 1996, 1998-1999, 2004-2005, 2006-2007, 2009, 2010, 2011; RACOVITA et al., 1975, 1982, 2002; RUSDEA, 1989)

It is the best-represented group, with more than 150 troglobionts and other possible troglobionts (see Table III). Most of them populate caves but also the M.S.S. 113 taxa that represent 63% of the total belong to Leptodirini (Leiodidae; the former Bathysciinae), and 52 (37%) to Trechinae (Carabidae). All Leptodirini are blind and depigmented, while some Trechinae species still have pigmented ocular spots. The Leptodirini are living mainly on the cave walls and in the rock voids. They feed on the biofilm on the surface of the walls, floor, and passages of caves, clay, moonmilk, and guano and corroded calcite.

Carabidae Trechinae

In Eastern and Southern Carpathians (east from the Olt valley) are distributed Duvalius (Duvalidius) belonging to the procerus group and Duvaliopsis. D. delamarei from Stogu-Vânturarița massif caves, the only Duvalius species that crossed the Olt valley to the west, D. deubelianus from caves of the Piatra Craiului Mts., and D. onaci living in a cave of the Someșan Plateau belong to the Duvalius procerus group. Duvaliopsis is represented by D. transylvanicus, caves of the massifs near Brașov and Vârghișului Gorges.

The caves of the Southern Carpathians between the Olt Valley and the corridor formed by the Timiș-Cerna valleys are inhabited by 20 Trechinae of Duvalius (Duvaliotes) budai group (D. budai; D. chicioarae; D. coiffaiti; D. hegedusi; D. herculis; D. nanus; D. oltenicus; D. spiessi; D. spinifer (Fig. 18E); D. stilleri; D. voitestii), and two species of the group Duvalius (Duvalidius) (D. gaali, caves of the Jiul de Vest, and D. poporogui, caves in Parâng Mountain).

The Banat Mountains shelter only one troglobiont Trechinae, Duvalius (Duvaliotes) milleri (Fig. 19E).

Twenty-four Trechinae taxa belong to Duvalius (Duvaliotes) redtenbacheri group in the Apuseni Mountains [D. cognatus; D. hickeri; D. mallaszi; D. mandibularis; D. paroecus; D. redtenbacheri; D. sziladyi (Fig. 19D)] and the rare Chaetoduvalius saetosus amblygonus.

Fig. 18. Troglobiont Coleoptera from Southern Carpathians. Leptodirini: A. Closania orghidani (x 12), B. Tismanella chappuisi (x 13), C. Mehadiella paveli (x 30), D. Sophrochaeta oltenica (x 16); Trechinae: E. Duvalius spinifer (x 10) (Photos by G. Năzăreanu).

Fig. 19. Troglobiont Coleoptera. Leptodirini (A-C) and Trechinae (D, E) from Apuseni (A-D) and Banat Mountains (E). A. Pholeuon leptoderum biroi (~ x 9), B. Pholeuon knirschi glaciale (~ x 9), C. Drimeotus chyzeri (~ x 14), D. Duvalius sziladyi (~ x 9), E. Duvalius milleri (~ x 13) (Photos by G. Năzăreanu).

Carabidae Scaritinae: Clivina subterranea, described from Peștera Movile (Fig. 30A); small species, with slightly reduced eyes, with contact mechanoreceptor sensors adapted to life in narrow cracks of the Dobrogea karst, from where they enter the cave.

Carabidae Bembidiinae: Limnastis galilaeus was found only in the boreholes near Peștera Movile, at -10 m and -13 m in depth. It is a cleithric species.

Carabidae Zuphiinae: From this subfamily, some individuals of Parazuphium chevrolati were found in the same drills as L. galilaeus; it is a cleithric species. In Romania, it has been recorded in the other two hydrothermal zones: Geoagiu and Băile Herculane.

Leiodidae Leptodirini (former Bathysciinae)

The Southern Carpathians, west from the Olt valley, and the Banat Mountains are inhabited by the Sophrochaeta phyletic lineages, a homogenous group, phyletically separated from the Drimeotus phyletic lineage.

● Sophrochaeta: with 23 troglobionts or possible troglobionts (Fig. 18D) (S. chappuisi; S. dacica; S. insignis; S. motasi; S. jeanneli; S. longicornis; S. obtusa; S. oltenica (Fig. 18D); S. orghidani; S. racovitzai; S. reitteri, with 3 subspecies: S. r. mallaszi; S. r. paralella; S. r. retezati).

Several species of Sophrochaeta were found in the scree habitat or the M.S.S.: S. globosa; S. kovalitzkyi; S. merkli; S. mihoki; and S. rothi.

● Banatiola vandeli was found only in the Banat Mts. (known from a single cave); they dig small holes in the disintegrated calcite and probably feed on microorganisms;

● Closania with two species: C. orghidani from the caves of the Mehedinți Plateau (Fig. 18A), and C. winkleri, with two subspecies (C. w. elongata, from caves of the Mehedinți Mts., and C. w. planicollis from one cave in the Vâlcan Mts.).

● Mehadiella. In the M.S.S. of the Cerna Valley, numerous M. paveli were sampled, which is typical for this habitat. However, they are also found in caves (Fig. 18C).

● Tismanella with two species: T. chappuisi with three subspecies (T. c. arcuata, T. c. convexipennis, T. c. diversa) (Fig. 18B), and T. winkleriana. They colonize the upper basin of Tismana (Vâlcan Mts.).

Compared to Closania and Tismanella that have not exceeded eastward the Jiu valley, Sophrochaeta is the most widespread Leptodirini.

In the Apuseni Mts., the inventoried Leptodirini belong to the Drimeotus phyletic lineage, with three genera: Drimeotus, Pholeuon, and Protopholeuon. Most of them (~70%) are in the Bihor Mountains.

● Drimeotus

As in the case of Sophrochaeta, many species of Drimeotus have troglobiont populations in caves and M.S.S.

The 36 species and subspecies are located mostly in the Bihor Mts, Pădurea Craiului Mts. and some in the Trascău Mts.

D. hickeri, D. laevimarginatus with seven subspecies, D. mihoki with four subspecies, D. winkleri, D. breiti, D. entzi chappuisi, D. (Fericeus) kraatzi, and D. (Trichopharis) blidarius are living in the Bihor Mts. caves.

The species of Pădurea Craiului Mts. are: D. bokori; D. chyzeri (Fig. 28C); D. entzi of the Mișid basin; D. horvathi; D. kovacsi; D. octaviani from a cave in the Boiului-Ponoare valley; D. osoiensis; D. plesai; D. puscariui; D. viehmanni from caves of the Iada basin; D. racovitzai; and D. thoracicus.

The species of the zone Trascău Mts. are D. (Drimeotinus) attenuates; and D. (D.) ormayi.

● Pholeuon

The phyletic lineages of Drimeotus was revised by Racoviță and Moldovan, and from genetical point of view by Bucur (Buzilă) and collaborators.

The 41 species and subspecies of the Pholeuon phyletic line are all troglobionts. The caves of the Someșul Cald basin, at the northern limit of the Bihor Mts., are exclusively inhabited by Pholeuon angusticolle with its six subspecies; P. knirschi of the Arieș basin in the central part of the Bihor Mts., with its 15 subspecies, including P. k. glaciale from the Ghețarul de la Scărișoara (Fig. 19B); – P. leptoderum (Fig. 19A) with ten subspecies.

The caves of the Pădurea Craiului Mts. are inhabited by Pholeuon (Parapholeuon) angustiventre; P. (P.) gracile with two subspecies; P. (P.) moczaryi of caves in the Crișul Repede basin.

One species was described from Codru Moma Mts.: P. (Mesopholeuon) comani, known from several caves.

The species of the Metaliferi Mts. is Protopholeuon hungaricum from Peștera Lucia.

Cholevinae: Among the 50 Cholevinae taxa known from Romania, Choleva, Catops, and Nargus have troglophile representatives or summer subtroglophiles in Carpathian caves, especially in the Apuseni Mts. and the South-Western Carpathians. They were also found in the M.S.S. The following species can be mentioned: Choleva angustata (with the biological cycle presented in Fig. 20), C. cisteloides, C. cisteloides dacica, C. glauca, C. oblonga, Catops tritis, C. picipes, C. longulus, Nargus badius.

Staphylinidae: One troglobiont, Medon dobrogicus (Fig. 21F), and another possible troglobiont, M. paradobrogicus, were described from the Movile Cave area. Bryaxis goliath, from Corobana Mândruțului, is a possible troglobiont (Fig. 21D); males have reduced eyes and females are probably eyeless; B. dolosus, troglobiont, endemic for Peștera Movile (Fig. 21E); body testaceous and eyes lacking; Decumarellus sarbui, troglobiont endemic for Peștera Movile (Fig. 21C); Tychobythinus sulphydricus, troglobiont from Peștera Movile (Fig. 21B) has a testaceous body and lack eyes (see Sub-chapter V.1).

Guanophile predator beetles are Atheta, Aleochara, Quedius mesomelinus, one of the most frequent guanophilous staphylinids in Romania.

Fig. 20. Biological cycle of the subtroglophile beetle Choleva angustata (scheme by V. Decu, after Deleurance, 1959). Ph. I, Ph. II, Ph. III: phases of a cycle.

Fig. 21. Troglobiont Coleoptera. Carabidae Scaritinae: A. Clivina subterranea; Staphylinidae: B. Tychobythinus sulphydricus, C.   Decumarellus sarbui, D. Bryaxis goliath, E. Bryaxis dolosus, F. Medon dobrogicus.

Ecology and biology of Romanian subterranean Coleoptera

(BUCUR, 2007; BUCUR et al, 2003; Buzila et al., 1997, 2000, 2000-2001; DECU, 1961a, b; DECU & JUBERTHIE, 1969; DECU & PAPACOSTEA, 1964; JUBERTHIE & DECU, 1970; MOLDOVAN, 1998, 2000c, 2003; MOLDOVAN et al., 1996; NITZU & JUBERTHIE, 1996; PLESA, 1969b; RACOVIȚĂ (RACOVITZA), 1971, 1973, 1978, 1980, 1984b, 1993; RACOVIȚĂ & SERBAN, 1975, 1982).

Numerous studies were dedicated to the cave Coleoptera ecology, habitat preferences, developmental biology, behaviour and sex recognition, modifications of the sensory equipement as an adaptation to habitat, cytology, anatomy and genetics

The studies of Racoviță and Racoviță & Șerban on the ecology and seasonal variations of Pholeuon knirschi glaciale populations from the scientific reserves of the Ghețarul de la Scărișoara (see also Sub-chapter V.2), on Pholeuon moczaryi of Peștera de la Vadu-Crișului, and on Drimeotus viehmanni in Peștera cu Apă din Valea Leșului focused on the causes of such variations.

The study of Racoviță on both sexual and feeding behavior, and on the activity rhythm at Pholeuon leptoderum hazayi and Pholeuon knirschi glaciale were undertaken in the cave-laboratory of Moulis (France).

Buzilă (Bucur) & Racoviță were done comparative morphological studies on the male genitalia of Tismanella chappuisi, Drimeotus viehmanni, D. mihoki, D. kraatzi, Pholeuon gracile and P. proserpinae.

Decu and Decu & Papacostea studied the internal morphology of Leptodirini from the phyletic line of Sophrochaeta.

Decu with Juberthie have found in the cave-laboratory of Moulis (France), that Sophrochaeta oltenica females lay one big egg in one clutch. The first larvae develop on the vitellin reserves, and a contracted or intermediary reproduction cycle.

Juberthie & Decu found that the brain and nerve chain of the Closania winkleri neurosecretory system shows no anatomical regressions, which was not expected in a cave-adapted species.

Moldovan undertook the studies on the behavioral and biochemical investigations of sex recognition using cuticular hydrocarbons (cuticular pheromones) on Drimeotus puscariui, D viehmanni, D. kovacsi, and D. bokori in the cave-laboratory of Moulis proved to be influenced by the pheromonal sex recognition. The short-range sensory equipment is essential for partner recognition for the blind cave beetles.

Moldovan and Buzilă (Bucur) & Moldovan studied the antennae's sensory equipment in Romanian Leptodirini.

A study of Nitzu and Juberthie defined the changes in the sensory equipment of six species of Clivininae as a function of the voids volume. The mechanical reception is dominant for species that live in microspaces and narrow fissures of the rocks, or that dig small galleries.

The first genetic and phylogenetic studies of Leptodirini were done by Bucur (Buzilă) and collaborators on representatives of the Romanian Leptodirini.

Paleobiogeographic data

Several paleogeographic circumstances define the Carpathians distribution of the subterranean Coleoptera ancestors: (1) The Carpathian orogenesis; (2) The Pannonian (Tisza) Massif and Central Paratethys evolution; (3) The formation of the transversal valleys of the Southern Carpathians and Apuseni Mountains.

(1) The distribution of ancestors of troglobiont Coleoptera was dependent on the presence of forested areas on hills and uplands, at elevations between 200 and 1000 m. However, the uplift of the Carpathians began during the late Cretaceous – beginning of Paleocene (the Laramic morphotectonic phase) and continued until Quaternary, with lower amplitudes during the Savian phase (late Oligocene – early Miocene) and Rhodano – Walachian phase (Pliocene – lower Pleistocene). Following the Laramic tectonic movements in the Banat and the Apuseni Mts., faults appeared inside and outside of these units; internal faults have given the Apuseni Mts. the appearance of horst, divided into smaller horsts and grabens important in the isolation of subterranean fauna lineages. During Middle Miocene, on the western faults began the collapse of the Pannonian Massif, and during late Cretaceous – Early Paleocene on the eastern faults, the collapse of the Transylvanian Massif (Posea et al., 1974). During the Paleogene and early Miocene, the Apuseni Mountains and the Southern Carpathians were connected through the Porțile de Fier (Iron Gates) of the Danube with the southern regions. The connection between the Eastern, Central and Northern Carpathians with the Bohemian Massifs was established since the Middle Miocene (Popov et al., 2004).

(2) The distribution of beetles' lineages was also dependent on the presence and the evolution of the Pannonian Massif and the Pannonian basin (including the Transylvanian basin) and Dacic basin (both components of the Central Paratethys, maintained from the Upper Eocene to the Upper Pliocene) (Olteanu, 2006). The Pannonian Massif and the Transylvanian Massif are the results of the Hercynian phase orogeny. The uprising and individualization occurred during the Triassic – Liassic period (Posea et al., 1974). It was a large area of the Carpathians, at middle altitude, which extended from the Alps, the Dinaric Alps, to the Southern Carpathians and The Apuseni Mountains. The link with the Dinarides was continuous from the Late Eocene to Early Middle Miocene (Popov et al., 2004).

It is important to mention that Tisza corresponds to the "Massif du Banat" (which extended to the Olt valley). This massif, wrote Jeannel (1928a), « …existed since the beginnning of the Tertiary, but without any doubt it was connected, at least temporarily, with Bihor, with the Western Carpathians (Tatras) and Bohemia » (in French in he original version). In 1931 he added « …at the very ancient Numulitic period (Paleogene) it seems that the massif of Banat was connected through the slovak massif of Bohemia, this continental connection left outside it the Bihor (in French in the original version).

The collapse of the Pannonian Massif started from the Early Middle Miocene, reaching maxima in the Tortonian and Sarmatian. In its place forms the Pannonian depression, a basin submerged by the waters of Paratethys until Upper Pliocene. The orogeny and subsidence of the Pannonian Massif and Pannonian basin transgressions have influenced the Western Carpathians through fragmentation (especially of the Apuseni Mts.), development of deep bays (now depressions) along fault lines in the western part, and transformation in a true archipelago during Tortonian and Sarmatian (Fig. 22). The collapse of the Transylvanian Massif began during the Laramic phase at the same time with the crystalline zone that linked the Carpathians to the Balkans. Consequently, depressions and Transylvanian and Dacic (Getic) basins developed, also submerged by the brackish waters of the Paratethys. These basins represent the main tectonic units together with the Pannonian basin, that communicated through sea corridors from Eocene, or Middle Miocene until Pliocene. These corridors correspond to the transversal valleys.

Fig. 22. Paleogeographical map of Romania in the Upper Tortonian (after Saulea, 1967; Posea et al., 1974). The present karstic zones in brown; the hatched areas represent the Tortonian Sea.

(3) A morphological characteristic of the river network in Romania is represented by the transversal valleys, with a unique frequency in the Apuseni Mountains and Southern Carpathians (Fig. 23). The rivers Danube, Mureș, Olt, Crișul Repede, and Someș form the transversal valleys. There are also partially transversal valleys such as the valleys of Timiș or Jiu (Orghidan & Nedelcu, 1969; Posea et al., 1974). The origin of the Danube Valley can be traced to Middle Miocene when it functioned as a sea corridor between the Pannonian Basin and the Dacic and Ponto-Caspian basins. Tectonic movements or climate change could not have interrupted this corridor. The Danube River system was formed during the Upper Pliocene. During the Neogene, the Miocene waters of the Pannonian basin communicated with waters of the Transylvanian basin through the transversal corridor between Poiana Ruscăi and the Southern Carpathians (the "Gate Iron of Transylvania"), now drained by the Timiș valley. This corridor was linked with that of the lower Cerna. The Mureș corridor provided water communication between the Pannonian, Transylvanian, and Dacic basins since the Middle Miocene. The evolution of Crișul Repede is linked to the development of the Pannonian Basin since the Middle Miocene, allowing the connection between Pannonian and Transylvanian basins. The way the Someș river flows towards the Pannonian plain date from the end of Cretaceous, a large opening through which the waters of the seas hardly communicated with the Transylvanian Basin until Pliocene. In the actual Olt notch, the marine corridor existed since Eocene linked the Transylvanian basin to the Dacic basin. The Olt has survived the uprising and the collapse of the mountains and basins maintaining the former corridor. The seven transveral valleys totally or partially penetrate the Carpathian chain, antecedents, and epigenetics (Orghidan & Nedelcu, 1969).

Fig. 23. Totally and partially transversal valleys of the western half of Romania. 1 = mountains; 2 = intramountain depressions; 3 = hills; 4 = partially transversal valleys: Jiu, Timiș, etc.; 5 = totally transversal valleys: Dunăre, Mureș, Crișul Repede (C.r.), Someș and Olt Valleys (after Orghidan & Nedelcu, 1969, modified); 6 = the limit between the Pannonian and the Carpathian domains (after Posea et al., 1974).

Fig. 24. Probable migration routes of the subterranean Coleoptera lineages into the Carpathians (after Jeannel, 1928a, 1929; Decu, 1967). Lineages with troglobiont Trechinae and Leptodirini: A – Original lineages from the Hercynian massifs of Bohemia and North-Western Carpathians: 1 = Duvalius (Duvalidius) procerus group; 2 = Duvaliopsis; 3 = Duvalius (Duvalidius) merkli group; B – Original lineages from the northern Aegean-Dinaric: 4 = Duvalius (Duvaliotes) redtenbacheri group; 5 = Chaetoduvalius; 6 = Phyletic lineage of Drimeotus; 7 = Duvalius (Duvaliotes) budai group; 8 = Phyletic lineage of Sophrochaeta ; 9 = Duvalius milleri and Banatiola sp.

Origin of subterranean Trechinae and Leptodirinae

Two categories can be distinguished by their origin (Fig. 24). (1) Hercynian, originating from the massifs of Bohemia and Northern Carpathians, the case of Duvalius (Duvalidius) procerus and merkli groups, and Duvaliopsis. (2) Mediterranean and Egeidian, starting from northern Egeide (the Greek islands) for Chaetoduvalius, Duvalius (Duvaliotes) budai and redtenbacheri groups, and the phyletic lineages of Sophrochaeta and Drimeotus.

Duvalius (Duvalidius) procerus group and Duvaliopsis (phyletic line of Trechoblemus), with mostly endogean fauna colonized from north to south the Eastern and Southern Carpathians to the Olt valley at the end of Oligocene and beginning of Miocene (Fig. 24:1,2). The transversal valley of Someș represented a barrier to the colonization of the Apuseni Mts. by these species’ ancestors. Duvalius (Duvalidius) merkli group distributed in the Banat Mts. and the Southern Carpathians, west from the Olt valley at the end of Oligocene and beginning of Miocene, by the intermediary of the Pannonian massif (Fig. 24:3). This group is related to the microphthalmus group (from Slovakia and Hungary) and the procerus group.

Chaetoduvalius belonging to Aphaenops phyletic line is present in the Apuseni Mts. (Fig. 24:5). It arrived during Paleogene and, mostly during Lower Miocene, through the Tisza massif, before the subsidence of the Pannonian massif. Duvalius (Duvaliotes) budai and redtenbacheri groups have successively migrated at the end of Paleogene and the beginning of Miocene from the Dinaric massifs to the Apuseni Mountains by the intermediary of the Pannonian massif (Fig. 24:4,7). The two groups are linked to the D. pilifer group widespread in the former Yugoslavia and Greece. D. budai relates mainly to D. trescavicensis of Bosnia-Herzegovina, with slender tarsi. D. redtenbacheri has more affinities with D. pilifer and D. winneguthi, also from Bosnia and Herzegovina. Duvalius (Duvaliotes) milleri and Banatiola vandeli colonized the Banat Mts., coming from the west, before the transgression of the Tortonian sea and remained here during Tortonian (Fig. 24: 9). Their migration and the migration of other groups took place, probably, independently from the migration of the troglobionts of the IInd biospeleological province. The dispersion of the two phyletic lineages of Leptodirini, Sophrochaeta, and Drimeotus, was from the Dinaric massif in the same period as the dispersion of Duvalius (Duvaliotes) budai and redtenbacheri groups (Paleogene – Early Miocene), and before the deepening of the Danube and Mureș valleys (Fig. 24: 6-9).

As for Dobrogea, the subterranean fauna has mostly east-Mediterranean and Caucasian-Pontic origins, and probably dates to the Quaternary, perhaps the Pliocene, except for the cave fauna of Peștera Movile. The southern part was submerged during the lower and middle Eocene, the upper Tortonian, the lower and middle Sarmatian, and partly (half of the east) during the upper Sarmatian (See also Sub-chapter V.1).

Chiroptera

(BORDA et al., 2004-2005; DECU et al., 2003, 2005; DUMITRESCU et al., 1955, 1963; DUMITRESCU & ORGHIDAN, 1963; Gheorghiu et al., 2001 ; VALENCIUC, 2003)

Fig. 25. Chiroptera. A. Rhinolophus euryale; B. Rhinolophus mehelyi; C. Rhinolophus hipposideros; D. Rhinolophus ferrumequinum; E. Barbastella barbastellus; F. Miniopterus schreibersii (watercolours by Marinela Nazareanu).

The bats, with 31 species, represent the only vertebrate group known in Romanian caves. Seven species are troglophiles: Rhinolophus ferrumequinum; R. hipposideros; R. mehelyi; R. euryale; Myotis myotis; Miniopterus schreibersii; Pipistrellus pipistrellus. R. ferrumequinum, with a large Palearctic distribution is the most common species (Fig. 25D), present in the entire country with hibernation or parturition colonies and even permanent colonies. R. hipposideros was found in all karst areas of Romania (Fig. 25C), where they do not form big colonies. R. mehelyi was found only in Dobrogea with hibernation and maternity colonies in caves (Fig. 25B). R. euryale, forms during summer a big colony in Peștera lui Adam de la Băile Herculane (Fig. 25A). Myotis myotis is present all over the country and forms important colonies of hibernation and parturition. Miniopterus schreibersii is found all over the country in hibernation and parturition colonies and even permanent colonies (Fig. 25F). Pipistrellus pipistrellus is present in few caves in the Apuseni Mts. and Southern Carpathians (it forms together with Pipistrellus pygmaeus, a big colony in Șura Mare cave in Hunedoara) (Fig. 26E). Other species like Myotis blythii and Barbastella barbastellus form hibernation colonies in caves (Fig. 25E and 26A), and Plecotus auratus has hibernation and maternity colonies in caves (Fig. 26C).

Fig. 26. Chiroptera. A. Myotis blythii; B. Myotis emarginatus; C. Plecotus auritus; D. Myotis daubentoni; E. Pipistrellus pipistrellus (watercolors by Marinela Nazareanu).

IV – Cave microorganisms and flora

(BALAZUC, 1970, 1973; BERCEA et al., 2018, 2019; BORDA & BORDA, 2004-2005; BORDA et al., 2014; BRAD et al., 2018; CHEN et al., 2009; CHIURTU & DUMITRU, 1995; DECU, 1959, 1961a; DECU & DECU, 1961b; DECU & PAPACOSTEA, 1964; FARCAȘ et al., 2000-2001, 2004-2005; FEURDEAN et al., 2011; FLOT et al., 2014; GANZERT et al., 2014 ; L. GRUIA, 1973; HILLEBRAND-VOICULESCU et al., 2014; HODOROGEA, 1972; HUTCHENS et al., 2004 ; IȚCUȘ et al., 2016, 2018 ; KUMARESAN et al., 2014 ; MANOLACHE, 2004-2005; MOLDOVAN et al., 2020; NOVAKOVA et al., 2018; POP, 1940, 1949; POP & CIOBANU, 1950; RACOVITZA, 1927; ROHWERDER et al., 2003; SARBU, 2000; SARBU et al., 1991, 1992, 1996, 2019; SARBU & KANE 1995; SARBU & POPA, 1992; SCHIRMACK et al., 2014; SERBANESCU & DECU, 1962; STEFUREAC, 1970; VLASCEANU et al., 1997)

Three contributions concern the microbiology of different trophic substrates in caves, and the intestine of troglobiont beetles (Decu, 1961a; Decu & Papacostea, 1964; Hodorogea, 1972). The works were done also on the cave mondmilch by Manolache (2004-2005), on air microorganisms in show caves were undertaken by Borda & Borda (2004-2005), Borda et al. (2014), and Bercea et al. (2018, 2019) and on water bodies in show caves by Moldovan et al. (2020).

The presence of microorganisms in Ghețarul de la Scărișoara was first noted by Pop in 1949 when nitrifying bacteria were identified in one part of the cave devoid of ice. More recent studies have revealed the presence of various types of psychrophilic microorganisms in ice layers from the ice block (most recent ice) to 400 and 900 years old ice. Bacteria (Hillebrand-Voiculescu et al., 2014; Ițcuș et al., 2016, 2018) and fungi (Brad et al., 2018) of various types are present and active in the ice, surviving on the organic matter trapped within every ice layer with yearly deposition.

Chemoautotrophic bacteria from the lakes in Peștera Movile were also studied (Chiurtu & Dumitru, 1995; Lazar et al., 2004-2005; Sarbu & Popa, 1992, Sarbu et al., 1994; Sarbu, 2000; Vlasceanu et al., 1997, etc.). Microorganisms thrive on the energy source originating from the below thermo-mineral aquifer, i.e., reduced chemical compounds, such as H2S, CH4, and NH4 (Sarbu and Kane, 1995; Sarbu, 2000). The microbial community in Movile Cave consists mainly of sulfur-oxidizing bacteria (Thiobacillus, Thiothrix, Thioploca, Thiomonas, and Sulfurospirillum) that use the hydrogen sulfide as an energy source (Chen et al., 2009; Flot et al., 2014; Kumaresan et al., 2014). These microorganisms live freely in the water body. They may gather in loose veils or complex and thick biofilms or live as epibionts on crustaceans' bodies (Flot et al., 2014). Several other microorganisms in the Movile ecosystem use methane as carbon and energy sources through various biochemical pathways. Methane oxidation is performed here by microorganisms belonging to Methylomonas, Methylococcus and Methylocystis (Hutchens et al. 2004), Methanobacterium (Schirmack et al. 2014) and Methanosarcina (Ganzert et al. 2014), alongside other methylotrophs (Rohwerder et al., 2003; Chen et al., 2009). Ammonia- (Nitrosomonas sp.) and nitrite- (Nitrospira sp.) oxidizers, together with denitrifying microorganisms (Denitratisoma sp. and Paracoccus denitrificans) were also identified (Chen et al., 2009). Archaea of the Korarchaeota, Crenarchaeota, and Euryarchaeota are also present in Peștera Movile (Chen et al. 2009). Eukaryotic microbes are represented in Movile by ciliate protozoans and fungi. The ciliates (Stentor coeruleus, Euplotes eurystomus, Spirostomum teres, Blepharisma undulans, Oxytricha sp., Paramecium aurelia, Uronema sp., Cyclidium sp.) swim freely within the water or through microbial mats, predating the bacteria actively or grazing the biofilms (Sarbu et al., 2019). Fungi in Movile were studied from various terrestrial and aquatic habitats (Nováková et al. 2018), and the identified fungal community was considerably different from that obtained from the above soil samples.

Decu in 1959 and Decu & Decu, in 1961, have mentioned the presence of parasitic micromycetes [Hyphomycetes, Troglobiomyces guignardi (Maheu)] on Closania orghidani and the hymenopteran Amblyteles quadripunctorius. For Closania, a severe reduction in the population occurred because of individuals that fed on the infected corpse that contaminated the entire population.

Other works deal with systematics, ecology and morphology of different algae [Geitleria calcarea Friedmann (Cyanophycea), the only troglobiont algae from Romanian caves], lichens, fungi, mosses, Pteridophyta and Spermatophyta (Borza, 1918; Racovitza, 1926; Boros, 1942; Pop, 1940; Stefureac, 1951, 1970; Serbanescu & Decu, 1962; L. Gruia, 1973; Balazuc, 1973). Several papers on bacteria, algae, or plants were also published in Godeanu (ed.), 2011: Cristurean et al., Herlea, Peterfi et al., etc.).

The work of Pop & Ciobanu (1950), Feurdean et al. (2011) on the pollen in Ghețarul de la Scărișoara place the beginning of the ice formation in Sub-Atlantic (3,000 years ago). Palynological researches were undertaken also by Boșcaiu & Lupșa (1967) in caves of Banat (Peștera Haiducilor and Peștera Veterani). Fărcaș et al. (2000-2001, 2004-2005) carried palynologic analyses on guano in Peștera lui Adam de la Băile Herculane and Peștera Liliecilor de la Gura Dobrogei, and from a drill at -11 m in depth in the loess deposit of the Obanul Mare near Peștera Movile. The guano in Peștera Liliecilor de la Gura Dobrogei is Sub-Atlantic and the loess deposit in the Obanul Mare is from the Lower Quaternary.

V – Peculiar subterranean systems

Four subterranean systems offer peculiar biotic conditions and are present in the following subchapters.

V.1 – Peștera (Cave) Movile, the first studied chemoautotrophic subterranean ecosystem in the world

(BERNASCONI, 1991; BOGHEAN, 1989; BOGHEAN & rACOVIȚĂ, 1989; BRAD et al., 2015; CHEN et al., 2009; CONDÉ, 1993, 1996; CONSTANTINESCU, 1989, 1995, 2001, 2002-2003; CURCIC et al., 1993; DECU & GEORGESCU, 1994; DECU et al., 1994 a, b; DECU & JUBERTHIE, 1994; DIACONU & MORAR, 1993; DIACONU, 2002-2003a, b; FALNIOWSKI et al., 2008; FARCAS et al., 2004-2005; FERU & CAPOTA, 1991; FLOT et al., 2014; GANZERT et al., 2014; GEORGESCU, 1989, 1994; GEORGESCU & SARBU, 1992; GEORGESCU & CAPUSE 1992; GEORGESCU & DECU, 1994; GIURGINCA et al., 2009; GROSSU & NEGREA, 1989; GRUIA, 1989, 1998-1999, 2003; GRUIA et al., 1994, 1998; HUTCHENS et al., 2004; IAVORSCHI, 1992; IVAN & vASILIU, 2010; KARAMAN & SARBU, 1993, 1995; KUMARESAN et al., 2014; LASCU, 1989, 2003, LASCU et al., 1994, 1995, 2000; MANOLELI et al., 1998; MARIN & NICOLESCU, 1993; MUSCHIOL et al., 2008, 2015; NAE et al., 2012, 2018; NEGOESCU, 1989; NEGREA 1993; NITZU, 1997, 2001; NITZU & DECU, 1998; NOVÁKOVÁ et al., 2018; PLESA, 1989; POGGI, 1993; POGGI & SARBU, 2013; POINAR & SARBU, 1994; POPA & SARBU, 1991; RIESS et al., 1999; ROHWERDER et al., 2003; SARBU, 1990, 1991, 2000; SARBU et al., 1991, 1992, 1994, 1995, 1996, 2019; Schirmack et al., 2014; STIUCA & ILINCA, 1995; STOcchino et al., 2017; TABACARU & BOGHEAN, 1989; turk- PREVORČNIK & BLEJEC, 1998; TURK et al., 1996; VLASCEANU et al., 1997; WEISS & SARBU, 1994, 1996).

Peștera Movile is 0.5 km from the town of Mangalia and 2 km from the Black Sea shore. It belongs to the Dobrogea South Plateau and the littoral zone of Dobrogea (Figs. 27 and 28). Peștera Movile was discovered in 1986 when drilling for a project of a thermal power plant has fallen a big void. The project was abandoned after the discovery of Peștera Movile by Cristian Lascu from the “Emil Racoviță” Institute of Speleology. It is the first cave in the world where the development of a cave biological community based on in situ primary production by bacterial chemosynthesis was documented. In the absence of green plants, the primary producers are sulfur-oxidizing bacteria (e.g., Thiothrix, Thiobacillus, Beggiatoa, Thioploca, Thiomonas, Sulfurospirillum) that obtain the energy for carbon fixation from CO2 by oxidizing H2S of the aquifer thermo-mineral water.

Karst area. The Movile Cave was formed in Sarmatian lumachellic and oolithic limestone by ascending mesothermal sulfurous waters, in the dry climate of a karstic plateau very close to the Black Sea (Constantinescu, 1995, 2000-2003). The thickness of the limestone is about 100 m with 400 m of thick of underneath Eocene, Cretaceous, and Jurassic limestones.

The exokarst. The large sinkholes (the "Obane") exceeding 250/300 m on the surface are Obanul Mare, Obanul Mic, and Obanul Blebea. These depressions are at different stages of filling. Constantinescu described three evolutionary stages for these sinkholes: lake, swamp, and dry Oban. The Obanul Mare (the Big Sinkhole) is in the last stage, with a surface of 400/300 m and a depth of 10-14 m; the thickness of the loess and clay filling is of about 70 m. During storms, rainfall water is quickly lost in the voids at the Oban's NE limestone base. The Obanul Mic (the Little Sinkhole, 250/200m surface and 7-10 m in depth) is in the stage of a swamp – lake, fed by a small permanent water source. The thickness of the filling exceeds 40 m. The Obanul Blebea (600/450m surface and 12-16 m in depth) is in the stage of lake-swamp being fed by mesothermal sulfurous springs.

Small sinkholes (5 – 30 m surface and 3 – 10 m in depth), which are numerous on the edge of Obane, alternating with conical limestone hills (10 – 40 m surface and 3 – 8 m height), named “Movile”, also represent collapse depressions, negative exokarst. Sediments accumulated on the bottom, representing a 2-3 m layer of loess, clay, and limestone pebbles, are wet and rich in organic matter and present a rich endogean fauna. The sediments are covered by xerophile, thermophile, and chalcophile herbaceous and shrubby vegetation with Paliurus spina-christi and Crataegus monogyna. The bottom of many of these small sinkholes may represent cleithric M.S.S. (see also Subchapter V.4).

Fig. 27. Peștera Movile: location in South-Dobrogea, south-eastern Romania.

Exploratory drillings (boreholes) near Peștera Movile. Decu together with the Romanian Institute of Geological Prospections realized in 1994 two boreholes in Obanul Mare, with depths of 13 cm, and 22 m and 24 m, located at ~40 m N and ~10 m S of the artificial shaft opening in the cave, to collect fauna in micro spaces (Figs. 28A and 29). At the base of the boreholes, there is sulfurous water with ~22oC temperature and a variable level, and the air temperature was ~21oC. In both boreholes, perforated plastic tubes (11 cm diameter) filled with limestone fragments were inserted, and the tubes were filled with a saturated solution of NaCl or ethylene glycol. The tubes were suspended every 3 meters, and fauna collected monthly for six years (1995-2000). The drillings in the Movile area have intercepted underground voids with heights of 0.3 – 2.5 m, at a similar level to Movile Cave.

The Cave. Peștera Movile was physically isolated from the surface before the artificial drilling. The cave develops at -18 m depth, below the topographic surface in 8- 20 m thick, very brittle, and porous limestone, dated between 14 and 16 Ma (Diaconu, 2000-2003). The cave can be accessed through an artificial pit sealed by a concrete slab and a double lock and it consists of two levels of narrow and low galleries without speleothems (Figs. 28C and 29): the 1st level consists of a 200 m long Upper dry passage (Fig. 29), arguably developed in the Middle and Upper Pleistocene [Uzunlarian (0.2 Ma) and Karangatian (0.15 Ma); Diaconu, 2002-2003], closed by a mix of limestone, loess and clay, which forms the insulating cap of the large sinkhole (Obanul Mare) near the cave; the 2nd level is represented by a 40 m long Lower passage (Figs. 28D and 29), with a lake and a partially submerged gallery with air bells. It might date from pre-Würm age IV (Neo-Euxinic, possible Post-Karangatian, 0.1 Ma; Diaconu, 2002-2003). It has sulfurous thermo-mineral water at 20 °C, leaving air pockets with low oxygen and high in H2S a, where many troglobionts gather to feed on the microorganisms' mats (see also Table IV).

The underground network, including the cave, were formed essentially by buoyant sulfurous water (Constantinescu, 1995, 2002-2003). The process of karstification is still active. Sulfuric acid corrosion in the Lower passage and the condensation corrosion by acidic vapors in the Upper Passage are affecting the walls and are the two limestone dissolution processes currently shaping the morphology of the Movile Cave (Sarbu, 2000). These sulfurous waters are part of a broader sulfurous aquifer accessible through wells and sulfurous springs along the Black Sea shore, known since the Greek and Roman times, and extending 15 km to the north and 50 km to the south of Mangalia, including Bulgaria. Aquifer waters' chemical characteristics are identical to those of Movile Cave (Lascu et al., 1993). These sulfurous waters come from a confined aquifer in the Jurassic and Cretaceous limestones at a depth of 400 m.

A significant feature of the cave is the presence on the water surface of a mat represented by a network of Oomycetes fungi hyphae with abundant populations of sulfur-oxidizing bacteria (Thiobacillus, Beggiatoa, etc.).

The fauna. The cave and the micro- and mesovoids of the endokarst of Movile Cave contain diversified and original biotic communities. These communities maintained due to Sarmatian limestone properties, climate influenced by the proximity of the Black Sea, hydrothermal activity in the region, and zoogeographical position of South Dobrogea. Peștera Movile is a subterranean Ponto-Euxinic refuge. Most species have reduced populations inside the caves, which suggests that most troglobionts and stygobionts live in the micro-spaces of the Sarmatian limestone.

Fig. 28. A. Details on the cave location and endokarst. Position of Peștera Movile, the Obanul Mare, Mangalia city and the two drillings (1▲ and 2▲) (Google maps, satellite view); B. The entrance of the Upper dry gallery (Photo S. Sarbu & C. Lascu); C. The Lake Room with the microbial mats that float on the thermal sulfidic water surface (Photo C. Lascu).

Table IV. Fauna in Air Bells 1, 2, and 3 (After Sarbu, 2000; modified).

Fig. 29. Cross-section of Peștera Movile (map modified after Sarbu, 2000; chemical and physical factors from Marin & Nicolescu, 1993).

Fig. 30. Possible depth repartition of selected Isopoda, Diplopoda, Aranea, Pseudoscorpiones, Acari, Collembola, and Coleoptera from Movile Drillings 1 and 2 (modified after Giurgincă et al., 2009). See also Chapter V.4 for explanations.

Fig. 31. Stygobiontic representatives of Peștera Movile: A. Nepa anophthalma; B. Heleobia dobrogica; C. Haemopis caeca; D. Eucyclops subterraneus scythicus (watercolors by Violeta Berlescu).

Fig. 32. Troglobiontic representatives of Peștera Movile: A. Armadillidium tabacarui; B. Agraecina cristiani; C. Roncus dragobete; D. Clivina subterranea; E. Oncopodura vioreli; F. Cryptops anomalans (watercolors by Violeta Berlescu).

Most taxa are eyeless or depigmented (Caucasonethes, Hahnia, Lepthyphantes, Pontoniphargus, Trachelipus, etc.), others have eyes in immature stages that reduce or disappear in adults (Agraecina), others have slightly reduced eyes (Armadillidium, Clivina, Carniella, Medon, Nepa). It suggests a mixture of ancient and recent troglobiontic and stygobiontic species, and the succession of several phases of colonization at different periods.

Peștera Movile is a hot-spot of subterranean biodiversity with some exceptional species: Chronogaster troglodytes – the only stygobiont nematode of Romania, the leech Haemopis caeca – the only stygobiont species of the genus, Nepa anophthalma – the only stygobiont Hemiptera, the isopod Trachelipus troglobius, – the only troglobitic species of the genus, the spider Hahnia caeca – the only troglobiont of the family, Lepthyphantes constantinescui and Nesticus sp., the only anophthamic troglobionts of these genera in Romania, etc.

The presence of some species in the cave and the aquifer, such as Pontoniphargus racovitzai endemic for Dobrogea, and stygobiont populations of Asellus aquaticus infernus, widespread species in Europe, show that the colonization of Movile was done by groundwater species that have adapted to high concentrations of hydrogen sulfide. The other stygobionts might originate from surface species, more or less thiophilic and thermophiles, such as Nepa or Haemopis, and colonized the water-filled voids on the edge of the sinkhole when Obanul Mare was a lake-swamp or swamp fed by buoyant mesothermal springs.

In both boreholes, drilled in 1994, and the traps installed in the access pit walls, over 70 species mostly from subsurface voids were identified. It also led to the discovery of several troglobionts described (or currently being described) of the cave, which inhabit the deep and superficial limestone voids (see Table V). These include Haplophthalmus movilae, Armadillidium tabacarui, Caucasonethes n. sp., Archiboreoiulus n. sp., Agraecina cristiani (which, together with Archiboreoiulus were sampled also in the abandoned dry wells of the city of Mangalia), Chthonius monicae, Clivina subterranea and Medon dobrogicus. Species that have populations living in the M.S.S. and collected only in two boreholes were Chaetophiloscia sicula (Mediterranean species), Chaetophiloscia hastata (Eastern Mediterranean), Kithironiscus dobrogicus (endemic), Limnastis galilaeus (Mediterranean). Species with epigean and subterranean populations (cleithricolous and cavernicolous) are Cryptops anomalans (Mediterranean, Eastern Europe), Heteromurus nitidus (Holarctic), Porotachys bisulcatus (Palaearctic). The epigean species with a wide distribution, with significant cleithricolous populations [some with high relative abundance (Chaetophiloscia sicula and Dysdera crocata)], collected throughout the year and at all depths in boreholes. The dominant species were represented by Dysdera crocata (cosmopolitan), Palliduphantes byzantinus (Balkan), P. insignis (Europe), Trachelipus arcuatus (Balkan – Central Europe), Trachelipus nodulosus (Balkan – Central Europe), Platyarthrus coronatus (endemic) and Parazuphium chevrolati (Mediterranean – Caucasian) etc. (see Giurgincă et al., 2009; Nitzu et al., 2010; Table V).

The cave was isolated from the surface after the Neo-Euxinic until the drilling in 1986. Remains of small mammals (jaws of Micrurus epiroticus and Lagurus lagurus) near the filling that isolates the Obanul Mare dates between 24,000 and 12,000 years ago, demonstrating that the Upper dry gallery was open and dry during this period (the Neo-euxinic) (Știuca et al., 1995).

The colonization of Peștera Movile and the deep network of voids of the endokarst was possible after Upper Sarmatian or, more precisely, after Upper Paleo-Euxinic [most probably at the end of the Uzunlarian (0.2 Ma)], when the level of the Black Sea lowered below the topographic surface of the region (Diaconu, 2002-2003). The cold and dry Pleistocene (especially the Upper Pleistocene) and Holocene climate periods represent the main factors that influenced the understanding of the fauna in the underground of Sarmatian limestones.

During the Würm glacial period, the periglacial climate dominated, and during the Sub-Atlantic period, a secondary anthropic steppe installed in South Dobrogea (S. Fărcaș, pers. comm.). At present, the annual average precipitation is about 350 mm and 750 mm the evapotranspiration.

Table V. Stygobiont and troglobiont taxa that inhabit the Sarmatian karstic ecosystem of Movile. Note: ●● =specific taxa with troglobiont and M.S.S. populations; ?●?● = probable troglobiont and M.S.S. taxa; Taxa with cave (o) and M.S.S. (o) populations (oo= troglophiles and M.S.S.). Excepting the taxons with an asterisk (*), all the others are endemics.

________________________________________________________________________________________________________________

Turbellaria

Dendrocoelidae

Dendrocoelum obstinatum Stocchino & Sluys, 2017

Nematoda

Rhabditidae

Poikilolaimus sp.

Panagrolaimidae

Panagrolaimus cf. thienemani

Chronogasteridae

Chronogaster troglodytes Poinar & Sarbu, 1994

Hirudinea

Haemopidae

Haemopis caeca Manoleli, Klemm & Sarbu, 1989

Gastropoda

Moitessieriidae

Heleobia dobrogica (Grossu & Negrea, 1989)

Ostracoda

Candonidae

Pseudocandona n. sp.

Copepoda

Cyclopidae

Eucyclops subterraneus scythicus Pleșa, 1989

Ameiridae

Parapseudoleptomesochra italica Pesce & Petkovski, 1980 *

Isopoda

Asellidae

Asellus aquaticus infernus Turk-Prevorčnik & Blejec, 1989

Amphipoda

Niphargidae

Niphargus dancaui Brad et al., 2015

Pontoniphargus racovitzai Dancău, 1970

Heteroptera

Nepidae

Nepa anophthalma Decu, Gruia, Keffer & Sarbu, 1994

Isopoda

Armadillidiidae

●●Armadillidium tabacarui Gruia, Iavorschi & Sarbu, 1994

Platyarthridae

o Platyarthrus coronatus Radu, 1959 *

Philosciidae

?● Chaetophiloscia sicula Verhoeff, 1908 *

o Chaetophiloscia hastata Verhoeff, 1929 *

Scleropactidae

●Kithironicus dobrogicus Tabacaru & Giurginca, 2003

Trachelipodidae

o Trachelipus arcuatus (Budde-Lund, 1885) *

o Trachelipus nodulosus (C. L. Koch, 1838) *

Trachelipus troglobius Tabacaru & Boghean, 1989

Trichoniscidae

●●Caucasonethes n. sp.

●●Haplophthalmus movile Gruia & Giurginca, 1998

Pseudoscorpiones

Chthoniidae

?●Chthonius decui Georgescu & Căpușe, 1994

●●Chthonius monicae Boghean, 1989

?●Chthonius scyticus Georgescu & Căpușe, 1994

Neobisiidae

●?● Roncus dragobete Ćurčić, Poinar & Sarbu, 1993

●?● Roncus ciobanmos Ćurčić, Poinar & Sarbu, 1993

Araneae

Dysderidae

oDysdera crocata C. L. Koch, 1838 *

Hahniidae

Hahnia caeca (Georgescu & Sarbu, 1992)

Linyphiidae

Lepthyphantes constantinescui Georgescu, 1989

oPalliduphantes byzantinus Fage, 1931 *

oPalliduphantes insignis (O.P.-Cambridge, 1913) *

Liocranidae

●●Agraecina cristiani (Georgescu, 1989)

Nesticidae

Kryptonesticus georgescuae Nae et al., 2018

Theridiidae

Carniella brignilii Thaler & Steinberger, 1988

Acari

Hermanniellidae

?●Hermanniella multipora Sitnikova, 1973 *

Labidostomidae

?●Labidostoma motasi Iavorschi, 1992

Lohmanniidae

?●Papillacarus ondriasi Mahunka, 1974 *

Oppiidae

●?●Lasiobelba pontica Vasiliu & Ivan, 2011

?●Multioppia callatisiana Vasiliu & Ivan, 2011

Chilopoda

Cryptopidae

o oCryptops anomalans Newport, 1844 *

Diplopoda

Iulidae

Apfelbeckiella dobrogica Tabacaru, 1966

●●Archiboreoiulus n. sp.

Collembola

Entomobryidae

o oHeteromurus nitidus (Templeton, 1835) *

Oncopoduridae

●?●Oncopodura vioreli Gruia, 1989

Onychiuridae

Onychiurus movile Gruia, 1989

Diplura

Campodeidae

●?●Campodea neuherzi Condé, 1996

●?●Plusiocampa euxina Condé, 1996

●?●Plusiocampa isterina Condé, 1996

Coleoptera

Carabidae

●●Clivina subterranea Decu, Nitzu & Juberthie, 1994

oLimnastis galilaeus Brullé, 1875 *

oParazuphium chevrolati (Castelnau, 1973) *

o o Porotachys bisulcatus (Nicolai, 1822)

Staphylinidae

Bryaxis dolosus Poggi & Sarbu, 2013

Decumarellus sarbui Poggi, 1994

●●Medon dobrogicus Decu & Georgescu, 1994

o Medon fuscus (Mannerheim, 1830) *

?●Medon paradobrogicus Decu & Georgescu, 1994

Tychobythinus sulphydricus Poggi & Sarbu, 2013

___________________________________________________________________________________________________________

V.2 – Ghețarul (Ice Cave) de la Scărișoara

(BRAD et al., 2018 ; FEURDEAN et al., 2011; HILLEBRAND et al., 2015; ITCUS et al., 2016, 2018; PERSOIU, 2011; PERSOIU & PAZDUR, 2011; POP & CIOBANU, 1950; RACOVITZA, E., 1927; RACOVITA, G., 1967, 1970, 1980, 1994; RACOVITA et al., 2000 ; RUSU et al., 1970; SERBAN et al ., 1948; VIEHMANN et al., 1963).

This cave was formed in Upper Jurassic limestones at 1165 m a.s.l. and has a length of 700 m (Fig. 33A). Its opening is a pit 105 m deep, which functions as a trap of cold air and allows the conservation of a perennial ice deposit. The ice deposit has approximately 100,000 m3, one of the biggest in Europe, with the age of 3,500 years (Feurdean et al., 2011). The ice forms mainly in the big chamber during the winter-spring seasons. The temperature of the iced sector never exceeds 0˚C. The deeper sectors of the cave have few ice stalagmites, and the air temperature has positive values all year long.

A research program on the climate evolution in Scărișoara area started in 1948 and continued in 2003, with isotopic analysis, pollen, and macrofossils identification, etc. (Perșoiu, 2011; Perșoiu & Pazdur, 2011, Feurdean et al., 2011). Samples of organic matter from the exposed wall were radiocarbon dated (Perșoiu & Pazdur 2011), allowing for the reconstruction of past dynamics of ice and vegetation in the surrounding area (Feurdean et al., 2011). Out of the 22.5 m total thickness of the ice block (Hollund et al., 2005), the upper 12 m accumulated during the last ~900 years, between the onset of the Medieval Warm Period and the end of the Little Ice Age. On the same ice layers, Hillebrand-Voiculescu et al. (2014) and Brad et al. (2018) have found both prokaryotic and eukaryotic microorganisms, thriving in both organic-rich ice and translucent ice layers.

The only species founds so far in this cave are Nesticus racovitzai, Troglohypanthes racovitzai, Oncopodura crassicornis, Onychiurus spp., Tomocerus minor, and Pholeuon knirschi glaciale (Racoviță and Onac, 2000). The Leptodirini troglobiont Pholeuon knirschi glaciale populations have fluctuation linked to the seasonal oscillations of the glaciated zone. It seems that this beetle lives in Scărișoara at the ecological limit of its area of distribution (Racoviță, 1980; Fig. 33B).

Fig. 33. Ghețarul de la Scărișoara: A. Cross-section of the ice cave with meroclimatic zones (modified after Rusu et al., 1971); B. Monthly dynamics of Pholeuon knirschi glaciale in the Little Reservation (in blues) and the Coman passage (in reds) (modified from Racoviță, 2000).

V.3 – Peștera (Cave) lui Adam de la Băile Herculane

(CARBONNEL et al., 1996, 1999, 2000; DECU et al., 1974, 1976; POVARA, 2012, POVARA et al., 1972; TUFESCU & DECU, 1977)

Peștera lui Adam is 168 m long and reproduces the morphology and climate traits of a tropical cave with pockets of hot air. It represents a tropical subterranean oasis in a temperate region, rare phenomenon in the European karst, and of great ecological interest. The cave develops in Jurassic-Cretaceous limestones, at 295 m a.s.l. and has two passages (Fig. 34). One of the passages is covered by a 2.5-3 m thick layer of bat guano and has a pocket of warm air at 28-30˚C. The other passage is filled with hot air (46-55˚C), with hydrothermal vapors rich in CO2, SO2, and radon. The cave microclimate is also influenced by a big colony of Chiroptera, dominated by Rhinolophus euryale. The emanation of warm air consists of pulsations that can be interrupted by abundant precipitations that fill the passages that are the vapors' source, for variable time intervals. On the ceiling of the "Vapor Passage", a biofilm of crusts and gelatinous stalactites of microbial origin was developed.

Fig. 34. Map of Peștera lui Adam (Modified after Povară et al., 1972; Povară, 2012); RH = air relative humidity

Fig. 35. Organization of the bat guano biocenosis in the temperate zone; generating factors: A. Peștera lui Adam, a thermal cave of tropical type; B. a non-thermal cave of temperate-climate type (After Decu & Tufescu, 1976; Decu, 2003; modified).

The biological community has a guanophilous component with fauna groups mainly known from tropical caves (Uropodidae, Cryptopidae, or Histeridae). Two thermophilous, saprophagous, and guanophagous Uropodidae mites dominate the guano community. Uroactinia (Chiropturopoda) cavernicola (97.6%) and Trichouropoda orbicularis (2.4%). represent 99.4% of the cave population. Uroactinia cavernicola is an endemic troglobiont. The abundance of other codominant taxa is 0.6%, and the index of diversity is very reduced, of 0.443 bits. During winter, October/November and April/May, in the absence of bats, the abundance of U. cavernicola declines to 78% and of T. orbicularis increases to 21%.

A second simplified community, similar to guano communities in temperate caves of the region (8-9˚C), non-influenced by the hydrothermalism exist in the cave. Components of this second community are represented mainly by two troglobionts with larger distribution in the region (the isopod Trichoniscus inferus and the spider Nesticus cernensis). These species find refuge at the base of the entrance pit, where the temperature is lower than in the cave, and guano is mixed with clay and organic debris. The presence of a second biological community sustains the hypothesis that thermalism manifested subsequently, maybe between the end of the Pleistocene and the beginning of Holocene (Carbonnel et al., 1996; Povară, 2012; Fig. 35). Two radiocarbon datings of guano sampled at 2.5 m depth, fixed the onset of the guano deposition at 7,600 ± 80 years BP (14C ka). The age of the pollen sampled at 1,65 m depth in guano corresponds to the guano dating (~4,500 years BP) (Carbonnel et al., 1999; Fărcaș et al., 2000-2001). The bats' colony installed during Boreal (warm and dry), created the climate favorable for U. cavernicola. Subsequently, the humid and fresh climate of the Subatlantic period, which started at about 2,500 BP, has probably isolated the population inside the cave.

Large quantities of guano in Peștera lui Adam and other caves represent not only critical trophic features but also true subterranean archives for climatic, zoologic, palynologic, paleontologic, and seismologic information, accumulated in thousands of years. For example, the limestone debris accumulated at different depths in the guano deposit attest periods of strong seismicity at 4,300 years BC and between 2,000- and 3,000-years BC (see Carbonnel et al., 1999).

V. 4 – The Mesovoid Subterranean Substratum (M.S.S.)

(DECU et al., 1983, 1991, 2004-2005; GIURGINCA, 2009; GIURGINCA et al., 2003, 2009, 2011; GRUIA, 2000; GRUIA et al., 2000-2001; ILIE, 2003, 2007; ILIE et al., 2002; JUBERTHIE et al., 1981; NAE, 2010; NEGREA et al., 2004; NITZU et al., 2002-2003, 2007, 2010, 2014; RACOVIȚĂ, 1983, 1984b; RACOVIȚĂ et al., 1981, 1982)

The M.S.S. was studied for the first time in Romania, in 1981, by Juberthie, Delay, Decu & Racoviță on the slopes of several valleys of the Southern Carpathians and the Apuseni Mts. The two M.S.S. types described in the Pyrenees (Fig. 36) were also found in Romania. These two types were defined by Decu & Racoviță (1983, 1991) as colluvial (from the Latin colluvium) for screes, and cleithric (from the Greek kleithria) for superficial fractured M.S.S. These M.S.S. types are colonized by typical subterranean invertebrates, including Leptodirinae and Trechinae beetles, Trichoniscidae, Mesoniscidae Isopoda, and Linyphiidae Araneae.

In 1982, Juberthie, Decu & Suciu, then Racoviță have conducted studies in the valleys of Gârda and Ordâncușa (Apuseni Mts.), where they collected representatives of Duvalius, Drimeotus and Mesoniscus, and Pholeuon knirschi proserpinae (Racoviță, 1984b).

Fig. 36. A. Cleithric or fractured M.S.S. develops in superficial cracks of the karstic or non-karstic rocks covered by soil; B. Colluvial M.S.S. is composed of a network of small voids developed in a detrital material of different origins (scree): it develops at the bottom of the valley slopes through the gravitation action.

In 1982, Racoviță & Șerban studied both composition and seasonal variation of subterranean representatives (Drimeotus, Duvalius and Mesoniscus) in four M.S.S. stations of the Iada and Leșului valleys and from Peștera din Valea Leșului (Apuseni Mts.).

Between 1998 and 2001, Decu, Georgescu, Iavorschi & Gheorghiu made drillings in calcareous and non-calcareous colluvial deposits from the Southern-Western Carpathians: valleys of Cerna, Tismana and Motru at Băile Herculane, Baia de Aramă and Cloșani localities, and Tismana monastery. The following troglobionts were found: Mehadiella paveli, Sophrochaeta globosa, S. mihoki, Sophrochaeta sp., Duvalius hegedusi, and other species common for both scree and caves: Trichoniscus inferus, Mesoniscus graniger, Troglohyphantes herculanus, Sophrochaeta insignis. The most abundant species in these stations were the Leptodirini. Excepting for T. inferus and T. herculanus that have eyes, all the other taxa are eyeless.

Between 1998 and 2008, Nitzu, Giurginca, Ilie, Nae, Popa, and others have done dozens of drillings in screes of five karst areas of South Dobrogea and the Carpathians. They collected at relatively superficial depth and identified over 400 invertebrates, mostly carabids and staphylinids. Almost all are terricolous (sensu Paulian, 1988) and endogenous and were analyzed for diversity (Nitzu et al., 2010, 2014).

VI – Anthropological discoveries

(ALEXANDRESCU et al., 2010; DOBOS et al., 2010; FU et al., 2015, 2016; MOLDOVAN et al., 2003b; NICOLAESCU-PLOPSOR, 1957; ROUGIER, 2012; TRINKAUS et al., 2003, 2013)

The discovery of the second oldest directly dated modern human remains (Homo sapiens) in Peștera cu Oase, Banat (an incomplete skull and a mandible; Fig. 37) radiocarbon dated at 35,000 years BP, mixed with bones of Quaternary mammals, is remarkable. The molecular analysis (Fu et al., 2015, 2016) demonstrated that the mandible came from a hybrid between Homo sapiens and Homo neanderthalensis. It possesses 6 to 9 % of the Neanderthal genes. The hybridization was dated four to six generations before.

Fossils of Homo sapiens were found in other Romanian caves. In Peștera Cioclovina Uscată, a skull dated at 30,000-29,000 BP and in Peștera Muierii de la Baia de Fier, a skull and bones dated at 30,000-29,000 BP (Alexandrescu et al., 2010; Doboș et al., 2010).

Fig. 37. A. Remains of an early European modern human discovered in Peștera cu Oase of SW Banat (Romania) (Photo by H. Rougier). B. Peștera cu Oase, from left to right: Ș. Milota (a member of the speleological ProAcvaGroup, one of the discoverers of the site); H. Rougier (anthropologist, California State Univ. Narthridge); O.T. Moldovan (Photo by M. Gherase).

VII – Conservation

(BOTOSANEANU et al., 1967; DECU et al., 1967, 1982a; GORAN, 1982; MOLDOVAN, 2003a, 2005, 2011a, 2013, 2019, 2020a, b, c; ORGHIDAN et al., 1965; PLĂIAȘU & BĂNCILĂ, 2018)

The founding of the first speleological Institut in Cluj, in 1920, by Racovitza also traced the policy of protection and conservation of caves and cave fauna.

During the second half of the 20th century, the protection and conservation of caves remained under the regulations of the Romanian Academy Natural Heritage Commission. In 1973, a new law established the transfer of the caves' protection to the local communities. This law will leave caves without real protection. Later, the associations of cavers took over the custody and protection of some of the caves. The Institut of Speleology will be involved in projects for identification, mapping, and description of caves and provide informative support for the knowledge and protection of the underground environment. "Researches on cave of Banat and Oltenia, Romania (1959-1962)" (Botosaneanu et al., 1967; Decu et al., 1967), the first catalog of Romanian caves called "Map of Karst Region in Romania (Orghidan et al., 1965), and "The systematic cave catalog of Romania” (Goran, 1982) are such examples.

After the political changes in 1989, new laws were proposed for the protection of caves (see also Moldovan, 2019). The Ordinance 195/2005 on Environmental protection and the Emergency Ordinance 57/2007 modified by the Law 49/2011 were adopted after the European Community's acceptance. The purpose of this law is to guarantee the conservation and sustainable use of the natural heritage. The national laws explicitly regulate the protection of bats following international conventions.

Researches on the impact of forests and subterranean ecosystems were published by Decu and collaborators. Environmental contamination and tourism impact on caves, cave organisms and other subterranean habitats were published by Moldovan and collaborators. Plăiașu & Băncilă (2018) and Moldovan and collaborators (2013) were also interested in finding biomarkers for conservation and bioindicators for contamination assessment. More recently, a Red List of vulnerable or endangered Romanian cave species and a list of hostpot and coldspot caves were published (Moldovan et al., 2020b, c). Hotspot caves were defined as the caves with many strictly-adapted species, while coldspots are the caves with troglobiont/stygobiont species endemic only for one cave.

Acknowledgment. We are greatly indebted to Violeta Berlescu for the watercolors of the species from Peștera Movile and Marinela Nazareanu for the watercolors of bats, to Cristian Lascu and Serban Sarbu for photos from Peștera Movile and its surface environment. We would like to thank Aurel Perșoiu for the suggestions regarding Ghețarul de la Scărișoara. OTM and TB were supported by a grant of the Ministery of Research and Innovation, CNCS – UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0016, within PNCDI III and by EEA Financial Mechanism 2014-2021, under project EEA138 (GROUNDWATERISK), contract no. 4/2019.

References

ALEXANDRESCU E, OLARIU A, SKOG G, STENTRÖM K, HELLBORG R. – 2010. Os fossiles humains des grottes Muierii et Cioclovina, Roumanie. L'Anthropologie (Paris) 114:341–353.

ALTERR, E. – 1971. Contribution à la connaissauce des Nématodes cavernicoles de Roumanie. Bull. Soc. Vaud. Sc. Nat. Lausanne, 71 pp. 23-46

AVRAM, S. – 1968. Laniatores cavernicoles de Roumanie. Révision des genres Scotolemops Rwr., Brigestus Rwr., et Bukowina Rwr. (Opiliones, Phalangodidae). Ann. Spéléol., 23, 3, pp. 641-665.

AVRAM, S. & D. DUMITRESCU – 1969. Contributii la cunoasterea raspindirii geografice si a ecologiei opilionidelor cavernicole, endogee si epigee din Romania. Lucr. Inst. Speol. E. Racoviță, 8, pp. 99-145.

AVRAM, S. – 1972. Contribution à la connaissance de l'anatomie des régions frontale et ventrale chez les Opilions cavernicoles de Roumanie (Brigestus granulatus Roewer, Nemastoma sillii Herman, Ischyropsalis dacica Roewer). Trav. Inst. Spéol. E. Racoviță, 11, pp. 249-257. Ed. Acad. R.S.R., 654 pp.

AVRAM, S. – 1973. Contribution à la connaissance du développement embryonnaire et postembryonnaire chez Nemastoma cf. sillii Herman (Opiliones, Nemastomatidae). Livre Cinquant. Inst. Spéol. E. Racovitza, pp. 269-305.

AVRAM, S. – 1976. Contribuție la cunoașterea opilionidelor troglofile Brigestus granulatus (Roewer) (Gonyleptomorphi), Paranemastoma sillii (Herman) și Ischyropsalis manicata C.L. Koch (Dyspnoi) din România. Ph.D. Thesis. Inst. St. Biol., Bucuresti, 155 pp. + 40 pl.

BACESCU, M. – 1967. Fauna R. S. Romania. Crustacea Decapoda, 4, 9. Ed. Acad. R. S. R., 351 pp.

BADONNEL, A. & Ch. LIENHARD – 1994. Psocoptera. In: C. Juberthie & V. Decu (eds), Encyclopaedia Biospeologica, T. 1. Soc. Int. Biospéol. Moulis-Bucarest, pp. 301-305.

BALAZUC, J. – 1970. Commentaires sur les Rhachomyces parasites des Trechidae avec descriptions de formes nouvelles (Ascomycètes, Laboulbéniales). Ann. Soc. Entomol. Fr., 6, 3, pp. 677-699.

BALAZUC, J. – 1973. Ebauche d'une flore des Laboulbéniales de Roumanie (Ascomycètes). Livre Cinquant. Inst. Spéol. Emile Racovitza, pp. 463-477. Ed. Acad. R.S.R., 654 pp.

BĂNCILĂ, R.I. & PLĂIAŞU R. – 2009. Sampling efficiency of pitfall traps and Winkler extractor for inventory of the harvestmen (Arachnida: Opilionidae). Travaux de l’Institut de spéologie Emile Racovitza 48: 59-67.

BĂNCILĂ, R. I., PRADEL, R., CHOQUET, R., PLĂIAȘU, R., GIMENEZ, O. – 2018. Using temporary emigration to inform movement behaviour of cave-dwelling invertebrates: a case study of a cave harvestman species. Ecol. Entomol. 43: 551-553

BEAUCHAMP, P. de – 1929. Nouvelles diagnoses de Triclades obscuricoles. 2e. Les Dendrocoelides de Transylvanie. Bull. Soc. Zool. Fr., 54, pp. 20-28.

BEAUCHAMP, P. de – 1940. Etudes Biospéologiques. 20. Triclades obscuricoles de Roumanie (Turbellaria). Bull. Mus. roy. Hist. nat. Belg., 16, pp. 1-5.

BEAUCOURNU, J.-C., SUCIU, M. & V. DECU – 1998. Siphonaptera. In: C. Juberthie & V. Decu (eds). Encyclopaedia Biospeologica, 2. Soc. Int. Biospéol. Moulis-Bucarest, pp. 1008-1113.

BEIER, M. – 1939. Die Höhlenpseudoscorpione des Balkanhalbinsel. Studien Gebiete allgemeinen Karstforschung Biol., ser. 4, Brünn.

BERCEA, S., NASTASE-BUCUR, R., MIREA, I.C., MANTOIU, D.S., KENESZ, M., PETCULESCU, A., BARICZ, A., ANDREI, A-S., BANCIU, H.L., PAPP, B., CONSTANTIN, S., MOLDOVAN, O.T. – 2018. Novel approach to microbiological air monitoring in show caves. Aerobiologia, 34:445-468.

BERCEA S, NĂSTASE-BUCUR R, MOLDOVAN OT, KENESZ M, CONSTANTIN S – 2019. Yearly microbial cycle of human exposed surfaces in show caves. Subterranean Biology 31: 1-14.

BERNASCONI, R. – 1991. Sur une gastéropode prosobranche de la grotte Pestera Movile, Mangalia, Roumanie : Semisalsa dobrogica (Grossu&Negrea, 1989). Comb. Nov. (Hydrobiidae, Littoridininae). Mém. Biospéol., 18, 237-243.

BLEAHU, M. & T. RUSU – 1965. Carstul din Romania. O scurta privire de ansamblu. Lucr. Inst. Speol. E. Racoviță, 4, pp.59-73.

BLEAHU, M. – 1972. Karst of Romania. In: M. Herak & V. T. Stringfield (eds), Important karst regions of the Northern Hemisphere.Elsevier, pp. 341-353.

BOGHEAN, V. – 1989. Sur un Pseudoscorpion cavernicole nouveau, Chthonius (Ch.) monicae n. sp. (Arachnida, Pseudoscorpiones, Chthoniidae). Misc. Speol. Romanica, 1, pp. 77-85.

BOGHEAN, V. & Gh. RACOVIȚĂ – 1989. Données préliminaires sur le topoclimat de la grotte « Pestera de la Movile » (Mangalia-Dobrogea de sud-Roumanie). Misc. Speol. Romanica, 1, pp.19-31.

BORDA, C & D. BORDA – 2004-2005. Airborne microoganisms in show caves in Romania. Trav. Inst. Speol. E. Racoviță, 43-44, pp. 65-73.

BORDA, D, RACOVIȚĂ, Gh. & L. BARTI – 2004-2005. Sur les chiroptères de la collection "Biospeologica". Trav. Inst. Speol. E. Racoviță, 43-44, pp. 217-234.

BORDA, D., NASTASE-BUCUR, R.M., SPINU, M., URICARIU, R. AND MULEC, J., 2014 – Aerosolized microbes from organic rich materials: case study of bat guano from caves in Romania. J. Cave Karst Stud., 76 (2), pp. 114–126.

BOTEA, F. – 1968. Cercetari asupra faunei de Naididae (Oligochaeta) din diferite ape interstitiale hiporeice din Romania. Lucr. Inst. Speol. E. Racoviță, 7, pp. 217-230.

BOTEA, F. – 1970a. Enchytréidés (Oligochaeta) du domaine souterrain de Roumanie. Note I. Trav. Inst. Spéol. E. Racovitza, 9, pp. 183-190.

BOTEA, F. – 1970b. Sur la faune des Lumbricidés (Oligochaeta) des divers biotopes souterrains de Roumanie. Livre Cent. Emile Racovitza (1868-1968), pp. 257-264. Ed. Acad. R.S.R., 699 pp.

BOTEA, F. – 1973a. Enchytréidés (Oligochaeta) du domaine souterrain de Roumanie. Note II. Trav. Inst. Spéol. E. Racovitza, 12, pp. 87-111.

BOTEA, F. – 1973b. Considérations sur l'écologie des Oligochètes hyporhéophiles des différentes stations de la rivière de Crisul Repede. Livre Cinquant. Inst. Spéol. E. Racovitza, pp. 161-170. Ed. Acad. R.S.R., 654 pp.

BOTEA, F – 1977. Oligochete din domeniul subteran din Romania. Ph. D. Thesis, 198 pp.

BOTEA, F. & L. BOTOSANEANU – 1966. Pelodrilus bureschi Mich. 1924 dans les grottes du Banat. Int. J. Speleol., 2, pp. 223-229.

BOTEA, F. & C. PLESA – 1968. Cercetari asupra faunei interstitiale din bazinul Crisului Repede. Lucr. Inst. Speol. E. Racovitza, 7, pp. 197-215.

BOTOSANEANU, L. – & A. DAMIAN – 1955. Cercetari hidrobiologice asupra izvoarelor din bazinul Ariesurilor (Muntii Apuseni) cu privire speciala asupra copepodelor si asupra cercurilor lor de forme. Bul. st. Sect. st. biol., geogr. 7,2, pp. 433-452.

BOTOSANEANU, L. – 1959. Bathynellacea. Fauna R.P.R. Crustacea 6. Ed. Acad. R.P.R., 35 pp.

BOTOSANEANU, L., DECU, V. & T. RUSU – 1964. Cea de-a treia expeditie speologica internationala din R.P. Bulgaria (15-27.8.1963). Lucr. Inst. Speol. E. Racovitza, 3, pp. 411-430.

BOTOSANEANU, L. – 1966. Les genres Stenophylax Kol. et Micropterna Stein. (Trichoptera) en Roumanie. Aperçu statistique. Lucr. Inst. Speol. E. Racovitza, 5, pp. 99-114.

BOTOSANEANU, L., NEGREA, A. & S. NEGREA – 1967. Recherches sur les grottes du Banat et d'Olténie, Roumanie (1959-1962). I-e partie: Grottes du Banat, explorées de 1960 à 1962. Ed. CNRS, Paris, 1-226 pp. + fig. 1-18.

BOTOSANEANU, L. (ed.) – 1986. Stygofauna mundi. E. J. Brill, Leiden, 740 pp.

BOUVET, Y. – 1977. Conditions de vie des Trichoptères subtroglophiles (Insectes, Limnephilidae); leurs reactions aux variations des facteurs du milieu. Thèse, Univ. Claude-Bernard, Lyon, 82 pp.

BRAD T., FISER C., FLOT J.-F. AND SARBU S. M. – 2015. Niphargus dancaui sp. nov. (Amphipoda, Niphargidae) – a new species thriving in sulfidic groundwaters in southeastern Romania. Eur. J. Taxonom., 164, pp. 1-28

BRAD T., ITCUS C., PASCU M.-D., PERSOIU A., HILLEBRAND-VOICULESCU A. M., IANCU L. AND PURCAREA C. – 2018. Fungi in perenial ice from Scarisoara Ice Cave (Romania). Sci. Rep., 8:10096.

BREUIL, H. – 1925. Stations paléolithiques en Transylvanie. Bull. Soc. Sci. Cluj, 2, 2, p. 193-217.

BUCUR, R. – 2007. Filogenia si biogeografia coleopterelor subterane din Muntii Apuseni. Ed. Napoca Star, 134 pp.

BUCUR, R, KOSUCH, J. & A SEITZ – 2003. Molecular phylogenetic analysis of Romanian cave Leptodirine (Coleoptera, Cholevidae). Atti Mus. Civ. Storia nat. Trieste, 50, pp. 231-265.

BURGHELE-BALACESCU, A. – 1965. Specii noi de Mycetophilidae cavernicole din Rominia. Lucr. Inst. Speol. E. Racovitza, 4, pp. 171-181.

BURGHELE-BALACESCU, A. – 1966. Date noi asupra raspindirii Nycteribiidelor (Diptera, Pupipara) in Rominia. Lucr. Inst. Speol. E. Racovitza, 5, pp. 115-125.

BURGHELE-BALACESCU, A. & S. AVRAM – 1966. Pesteri cercetate in Oltenia, intre valea Motrului si valea Tismanei. Lucr. Inst. Speol. E. Racovitza, 5, pp. 21-43.

BUZILA, R. & G. RACOVIȚĂ – 1997. Etude anatomique de l’appareil genital mäle de quelques Coléoptères Leptodirinae. Trav. Inst. Spéol. E. Racovitza, 36, pp. 107-117.

BUZILA, R. & O. MOLDOVAN – 2000. Antennal receptors in two representants of Bathysciinae (Coleoptera Cholevidae). Evolution and Adaptation, 6, pp. 117-124.

BUZILA, R., RACOVIȚĂ, G. & A. SEITZ – 2000-2001. Biometric and genetic study of Parapholeuon subgenus. Trav. Inst. Spéol. E. Racovitza, 39-40, pp. 121-133.

CAMACHO, A. L. – 2006. An annoted checklist of the Syncarida (Crustacea, Malacostraca) of the world. Zootaxa, 1374, pp. 1-54.

CARBONNEL, J. P., DECU, V., OLIVE, Ph., POVARA, I. & V. GHEORGHIU – 1996. Première datation par 14C du remplissage de guano d’une grotte des Carpathes méridionales: Peștera lui Adam (Roumanie). Trav. Inst. Spéol. E. Racovitza, 35, pp. 145-155.

CARBONNEL, J. P., OLIVE, Ph., DECU, V. & D. KLEIN – 1999. Datations d'un dépôt de guano holocène dans les Carpates Méridionales (Roumanie). Implications tectoniques. C.R. Acad. Paris. Sciences de la terre et des planètes, 328, pp. 367-370.

CARBONNEL, J. P., KLEIN, D., LAMY, S., DECU, V., BACIU, F., SILVESTRU, E., GEORGHIU, V. & A. GIURGINCA – 2000. Le 137CS des sols et des guanos de Roumanie 13 ans après Tchernobil. Incidences sur le milieu karstique. Mém. Biospéol., 27, pp. 25-36.

CAPUSE, I. & M. GEORGESCU – 1962a. Acasis variegata (HBN) (Geometridae) si Monopis crocicapitella (CLEM.) (Tineidae) elemente noi pentru fauna R.P.R. Com. Acad. R.P.R., 12, 3, pp. 345-352.

CAPUSE, I. & M. GEORGESCU – 1962b. Acrolepia pulicariae Klim. (Acrolepidae, Lep.) un nouvel élément troglophile dans les grottes de la R. P. Roumaine. Bull. Soc. Entomol.Mul-house, pp. 75-78.

CAPUSE, I. & M. GEORGESCU – 1963. Contributii la studiul lepidopterelor cavernicole. Lucr. Inst. Speol. E. Racovitza, 1-2, pp. 495-503.

CARAUSU, S., DOBREANU, E & C. Manolache – 1955. Amphipoda, forme salmastre si de apa dulce. Fauna R.P.R., 4, 4.Ed. Acad. R. P. R., 407 pp.

CEUCA, T. – 1958. Contributii la cunoasterea diplopodelor din fauna Republicii Populare Romane. 3. Diplopode cavernicole. St. Cerc. Biol. Cluj, 9, 2, pp. 335-343.

CIMPEAN, M. & C. PAVELESCU – 2002-2003. Prelimnary study on oligochaetes (Annelida, Oligochaeta) and water mites (Acari, Hydrachnidia) from the hyporheic zone of the Crisul Repede river (Romania). Trav. Inst. Spéol. E. Racovitza, 46-47, pp. 149-158.

CHAPPUIS, A. P. – 1925. Sur les Copépodes et les Syncarides des eaux souterraines de Cluj et des Monts Bihor. Bul. Soc. St. Cluj, 2, 4, pp. 157-162.

CHAPPUIS, A. P. & R. JEANNEL – 1951. Enumération des grottes visitées 1927-1949. Arch. Zool. Expér. Gén., 88, pp. 81-230.

CHEN Y, WU L, BODEN R, HILLEBRAND A, KUMARESAN D, MOUSSARD H, BACIU M, LU Y, MURRELL JC – 2009. Life without light: microbial diversity and evidence of sulfur-and ammonium-based chemolithotrophy in Movile Cave. ISME J 3:1093–1104.

CHIURTU, A. & L. DUMITRU – 1995. Populations bactériennes présentes dans la grotte « Pestera de la Movile », Dobrogea méridionale, Roumanie. Trav. Inst. Spéol. E. Racovitza, 34, pp. 89-97.

CODREANU, M. & R. CODREANU – 1962a. Asellus (Coxasellus) basnosanni n. sp.: 158-159 si 214. In: C. Motas et al. (eds.) – Cercetari asupra biologiei izvoarelorsi apelor freatice din partea centrala a Campiei Romane. Ed. Acad. R.P.R., 366 pp.

CODREANU, M. & R. CODREANU – 1962b. Ordnung Isopoda: 193-206. In: C. Motas, I. Capuse – Beiträge zur Kentniss der Brunnenfauna im Tal des Flusses Bela Reca (Rumänien). Biol. Glasnik, 15.

CODREANU, R. & D. BALCESCU – 1967a. Sur trois Dendrocoelides aveugles nouveaux des sources du Banat (Roumanie). Rev. roum. Biol., Zool., 12, pp. 287-294.

CODREANU, R. & D. BALCESCU – 1967b. Sur deux nouveaux Dendrocoeles hypogés de Roumanie et certains effets de néoténie. Arch. roum. Path. exp. Microbiol., 46, pp. 843-852.

CODREANU, R. & D. BALCESCU – 1968. Revision et mise en synonymie de quelques Dendrocoelides obscuricoles nouvellement décrits de Roumanie. Rev. roum. Biol., Zool., 13, pp. 145-149.

CODREANU, R. & D. BALCESCU – 1970. Répartition des Dendrocoelides anophthalmes dans les Carpates de Courbure et dans la plaine roumaine. Livre Cent. Emile Racovitza (1868-1968), pp. 239-246. Ed. Acad. R.S.R., 699 pp.

COLLART, A. – 1940. Etudes biospéologiques. 22. Helomyzidae (Dipt.) de Transylvanie. Bull. Mus. roy. Hist. nat. Belg., 16, 35, 27 pp.

COLLART, A. – 1941.Etudes biospéologiques. 25. Ichneumonida (Hymenoptera) de Transylvanie. Bull. Mus. roy. Hist. nat. Belg., 16, 3, pp. 1-7.

COMAN, D. – 1961. Mermithidae. In: Fauna R.S.R., 2, 3. Ed. Acad. R. S. R., 60 pp.

COMAN, D. – 1969. Considérations sur les Nématodes des biotopes aquatiques souterrains. Actes Congr. Int. Spéléol., Ljubljana, 4-5, pp. 49-53.

CONDÉ, B. – 1993. Une lignée danubienne du genre Plusiocampa (Diploures, Campodéides). Rev. Suisse Zool., 100, 3, pp. 735-745.

CONDÉ, B. – 1996. Diploures Campodéides de la Pestera de la Movile, Dobroudja méridionale (Roumanie). Rev. Suisse Zool., 103, pp. 101-114.

CONDÉ, B. – 1998. Palpigradida, pp. 913-920. In: C. Juberthie et V. Decu (eds), Encyclopaedia Biospeologica, Soc. Biospéol., Moulis-Bucarest, 839-1373 pp.

CONSTANTINEANU, M. I. – 1959. Familia Ichneumonidae, Subfamilia Ichneumoninae, Tribul Ichneumoninae Stenopneustice. Fauna R. P. R., Insecta, 9, 4. Ed. Acad. R. P. R., Bucuresti, 1248 pp.

CONSTANTINESCU, T. – 1989 – Considérations sur la zone karstique de la « Movile » (Mangalia, Dobrogea du Sud, Roumaine). Misc. Speol. Romanica, 1, pp. 7-12, Cartes 1 et 2.

CONSTANTINESCU, T. – 1995. Le karst de type Movilé (Mangalia, Dobrogea du Sud, Roumanie). Theor. Appl. Karstology, 8, pp. 91-96.

CONSTANTINESCU, T. & S. CONSTANTIN – 2001. La genese et l’évolution des grandes dolines (obans) de la zone karstique de Mangalia (Dobroudja du Sud, Roumanie). Theor. Appl. Karstology, 13-14, pp, 87-42.

CONSTANTINESCU, T. – 2002-2003. Le karst de la zone Mangalia et la Grotte de Monde (Dobrogea de Sud-Roumanie). Ann. Valahia Univ. Târgoviște, Geogr. Ser., 2, pp.147-156.

COOREMAN, J. – 1951. Etudes biospéologiques 34. Acariens de Transylvanie. Bull. Inst. royal Sci. nat. Belgique, Bull., 27, 42, pp. 1-16.

ĆURČIĆ, P. B., M., POINAR, O. G. & S. M. SARBU – 1993. New and little-known species of Chthoniidae and Neobisiidae (Pseudoscorpiones, Arachnida) from the Movile Cave in southern Dobrogea, Romania. Bijdr. Dierk., 63, 4, pp. 221-241.

ĆURČIĆ, P. M. B. & V. DECU – 2004-2005a. The Pseudoscorpions of Dobrogea: from origins to the present and perspectives. Trav. Inst. Spéol. E. Racovitza, 43-44, pp. 35-44.

ĆURČIĆ, P. M. B., DECU, V. & R. N. DIMITRIJEVIČ – 2004-2005b. Neobisium blothroides (Tomosvary, 1882) (Neobisiidae, Pseudoscorpiones): an endemic species from Romania. Trav. Inst. Speol. E. Racovitza, 44, pp. 109-118.

ĆURČIĆ, P. M. B., R. N. DIMITRIJEVIC et al. – 2005. Four new and endemic species of Roncus I. Koch (Neobisiidae, Pseudoscorpiones) from Romania, Serbia and Montenegro, Periodicum Biologorum, 107, 3, pp.

ĆURČIĆ, P. M. B., R. N. DIMITRIJEVIC et al. – 2006. Biodiversity of pseudoscorpions from the Carpathian Arc in Romania: ecology and evolution of some cave-dwelling taxa. Periodicum Biologorum, 108, 2, pp. 223-230.

DAMIAN-GEORGESCU, A. – 1963. Fauna Republicii Populare Romania. Crustacea 4, 6, Copepoda, Fam. Cyclopidae (forme de apa dulce). Ed. Acad. Bucuresti, 204 pp.

DAMIAN-GEORGESCU, A. – 1970. Fauna Republicii Socialiste Romania. Crustacea 4, 11, Copepoda Harpacticoida. Ed. Acad. Bucuresti, 248 pp.

DANCAU, D. – 1963. Asupra catorva amfipode subterane din R. P. Romana. Niphargus dacicus n. sp. și N. jovanovici ponoricus n. sp. Lucr. Inst. Speol. E. Racovitza, 1-2, pp. 461-474.

DANCAU, D. & E. SERBAN – 1963. Sur une nouvelle Parabathynella de Roumanie, P. motasi n. sp. Crustaceana, 5, 4, pp. 241-250.

DANCAU, D. – 1964. Noi contributii la studiul amfipodelor subterane: Niphargus dobrogicus n. sp. Lucr. Inst. Speol. E. Racovitza, 3, p.p 397-403.

DANCAU, D. – 1970. Sur un nouvel Amphipode souterrain de Roumanie, Pontoniphargus racovitzai n. g. n. sp. Livre Cent. Emile Racovitza (1868-1968), pp. 275-285.

DANCAU, D. – 1971. Sur un nouvel Amphipode souterrain de Roumanie, Niphargus alutensis n. sp. Trav. Inst. Spéol. E. Racovitza, 10, pp. 209-215.

DANCAU, D. – 1972. L'état actuel de nos connaissances sur le genre Niphargus en Roumanie. Actes Ier Colloque Int. genre Niphargus. Verona 1969, pp. 55-59.

DANIELOPOL, L. D. – 1965. Nouvelles données sur les Ostracodes d'eau douce de Roumanie: Cordocythere phreaticola n. g., n. sp., Eucypris petkovskii n. sp., Limnocytherini et Metacyprini nouvelles tribus de la sous-famille Limnocytherinae Sars, 1925. Ann. Limnol., 1, 3, pp. 443-468.

DANIELOPOL, L. D. – 1978. Uber Herkunft und Morphologie der süsswasserhypogäischen Candoninae (Crustacea Ostracoda). Sitzber. Osterr. Akad. Wiss. Math. nat. Kl., Abt. 1, 187, pp. 1-162.

DANIELOPOL, L. D. & L. CVETKOV – 1979. Trois nouvelles espèces du genre Mixtacandona (Ostracoda, Cyprididae, Candoninae). Hydrobiologia, 67, 3, pp. 249-266.

DANIELOPOL, L. D. – 1980a. Sur la biologie de quelques Ostracodes Candoninae épigés et hypogés d'Europe. Bull. Mus. nat. Hist. nat. Paris, 2, pp. 471-506.

DANIELOPOL, L. D. – 1982. Nouvelles données sur les Candoninae (Ostracoda) hypogés de Roumanie et Yougoslavie. Bull. Mus. nat. Hist. nat. Paris, 4, 3-4, pp. 369-396.

DECU-BURGHELE, A. – 1962. Contribuții la cunoasterea Nyecteribiidelor (Diptera, Pupipara) din fauna R. P. R. St. cerc. Biol., Biol. anim., 14, 2, pp. 225-239.

DECU-BURGHELE, A. – 1963a. Cercetari asupra pupariului la Nycteribiidae (Diptera, Pupipara) Com. Acad. R. P. R., 13, 8, pp.726-732.

DECU-BURGHELE, A. – 1963b. Contributii la studiul dipterelor cavernicole din pesterile R. P. Romine. Lucr. Inst. Speol. E. Racovitza. I-II, pp. 475-495.

DECU, A. & V. DECU – 1961a. Hyménoptères recueillis dans les grottes de Roumanie. Ann. Centr. nat. Recher. Sci. Souter., Belg., 2, pp. 65-75.

DECU, A. & V. DECU – 1961b. Cercetari morfologice la musca guanoului (Thelida atricornis Mg., Diptera, Helomyzidae). St. Cerc. biol., ser. Biol. anim., 13, 4, pp. 467-484.

DECU, A. & V. DECU – 1964. Recherches sur la synusie du guano des grottes d'Olténie et du Banat (Roumanie). (Note préliminaire). Ann. Spéléol., 19, 4, pp. 781-797.

DECU, A., DECU, V. & M. BLEAHU – 1967. Recherches sur les grottes du Banat et d'Olténie, Roumanie (1959-1962). II-e partie: Grottes d'Olténie, explorées de 1959 à 1962. Ed. du CNRS, Paris, pp. 227-392.

DECU, G. V. – 1959a. Sophrochaeta motasi n. sp. et Closania orghidani n. sp., nouvelles espèces de Bathysciinae (Coleoptera-Catopidae) des Carpates Méridionales. Ann. Spéléol., 14,1-2, pp. 187-196.

DECU, V. – 1959b. Deux nouvelles espèces de Bathysciinae cavernicoles des Carpates Méridionales. Ann. Spéléol., 14, 3-4, pp. 351-357.

DECU, V. – 1961a. Contributii la studiul morfologiei interne la coleopterele cavernicole din seria filetica Sophrochaeta Reitter (Catopidae – Bathysciinae). Stud. Cerc. biol., Biol. anim., 13, 3, pp. 395-407.

DECU, V. – 1961b. Nouvelle contribution à l'étude des Coléoptères cavernicoles des Carpates Méridionales, imagos et larves. Ann. Spéléol., 16, 2, pp. 199-215.

DECU, V. – 1962a. Contribution à la l'étude de quelques espèces de Choleva Latr.du groupe de Choleva cisteloides (Frohlich) (Coleoptera, Catopidae). Acta Zool. Cracov., 7, 8, pp. 135-143.

DECU, V. – 1962b. Revision der Arten der Gattung Duvalius Delar. aus den Höhlen Rumäniens. Ann. Hist. Nat. Mus. Nat. Hung., pars Zool., 54, pp. 259-267.

DECU, V. – 1963.Originea si raspindirea coleopterelor troglobionte Bathysciinae si Trechinae din pesterile Romaniei in conceptia lui Jeannel. Lucr. Inst. Speol. E. Racovitza, I-II, 1962-1963, pp. 437-460.

DECU, V. – 1964. Le catalogue des Coléoptères cavernicoles de Roumanie (Coleoptera). Acta Zool. Cracov., 9, 7, pp. 441-467.

DECU, V. & L. BOTOSANEANU – 1964. Quelques données relatives à l'anatomie de Pheggomisetes bureschi Knirsch (Coleoptera, Trechinae). Ann. Spéléol., 19, 4, pp. 759-768.

DECU, V. & P. PAPACOSTEA – 1964. Anatomische und mikrobiologische Untersuchungen über einige Arten von höhlenbewohnenden Coleopteren aus Oltenien (Rumänien). Folia Entomol. Hung., 17, 6, pp. 87-112.

DECU, V. – 1967. Nouveaux Coléoptères cavernicoles des Carpates Occidentales (Monts du Banat et Poiana Ruscai) et des Carpates Méridionales (Monts Capatinei). Ann. Spéléol., 22, 2, pp. 433-453.

DECU, V. & C. JUBERTHIE – 1969. Sur l'élevage et le développement de Sophrochaeta oltenica Jeann. et Mall. Description de la larve du premier stade. Ann. Spéléol., 24, 3, pp. 581-593.

DECU, V. & S. NEGREA – 1969. Aperçu zoogéographique sur la faune cavernicole terrestre de Roumanie. Acta Zool. Cracov., 14, 20, pp. 471-546.

DECU, V. – 1973. Quelques remarques sur la présence des Diptères Mycétophilides dans les grottes d'Olténie (Roumanie). Livre Cinquant. Inst. Spéol. E. Racovitza, pp. 353-369. Ed. Acad. R.S.R., 654 pp.

DECU, V., NEGREA, A. & S. NEGREA – 1974. Une oasis biospéologique tropicale développée dans une région tempérée: "Pestera lui Adam" de la Baile Herculane (Carpates Méridionales, Roumanie). Trav. Inst. Spéol. E. Racovitza, 13, pp. 81-103.

DECU, V. & M. TUFESCU – 1976. Sur l'organisation d'une biocénose extrême : la biocénose du guano de la grotte "Pestera lui Adam" de Baile Herculane (Carpates Méridionales, Roumanie). Trav. Inst. Spéol. E. Racovitza, 15, pp. 113-133.

DECOU, V. & W. HERDLICKA – 1978. Recherches écologiques dans les grottes des Monts Mehedinți (Carpates Méridionales). Trav. Inst. Spéol. E. Racovitza, 17, p. 95-116.

DECU, V. – 1980. Analyse de la répartition selon l'altitude des Coléoptères cavernicoles Bathysciinae et Trechinae des Carpates de Roumanie. Mém. Biospéol., 7, pp. 99-118.

DECU, V., DONITA, N., HERDLICKA, W. & C. LASCU – 1982b. Aspecte ale problemei conservarii ecosistemelor forestiere si subterane din zonele calcaroase. Pontus Euxinus, St. Cerc., 2, pp. 168-172.

DECU, V. & Gh. RACOVITZA – 1983. Sur la conservation des écosystèmes forestiers et souterrains des zones calcaires. Mém. Biospéol. 10, pp. 177-178.

DECU, V. & T. ILIFFE – 1984. A review of the terrestrial cavernicolous fauna of Romania. N. S. S. Bull., Oct., p. 86-97.

DECU, V. & M. GEORGESCU – 1994. Deux nouvelles espèces de Medon (M. dobrogicus et M. paradobrogicus) de la grotte « Pestera Movile » Dobrogea méridionale, Roumanie. Mém. Biospéol., 21, pp. 47-51.

DECU, V., RACOVITA, Gh. & C. VACZY – 1991. Sur la nomenclature des milieux souterrains, édaphiques et des annexes directes du sol. Trav. Inst. Spéol. E. Racovitza, 30, pp. 63-69.

DECU, V. & C. JUBERTHIE – 1994. Un monde retrouvé. La grotte de Movilé. In : Encyclopaedia universalis, pp. 224- 228.

DECU, V., GRUIA, M. KEFFER, L. & S. SARBU – 1994a. A stygobiotic water scorpion Nepa anophthalma n. sp. (Hemiptera, Nepidae) from a sulphurous cave in Romania. Amer. Entomol. Soc, 87, pp. 755-761.

DECU, V., NITZU, E. & C. JUBERTHIE – 1994b. Clivina subterranea (Caraboïdea, Scaritidae) nouvelle espèce de la grotte « Pestera de la Movile », Dobrogea méridionale, Roumanie. Mém. Biospéol., 21, pp. 41-45.

DECU, V. – 1998. Cercetari bíospelogice intre Cerna, Jiul de Vest si Olt. Acad. Romana, ISER, Ph. D. Thesis, 209 pp.

DECU, V. MURARIU, D. & V. GHEORGHIU – 2003. Chiroptere din Romania. V. Decu et C. Marin (eds). Bucarest, 521 pp.

DECU, V., JUBERTHIE, C. & V. GHEORGHIU – 2004-2005. Researches on the Mesovoid Shallow Substratum (MSS) from Romania. Trav. Inst. Spéol. E. Racovitza, 43-44, pp. 193-206.

DECU, V., GHEORGHIU, V. & D. MURARIU – 2005. Contribution to the knowledge of the distribution of Rhinolophus mehelyi Matschie, 1901 species (Chiroptera: Rhinolophidae) in Romania. Trav. Inst. Spéol. E. Racovitza, 44, pp. 235-247.

DECU, V. – 2011. Increngatura Nemertina, pp. 149, 150; Increngatura Annelida (collab. V. Pop), pp. 165-177; Ord. Opiliones (collab. C. Juberthie, V. Ilie), pp. 226-230; Ord. Decapoda, fam. Astacidae, pp. 284-286; Ord. Diplura, pp. 323-326; Ord. Microcoryphia, pp. 327-329; Ord. Heteroptera, pp. 334, 335; Ord. Psocoptera, pp. 336, 337; Ord. Coleoptera (collab. E. Nitzu), pp. 338-363; Ord. Hymenoptera, pp. 390-393. In: S. Godeanu (red.), Diversitatea lumii vii. IV. Mediul subteran. „Vasile Goldis” University Press, Arad, 423 pp.

DELEURANCE-GLACON, S. – 1959. Contribution a l'etude des coleopteres troglobies. Ann. Speleol. 14:101- 110.

DIACONU, G. – 2002-2003a. Point de vue concernant la paléo-évolution du processus d’endokarstification dans la zone de Mangalia. Trav. Inst. Spéol. E. Racovitza, 41-42, pp. 71-87.

DIACONU, O. – 2002-2003b. Des caractéristiques climatologiques dans la Dobrogea du Sud pendant la période 1961-1997. Trav. Inst. Spéol. E. Racovitza, 41-42, pp. 53-69.

DIACONU G. & M. MORAR – 1993. Analyses mineralogiques dans la grotte “Peștera de la Movile” (Mangalia – Dobrogea de Sud). Karstologia, 22, pp. 15–20.

DOBOȘ, A., A. SOFICARU, E. TRINKAUS. 2010. The Prehistory and Paleontology of the Peștera Muierii, Romania. Liege: ERAUL.

DOBREANU, E., MANOLACHE, C. – 1936. Beitrag zur Kenntnis der Amphipodenfauna Rumäniens. Bulletin de la section scientifique, Académie roumaine. 18 (1-2): 24-30.

DOBREANU, E., MANOLACHE, C. – 1942. Nouvelles contributions a l'étude des amphipodes de Roumanie. Bull. Sect. Scient. Acad. Romun. 25(5): 293-304.

DUMITRESCU, M., TANASACHI, J. & T. ORGHIDAN – 1955. Contributii la studiul biologiei chiropterelor. Dinamica si hibernarea chiropterelor din Pestera Liliecilor de la Minastirea Bistrita. Bul. st., sect., St. Biol. Agr. Geol. Geogr.,7, 2, pp. 317-357.

DUMITRESCU, M. & T. ORGHIDAN – 1963. Contribution à la connaissance de la biologie de Pipistrellus pipistrellus Schreiber. Ann. Spéléol., 18, 4, pp. 511-517.

DUMITRESCU, M., TANASACHI, J. & T. ORGHIDAN – 1963. Raspindirea chiropterelor in R. P. Romana. Lucr. Inst. Spéol. E. Racovitza, I-II (1962-1963), pp. 509-576.

DUMITRESCU, M. & T. ORGHIDAN – 1964. Contribution à la connaissance des Pseudoscorpions de la Dobroudja. Ière Note. Ann. Spéléol., 19, 3, pp. 599-630.

DUMITRESCU, M. & T. ORGHIDAN – 1969a. Date noi obtinute in studiul faunei litoclazice. Lucr. Inst. Speol. E. Racovitza, 8, pp. 55-73.

DUMITRESCU, M. & M. GEORGESCU – 1970. Révision des représentants du genre Troglohyphantes des grottes de Roumanie. Livre Cent. Emile G. Racovitza, pp. 313-331.

DUMITRESCU, M. & T. ORGHIDAN – 1970. Contribution à la connaissance des Pseudoscorpions souterrains de Roumanie. Trav. Inst. Spéol. E. Racovitza, 9, pp. 97-111.

DUMITRESCU, M. & M. GEORGESCU – 1977. Nouvelle espèce du genre Troglohyphantes en Roumanie. Trav. Inst. Spéol. E. Racovitza, 16, pp. 63-70.

DUMITRESCU, M. – 1979. La monographie des représentants du genre Nesticus des grottes de Roumanie, Ière Note. Trav. Inst. Spéol. E. Racovitza, 18, pp. 53-84.

DUMITRESCU, M. – 1980. La monographie des représentants du genre Nesticus des grottes de Roumanie. IIe Note. Trav. Inst. Spéol. E. Racovitza, 19, pp. 77-101.

DUMITRESCU, M. & M. GEORGESCU – 1980. Quelques espèces du genre Centromerus (Araneae, Linyphiidae) trouvées en Roumanie. Trav. Inst. Spéol. E. Racovitza, 19, pp. 103-123.

DUMITRESCU, M. & M. GEORGESCU – 1981. Contribution à la connaissance des espèces cavernicoles du genre Lepthyphantes des grottes de Roumanie. Ière Note. Trav. Inst. Spéol. E. Racovitza, 20, pp. 9-28.

DUMONT, H. & S. NEGREA – 1996. A conspectus of the Cladocera of the subterranean waters of the world. Hydrobiologia, Belgium, 325, pp. 1-30.

DUSBABEK, F. – 1998. Acari parasiti: pp. 921-928. In: C. Juberthie et V. Decu (eds), Encyclopaedia Biospeologica, 2, Soc. Biospéleo., Moulis-Bucarest, 839-1373 pp.

EDER, R. – 1984. Nematoda, pp. 49-52 In: C. Juberthie & V. Decu (eds), Encyclopaedia Biospeologica, 1, Soc. Biospéol. Moulis-Bucarest, 834 pp.

EPURE, L., MELEG, I.N., MUNTEANU, C.M., ROBAN, R.D., MOLDOVAN O.T. – 2014. Bacterial and fungal diversity of Quaternary cave sediment deposits. Geomicrobiology Journal, 31: 116-127.

EPURE L., MUNTEANU V., CONSTANTIN S., MOLDOVAN O.T. – 2017. Ecophysiological groups of bacteria from cave sediments as potential indicators of paleoclimate. Quaternary International 432:20-32.

FALNIOWSKI, A, SZAROWSKA, M, SIRBU, I, HILLEBRAND, A. & M. BACIU – 2008. Heleobia dobrogica (Grossu & Negrea, 1989) (Gastropoda: Rissooidea: Cochliopidae) and the estimated time of its isolation in a continental analogue of hydrothermal vents. Molluscan Res., 28, pp. 165–170

FARCAS, S., TANȚAU, I., OTTO, T., BODNARIUC A., DECU, V. &V. GHEORGHIU – 2004-2005. Analyses palynologiques préliminaries effectuées en Dobroudja centrale et sud. Trav. Inst. Spéol. E. Racovitza, 43-44, pp. 45-64.

FARCAS, S., TANȚAU, I., DECU, V., BODNARIUC A. & V. GHEORGHIU – 2000-2001. Aspects de l’histoire de la végétation postglaciaire du Sud de la Roumanie, dans le contexte national et sud-Européen. Trav. Inst. Spéol. E. Racovitza, 39-40, pp. 135-155.

FEIDER, Z. – 1970. Nouvelles espèces de Trombiculides dans les grottes d’Europe.Livre cent. Emile Racovitza (1868-1968), pp. 333-350. Ed. Acad. R.S.R., 699 pp.

FEIDER, Z. & I. Mironescu – 1970. Sur les Ixodides des grottes du bassin méditerranéen (Collection de la « Biospeologica » 1905-1930). Description d’une nouvelle espèce et variation phénotypique d’Ixodes (Escatocephalus) vespertilionis. Livre Cent. Emile Racovitza (1868-1968) Ed. Acad. Bucarest, pp.351-369.

FEJER, A. & O.T. MOLDOVAN – 2013. Population size and dispersal patterns for a Drimeotus (Coleoptera, Leiodidae, Leptodirini) cave population. Subterranean Biology, 11, pp. 31–44.

FERU, M. U. & A. CAPOTA – 1991. Les eaux thermominérales karstiques de la zone de Mangalia (Roumanie). Theor. and Appl. Karstologie, 4 pp. 143-157.

FEURDEAN, A., PERSOIU, A., PAZDUR, A. & B. ONAC – 2011. Evaluating the palaeoecological potential of pollen recovered from ice in caves: a case study from Scarisoara Ice Cave, Romania. Rev. Paleobotany and Palynology, 165 pp. 1-10.

FIERS, F. & O. T. MoldOVAN – 2008. Redescription of Spelaeocamptus spelaeus (Chappuis 1925), a subterranean copepod endemic to the Apuseni Mountains in Romania (Copepoda Harpacticoida). Subterranean Biology, 6, pp. 51-64.

FLOT J-F, BAUERMEISTER J, BRAD T, FISER C, HILLEBRAND A, SARBU SM, DATTAGUPTA S (2014) Niphargus-Thiothrix associations may be widespread in sulfidic groundwater ecosystems: evidence from southeastern Romania. Mol Ecol 23:1405–1417.

FRIVALDSZKY, E. & J. – 1857. Drei neue Grottenkäfers aus Ungarns. Verh. zool.-bot. Ver., Wien, 7,34-46.

FRIVALDSZKY, J. – 1880. Coleoptera nova ex Hungaria meridionali. Termes. Fuzetek, 4, pp. 179-183.

FRIVALDSZKY, J. – 1884. Coleoptera nova ex Hungaria. Termes. Fuzetek, 8, pp. 279-287.

FU Q., POSTH C., HAJDINJAK M., PETR M., MALLICK S., FERNANDES D., FURTWANGLER A., HAAK W., MEYER M., MITTNIK A., NICKEL B., PELTZER A., ROHLAND N., SLON V., TALAMO S., LAZARIDIS I., LIPSON M., MATHIESON I., SCHIFFELS S., SKOGLUND P., DEREVIANKO A.P., DROZDOV N., SLAVINSKY V., TSYBANKOV A., GRIFONI CREMONESI R., MALLEGNI F., GELY B., VACCA E., GONZALEZ MORALES M.R., STRAUS L.G., NEUGEBAUER-MARESCH C., TESCHLER-NICOLA M., CONSTANTIN S., MOLDOVAN O.T., et al. (2016) The genetic history of Ice Age Europe. Nature, 534: 200-205.

FU, Q., HAJDINJAK, M., MOLDOVAN, O.T., CONSTANTIN, S., MALLICK, S., SKOGLUND, P., PATTERSON, N., ROHLAND, N., LAZARIDIS, I., NICKEL, B., VIOLA, B., PRÜFER, K., MEYER, M., KELSO, J., REICH, D., PÄÄBO, S. (2015) An early modern human from Romania with a recent Neanderthal ancestor. Nature, 524: 216-219.

GANZERT L, SCHIRMACK J, ALAWI M, MANGELSDORF K, SAND W, HILLEBRAND-VOICULESCU A, WAGNER D – 2014. Methanosarcina spelaei sp. nov., a methanogenic archaeon isolated from a floating biofilm of a subsurface sulphurous lake. Int J Syst Evol Microbiol 64:3478–3484.

GEORGESCU, M. – 1964. Contribution à l'étude des microlépidoptères (Tineidae) des grottes de Roumanie. Ann. Spéléol., 19, 3, pp. 587-597.

GEORGESCU, M. – 1968. Contributii la studiul ixodidelor din pesterile Romaniei. Trav. Inst. Spéol. E. Racovitza, 7, pp. 187-197.

GEORGESCU, M. – 1973. Le développement post-embryonnaire de l'espèce cavernicole Lessertiella dobrogica Dumitrescu et Miller (Araneida, Micryphantidae). Trav. Inst. Spéol. E. Racovitza, 12, pp. 63-75.

GEORGESCU, M. – 1989. Sur trois taxa nouveaux d'Aranéides troglobies de Dobrogea (Roumanie). Misc. Speol. Romanica, 1, pp. 85-102.

GEORGESCU, M & S. SARBU – 1992. Description d’un nouveau taxon : Iberina caeca de la grotte « Pestera de la Movile » (Araneae Hahniidae). Mém. Biospéol., 13, pp. 139-141.

GEORGESCU, M. – 1994. Sur la présence d'une espèce troglobionte de Nesticus (Araneae, Nesticidae) dans la grotte "Pestera de la Movile". Trav. Inst. Spéol. E. Racovitza, 33, pp. 85-88.

GEORGESCU, M & I. CAPUSE – 1994. Sur les pseudoscorpions de la région de la grotte Movile (Mangalia, Dobrogea du Sud, Roumanie). Trav. Inst. Spéol. E. Racovitza, 33, pp. 63-78.

GEORGESCU, M. & V. DECU – 1994. Sur la présence des deux espèces d'Eukoenenia (E. mirabilis Grassi et E. subangusta (Silvestri) dans le souterrain et l'euédaphique du midi de la Dobrogea (Roumanie). Trav. Inst. Spéol. E. Racovitza, 33, pp. 79-84.

GHEORGHIU, V., PETCULESCU, A. & V. IAVORSCHI – 2001. Contribution to the knowledge of the Chiroptera distribution from Romania sector of the Carpatian Mountains. Studia Chiropterologica, Krakow, 2, pp. 17-47.

GIURGINCA, A. & L. VANOAICA – 1998-1999. Chaetophiloscia sicula Verhoeff, 1908 (Isopoda Oniscidea: Philosciidae) – a new species for the Romanian fauna. Trav. Inst. Spéol. E. Racovitza, 38, pp. 159-166.

GIURGINCA, A. – 2000-2001a. The spreading of the genus Mesoniscus in the Romanian Carpathians. Trav. Inst. Spéol. E. Racovitza, 39-40, pp. 11-22.

GIURGINCA, A. – 2000-2001b. Mesoniscus granigerdragani n. ssp. from the caves of Valea Sighistelului and Valea Craiasa. The granulation of Mesoniscus graniger. Trav. Inst. Spéol. E. Racovitza, 39-40, pp. 29-42.

GIURGINCA, A. & S. B. CURCIC – 2003. A check-list of Oniscidea (Isopoda, Crustacea) from Dobruja (Romania). Arch. Biol. Sci., 55, 1, pp. 39-44.

GIURGINCA, A. & L. VANOAICA – 2007. Data concerning the Oniscidea and the Diplopoda from the Varghisului Gorge complex Reserve. Trav. Inst. Spéol. E. Racovitza, 46, pp. 51-58.

GIURGINCA, A. – 2009. Aspects concerning the genus Mesoniscus. Morphology, spreading, historical biogeography. Politechnica Press, Bucarest, 127 pp.

GIURGINCA, A, NAE, A. & L. VǍNOAICA – 2009. Species of Oniscidea and Araneae from Movile Cave drillings. Trav. Inst. Spéol. E. Racovitza, 48, pp. 31-43.

GIURGINCA, POPA, I. & E. NIZU – 2011. Invertebrate fauna (Coleoptera, Collembola, Diplopoda, Isopoda) collected in the karst areas of the Anina-Locvei Mountains. Travaux Inst. Spéol. E. Racovitza, 50, 1, pp. 15-35.

GODEANU, P. S. – 2011. Diversitatea lumii vii. Determinatorul ilustrat al Florei si Faunei Romaniei. Volumul IV – Mediul subteran. „Vasile Goldis” Univ. Press, Arad, 423 pp.

GORAN, C. – 1982. Catalogul sistematic al pesterilor din Romania. 1981. C.N.E.F.S. Bucuresti, 496 pp.

GORAN, C. – 1989. Le spéléogramme de Roumanie. Misc. Speol. Romanica, 1, pp. 335-346.

GOURBAULT, N. – 1971 – Recherches sur les Triclades paludicoles hypogés. Mém. Mus. nat. Hist. nat. Paris, 73, pp. 1-249.

GROSSU, A. & A. NEGREA – 1968 – Révision des espèces du genre Argna (Gastropoda, Pulmonata) de Roumanie et la description de quelques nouvelles unités taxonomiques. Trav. Mus. Hist. nat. G. Antipa, 8, pp. 721-734.

GROSSU, A. & A. NEGREA – 1989. Paladilhia (Paladilhiopsis) dobrogica – une nouvelle espèce de la famille des Moitessieridae (Gastropoda, Prosobranchia). Misc. Speol. Romanica, 1, pp. 33-38.

GRUIA, L. – 1973. Contribution à l'étude des algues des grottes de Roumanie. II. Livre Cinquant. Inst. Spéol. E. Racovitza, pp. 479-485. Ed. Acad. R.S.R., 654 pp.

GRUIA, M. – 1967. Sur quelques Collemboles cavernicoles de Roumanie. Int. J. Speleol., 3, pp. 97-115.

GRUIA, M. – 1969. Date asupra raspindirii Colembolelor in pesterile Romaniei. Lucr. Inst. Speol. E. Racovitza, 8, pp. 161-178.

GRUIA, M. – 1971. Sur certaines espèces d'Onychiuridae des grottes de Roumanie. Acta Zool. Cracov., 16, 4, pp. 283-296.

GRUIA, M. – 1976. Biotopes cavernicoles peuplés par les Collemboles. Trav. Inst. Spéol. E. Racovitza, 15, pp. 87-102.

GRUIA, M. – 1989. Nouvelles espèces troglobies de Collemboles de Roumanie.Misc. Speol. Romanica, 1, pp. 103-114.

GRUIA, M. – 1994. Les Oncopodura (Collemboles Oncopoduridae) des grottes de Roumanie. Mém. Biospéol., 22, pp. 67-74.

GRUIA, M., IAVORSCHI, V. & S. SARBU – 1994. Armadillidium tabacarui (Isopoda, Oniscidea, Armadilliidae) a new troglobitic species form a sulfurous cave of Romania. Proc. Biol. Soc. Wash., 107, 4, pp. 69-106.

GRUIA, M. – 1996. Quelques considérations sur la faune de Collemboles de la grotte de Movilé (Dobrogea). Mém. Biospéol., 23, pp. 105-109.

GRUIA, M. – 1998. Sur la faune de Collemboles de l’écosystème exokarstique et karstique de Movile, Dobrogea du Sud, Mangalia, Romania. Mém. Biospéol., 25, pp. 45-52.

GRUIA, M. – 1998–1999. Collembola of the karstic system from Movile. Trav. Inst. Spéol. E. Racovitza, 37–38, pp. 167–174.

GRUIA, M. – 2000. Collembola of the karstic system of Romania. Mém. Biospéol., 27, pp. 53-60.

GRUIA, M. – 2003. Collembola from Romanian caves. Trav Mus Nat Hist Nat “G. Antipa”, 45, pp. 139–158.

GRUIA, M. & A. GIURGINCA – 1998. Haplophthalmus movilae (Isopoda, Trichoniscidae), a new troglobitic species from the Movile Cave, Dobrogea, Romania. Mitt. Hamb. Zool. Mus. Inst., 95, pp. 133-142.

GRUIA, M. & V. ILIE – 2000-2001. Collembola from the karstic system of Romania (II). Trav. Inst. Spéol. E. Racovitza, 39-40, pp. 59-114.

GRUIA, M. & I. POPA – 2004-2005. Collembola of the Piatra Craiului National Park (II). Trav. Inst. Spéol. E. Racovitza, 44, pp. 119-131.

GRUNER, H. E. & I. TABACARU – 1963. Revision der Familie Mesoniscidae Verhoeff, 1908 (Isopoda, Oniscoidea). Crustaceana, 6, pp. 15-34.

HAMPE, C. – 1856. Ein neuer Höhlenkäfer. Verh. zool.-bot. Ver., Wien, 6, 463, 464.

HILLEBRAND-VOICULESCU, A.M., ITCUS, C., ARDELEAN, I., PASCU, M., D., PERSOIU, A., RUSU, A., BRAD, T., POPA, E., ONAC, B., P., AND PURCAREA, C. – 2014. Searching for cold-adapted microorganisms in the underground glacier of Scarisoara Ice Cave, Romania. Acta Carsol., 43: 319-329.

HODOROGEA, P. – 1972. Recherches microbiologiques dans la grotte de Topolnița (Roumanie). Première note. Trav. Inst. Spéol. E. Racovitza, 11, pp. 335-343.

HOLLINGER, A. M. – 1971. Contributii la studiul tizanurelor din Romania. St. Cerc. Biol. ser. Zool., 22, 4, pp. 313-317.

HOLLINGER, A. M. – 1978. Contributii la cunoasterea tizanurelor din Banat si alte regiuni ale Romaniei (Insecta, Thysanura). Banatica, 7, pp.249-258.

HUTCHENS E, RADAJEWSKI S, DUMONT MG, MCDONALD IR, MURRELL JC (2004) Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. Environ Microbiol 6:111–120.

HUTZU, M. – 1997. Chiropturopoda cavernicola, ein neue Höhlenbewohnende Uropodiden-Art (Anactinotrichida, Uropodina). Mém. Biospéol., 24, pp. 163-168.

IAVORSCHI, V. – 1992. Labidostoma motasi n. sp. (Nicoletiidae) a new species of the mite of Romania. Trav. Inst. Spéol. E. Racovitza, 31, pp. 47-51.

IENISTEA, A. M. – 1955. Contributii la cunoasterea faunei de Coleoptere cavernicole din R.P.R., Bul. Stiintific, St. Biol., Agron., Geol., Geogr., 7, 2, pp. 409-426.

IEPURE, S. – 1998-1999. Recherches sur la stygofaune de la grotte Huda lui Papara (Monts de Trascau, Roumanie). Trav. Inst. Spéol. E. Racovitza, 38, pp.133-142.

IEPURE, S. – 2000. Contributions to the study of the cyclopids (Crustacea, Copepoda) fauna from the groundwater habitats of Somesul Cald Basin, Bihor Mountains (Transylvania) with redescription of Acanthocyclops balcanicus. Proceed. Conf. Karst studies and Problems, July 2000, Cluj-Napoca, p. 167.

IEPURE, S. – 2001. Cyclopides du Parc National des Monts Apuseni. Acanthocyclops plesai n. sp. et A. balcanicus bisaetosus n. ssp. Studia Univ. Babes-Bolyai, Biologia, 46, 2 pp. 31-41.

IEPURE, S. – 2007. Aspecte microevolutive la specii de ostracode (Crustacea, Ostracoda) si ciclopide (Crustacea, Copepoda) din ape subterane. Ph. D. Thesis, 179 pp.

IEPURE, S., T. Namiotko & D. L. DANIELOPOL – 2007. Evolutionary and taxonomic aspects within the species Pseudocandona eremita (Vejdovsky) (Ostracoda, Crustacea). Hydrobiologia, 585, pp. 159-180.

IEPURE, S. & D. DEFAYE – 2008. The Acanthocyclops kieferi complex (Crustacea: Copepoda) from South-Eastern Europe, with description of a new species. Crustaceana, 81,5, pp. 611-633.

IEPURE, S., T. Namiotko & D. L. DANIELOPOL – 2008. Morphological diversity and microevolutionary aspects of the lineage Cryptocandona vavrai Kaufmann 1900 (Ostracoda, Canonina). Annls Limnol-Internat. J. Limnol., 44, 2, pp. 151-166.

Iepure, S., A. Oarga – 2011. A new Acanthocyclops Kiefer, 1927 (Copepoda, Cyclopida) from caves in north-western Romania. Annales Zoologici, 61 (2): 427-438.

ILIE, V., GIURGINCA, A. & VANOAICA – 2002. Premiminary data conserning some Arthropods fauna from the Closani karstic area. Muz. Olteniei, Craiova, 18, pp. 129-137.

ILIE V. – 2003. Chilopoda from the edaphic and subterranean environments in the Resita-Carasova Area. A preliminary note. Arch. Biol. Belgrade, 55 (3–4), pp. 87–92.

ILIE, V. – 2007. Cecetari taxonomice, ecologice si biogeografice asupra Chilopodelor din mediile edafic si subteran superficial din aria carstícá a Munților Banatului. Ph. D. Thesis, 189 pp.

IONESCU, M. A. – 1955. Diplura. In: Fauna R. P. R. Insecta 7, 2. Ed. Acad. Bucuresti, 48 pp.

IONESCU, C. N. – 1912. Biospeologica. Faune des grottes dans les Carpathes de Roumanie avec: Liste des Coléoptères recoltés par la Dr. C. N. Ionesco dans les grottes des Carpathes roumaines (méridionales) et déterminés par le dr. R. Jeannel. Ann. Sci. Univ. Jassy, 7, 3, pp. 235-251.

IONESCU, C.N. – 1913. Biospeologia Carpatilor Meridionali. Bul. Soc. Rom. Geogr., 34, 2

IONESCU, C. N. – 1915. Contributions à la faune des insects Collemboles de Roumanie (en comprenant aussi les formes cavernicoles). Bull. Ac. Romana, 3 pp. 320-325.

IONESCU, C. N. – 1915a. Araignées cavernicoles des Carpates roumaines. Ann. Sci. Univ. Jassy, 8, pp. 404-406.

IONESCU, C. N. – 1922. Quelques nouveaux insectes Collemboles récoltés dans les grottes des Carpathes Méridionales. Ann. Sci. Univ. Jassy, 11, pp. 373-382.

ITCUS C., PASCU M.-D., BRAD T., PERSOIU A. and PURCAREA C. – 2016. Diversity of cultured bacteria from the perennial ice block of Scarisoara Ice Cave, Romania. Internat. J. Speleol., 45, pp. 89-100.

ITCUS C., PASCU M. D., LAVIN P., PERSOIU A., IANCU L. AND PURCAREA C. – 2018. Bacterial and archaeal community structures in perennial cave ice, Scientific Reports, 8:15671.

IVAN, O. & N. A. VASILIU – 2010. Fauna of oribatid mites (Acari, Oribatida) from the Movile cave area (Dobrogea, Romania). Trav. Inst. Spéol. E. Racovitza, 49, pp. 29-40.

JEANNEL, R. – 1923. Etude préliminaire des Coléoptères aveugles du Bihar. Bull. Soc. Sci. Cluj, 1, 3, pp. 411-472.

JEANNEL, R. – 1924. Monographie des Bathysciinae. Arch. Zool. Expér. Gén., 63, 436 pp.

JEANNEL, R. – 1928a. Monographie des Trechinae. Morphologie comparée et distribution géographique d'un groupe de Coléoptères. L'Abeille, 35, 808 pp.

JEANNEL, R. – 1928b. Diagnoses préliminaires de Coléoptères cavernicoles nouveaux de l'Olténie. Bull. Soc. Entomol. Fr., pp. 267-275.

JEANNEL, R. & E. G. RACOVITZA – 1929. Enumération des grottes visitées 1918-1927. Arch. Zool. Expér. Gén., 68, pp. 203-608.

JEANNEL, R. – 1930a. Coléoptères cavernicoles des Carpates Méridionales. Bull. Soc. Sci. Cluj, 5, 2, pp. 5-47.

JEANNEL, R. – 1930b. Coléoptères cavernicoles nouveaux des Monts Bihar. Bull. Soc. Sci. Cluj, 5, 2, pp. 48-61.

JEANNEL, R. – 1931a. Coléoptères nouveaux de la troisième campagne organisée par l'Institut de Spéologie dans les Carpathes Méridionales. Bull. Soc. Sci. Cluj, 5, 2, pp. 134-141.

JEANNEL, R. – 1931b. Origine et évolution de la faune cavernicole du Bihar et des Carpates du Banat. Arch. Zool. Ital., 16, pp. 47-60.

JUBERTHIE, C. & V. DECU – 1968. Les glandes pygidiales de quelques Trechinae cavernicoles. Ann. Spéléol., 23, 1, pp. 195-210.

JUBERTHIE, C. & V. DECU – 1970. Neurosécretion chez les invertébrés souterrains. La neurosécretion et les glandes endocrines chez le coléoptère Closania winkleri. Ann. Spéléol., 25, 2, pp. 299-317.

JUBERTHIE, C., DELAY, B., DECU, V. & Gh. RACOVITA – 1981. Premières données sur la faune des microespaces du milieu souterrain superficiel de Roumanie. Trav. Inst. Spéol. E. Racovitza, 20, pp. 103-113.

JUBERTHIE, C. & V. DECU (eds) – 1994-2001. Encyclopaedia Biospeologica, T. I (1994), T. II (1998), T. III (2001). Ed. Fabrro, Saint-Girons, 2294 pp.

JUBERTHIE-JUPEAU, L. & I. TABACARU – 1968. Glandes postgonopodiales des Oniscomorphes (Diplopodes, Myriapodes). Rev. Ecol. Biol. Sol, 5, 4, pp. 605-618.

JUGET, J. & E. DUMNICKA – 1986. Oligochaeta (incl. Aphanoneura) des eaux souterraines continentales, p. 234-245. In: L. Botosaneanu (ed.), Stygofauna mundi, Leyden, 740 pp.

JUVARA, I. – 1967. Acarieni din fam. Spinturnicidae si Dermanyssidae (Mesostigmata: Gamasina) paraziti pe chiroptere din Romania. Lucr. Inst. Speol. E. Racovitza, 6, pp. 183-193.

KARAMAN, G. S. & S. RUFFO – 1986. Amphipoda: Niphargus – group (Niphargidae) sensu Bousfield, 1984. In: Botosaneanu (ed.), Stygofauna mundi, Leyden, 740 pp.

KARAMAN, G. S. & S. SARBU – 1993. A new species of the genus Pontoniphargus Dancau, 1970 (Amphipoda, Gammaridea, Family Niphargidae) from Romania, N. ruffoi n. sp. Bol. Mus. Civ. St. Nat. Verona, 20, 2, pp. 569-582.

KARAMAN, G. & S. SARBU – 1995. Niphargus decui n. sp. (Amphipoda, Gammaridea, Niphargidae) a new species for Romania. Trav. Inst. Spéol. E. Racovitza, 34, pp. 77-87.

KULCZYNSKI, L. – 1895. üeber die Theridioiden der Spinnenfauna Ungarns. Termes. Fuzetek, 18, 188-201, 288, 289.

KUMARESAN, D., WISCHER, D., STEPHENSON, J., HILLEBRAND-VOICULESCU, A., MURRELL, J.C. – 2014. Microbiology of Movile Cave—A Chemolithoautotrophic Ecosystem. Geomicrobiol. J., 31 (3), pp. 186–193.

LASCU, C. – 1989. Paleogeographical and hydrogeological hypothesis regarding the origin of a peculiar cave fauna. Misc. Speol. Romanica, 1, pp. 13-18.

LASCU, C., POPA, R. & S. SARBU – 1994. Le Karst de Movile. (Dobrogea du Sud). Rev. Roum. Géographie, 24, pp. 85-94.

LASCU, C., POPA, R. & S. SARBU – 1995. Le Karst de Movile. (Dobrogea du Sud). Rev. Roum. Géographie, 38, pp ; 31-40.

LASCU, C., CONSTANTIN, S. & S.E. LAURITZEN – 2000. Black Sea level oscillations based on preliminary U-series dating of submerged speleothems from Pestera Piatra (Central Dobrogea, Romania). Proceed. Meet. Friends of Karst, Theor. and Appl. Karstology, July 2000, Cluj-Napoca, Romania. Presa Univ. Napocensis Cluj-Napoca, pp. 72-76.

LASCU, C. – 2003. – Movile cave, Romania. In: J. Gunn (ed.). Encyclopaedia of caves and karst Science, Fitzroy Dearborn, N.Y, London, pp. 528-530.

LENGERSDORF, F. & R. LERUTH – 1940. Etudes biospéologiques. 19. Sciaridae (= Lycoriidae) et Mycetophilidae (= Fungivoridae) cavernicoles de Transylvanie (Diptera). Bull. Mus. roy. Hist. nat. Belg., 16, 6, 24 pp.

LERUTH, R. – 1939. Etudes biospéologiques. 12. Remarques écologiques et biologiques sur les stations visitées en Roumanie. Bull. Mus. roy. Hist. nat. Belg., 15, 36, 51 pp.

LOOSJES, E. F.& A. NEGREA – 1968. Gastropoda (Pulmonata) in the karst regions of Romania. Zool. Medeling., 43, 4, pp. 41-55.

MALLASZ, J. – 1928. Bestimmungstabelle der Sophrochaeta Arten. Publ. Muz. jud. Hunedoara, 3-4 (25-26).

MANOLACHE, E. R. 2004-2005. Populatii microbiene si activitati enzimatice in substrate naturale aflate in conditii ecologice nefavorabile. Ph. D. thesis UBB Cluj-Napoca, 2001.

MANOLELI, D. – 1994. Contributions to the knowledge of the Hirudinea from the eastern Romanian Plain and from the Mountains of Vrancea. Trav. Mus. natl. Hist. nat. “Grigore Antipa”, 14, pp. 79-83.

MANOLELI, D., KLEMM, D. J. & S. M. SARBU – 1998. Haemopis caeca (Annelida, Hirudinea, Haemopidae) a new species troglobitic leech from a chemoautotrophycally based groundwater ecosystem in Romania. Proceed. Biol. Soc. Washington, 111, pp. 222-229.

MARIN, C & T. NICOLESCU – 1993. The geochemistry of groundwater from southeastern Dobrogea. Romania. Trav. Inst. Spéol. E. Racovitza, 32, pp. 229-348.

MARTENS, J. – 1978. Spinnentiere, Arachnida: Weberknechte, Opiliones. Die Tierwelt Deutschlands. Vol. 64. G. Fischer Verlag, Jena, 464 pp.

MATIC, Z. – 1966. Fauna R. S. Romania. VI, Chilopoda, 1, Anamorpha. Ed. Acad. Bucuresti, 227 pp.

MATIC, Z. – 1968. Chilopodele din colectia "Biospeologica" (seriile VII-VIII). Lucr. Inst. Speol. E. Racovitza, 7, pp. 55-77.

MATIC, Z. – 1972. Fauna R. S. Romania. VI, Chilopoda, 2, Epimorpha. Ed. Acad. Bucuresti, 220 pp.

MATILE, L. – 1962. Morphologie et biologie d'une insecte diptère cavernicole Speolepta leptogaster Winnertz (Mycetophilidae). Mém. Mus. Hist. nat. Paris, 20, pp. 220-241.

MATILE, L. – 1994. Diptera: pp. 341-357 In: C. Juberthie et V. Decu (eds), Encyclopaedia Biospeologica, 1. Soc. Biospéol. Moulis-Bucarest, 834 pp.

MELEG, I., CIMPEAN, M. & C. PAVELESCU – 2009. Hyporheic fauna from interstitial of the Somes basin (Transylvania, Northwestern Romania). Trav. Inst. Spéol. E. Racovitza, 48, pp. 45-58.

MELEG, I.N., MOLDOVAN, O.T. & F. FIERS – 2011a. Assessing copepod (Crustacea: Copepoda) species richness at different spatial scales in northwestern Romanian caves. Subterranean Biology, 91, pp. 103-112.

MELEG, I., MOLDOVAN, O.T., IEPURE, S., FIERS, F. & T. BRAD – 2011b. Diversity patterns of fauna from dripping water in caves from northwestern Romania, Int. J. Limnol., 47, pp.185-197.

MILLER, L. 1856. Beschreibung eines neuen Grottenkäfer aus Ungarn. Verh. zool.-bot. Ver., Wien, 6, 635, 636.

MOLDOVAN, O. T. – 1989. Révision systématique de l'espèce Pholeuon angusticolle (Coleoptera, Catopidae, Bathysciinae). Trav. Inst. Spéol. E. Racovitza, 28, pp. 29-41.

MOLDOVAN, O. – 1993. A new species of Duvalius from the Somesan Plateau.Mém. Biospéol., 20, pp. 145-146.

MOLDOVAN, O., ALVES, H. & J. M. JALLON – 1996. Données préliminaries sur les hydrocarbures cuticulaires chez quelques espèces de Drimeotus s. str. (Coleoptera, Leptodirinae). Trav. Inst. Spéol. E. Racovitza, 35, pp. 109-114.

MOLDOVAN, O. T. – 1997a. Drimeotus octaviani (Coleoptera : Cholevidae : Bathysciinae). Mém. Biospéol., 24, pp. 169- 173.

MOLDOVAN, O. T. – 1997b. Reconnaissance des sexes et isolement reproductif chez les coléoptères Bathysciinae souterrains: approche taxonomique, biochimique et expérimentale. Ph. D. Thesis,”Paul Sabatier” Universite, Toulouse, 130 pp.

MOLDOVAN, O. T. – 1998. Reconnaissance des sexes chez les Coléoptères Bathysciinae (Leptodirinae) souterrains ; I. Approche expérimentale et ultrastructure. Mém. Biospéol., 25, pp. 87-105.

MOLDOVAN, O. – 2000a. Révision de Drimeotus s.str Miller, 1856 (Coleoptera, Cholevidae, Leptoditinae) de Transylvanie (Roumanie), avec description de deux nouvelles espèces. Zoosystema, 22, 1, pp. 139-152.

MOLDOVAN, O. – 2000b. Drimeotus plesai (Coleoptera Cholevidae) a new species of Leptodirinae from Transylvania (Romania). Mém. Biospéol., 27, pp. 89-92.

MOLDOVAN, O. – 2000c. The presence of cuticular hydrocarbons at the underground beetles and their importance. Proceed. Conf. Karst studies and Problems, July 2000, Cluj-Napoca, p. 170.

MOLDOVAN, O. – 2002. Coleoptere din peșteri. Adaptari, taxonomie, ecologie, feromoni, comportament, protectie. Accent, 113 pp.

MOLDOVAN, O. – 2003. Sex recognition at the subterranean Leptodirinae (Coleoptera, Cholevidae). II. Biochemical approach and data integration. Subterranean Biology, 1, pp. 99- 110.

MOLDOVAN O.T. (2019) Cave Protection in Romania. In: Onac B.P., Ponta G. (eds.) Cave and Karst Systems of Romania. Springer International Publishing.

MOLDOVAN, O., Racovitza, G. & G. RAJKA – 2003a. The impact of tourism in Romanian show caves: the example of the beetle populations in the Ursilor cave of Chiscau. Subterranean Biology, 1, pp. 73- 78.

MOLDOVAN, O., MILOTA, S., SARCINA, L., TRINKAUS, E., BALTEAN, I., SOFICARU, A. & A. RAJKA – 2003b. The oldest modern humans in Europe. Theor. Appl. Karstologia, 16, pp. 78-81.

MOLDOVAN, O., IEPURE, S. & A. PERSOIU – 2005. Biodiversity and protection of Romanian karst areas the example of interstitial fauna. In: Z. Stevanovic & P. Milanovic (eds). Water resource an environmental problem in Karst. Proced. Int. Conf. Beograd & Kotor, pp. 831-836.

MOLDOVAN, O. (ed.) – 2007. Lista faunistíca a Romaniei (specii terestre si de apa dulce). ISER, Casa Cartii de stiința, Cluj-Napoca, 411 pp.

MOLDOVAN, O. T.& G. RAJKA – 2007. Historical biogeography of subterranean beetles – “Plato’s cave” or scientific evidence? Time in karst, Postojna, pp. 77-86.

MOLDOVAN, O., Racovitza, G. & J. DUNAJ – 2007. Reconsidering the Pholeuon Hampe, 1856 (Coleoptera Leiodidae, Cholevinae) with the description of a new sub-genus. Zootaxa, 1449, pp. 31-43.

MOLDOVAN, O., PIPAN, T., IEPURE, S., MIHEVC, A. & J. MULEC – 2007. Biodiversity and ecology of fauna in percolating water in selected Slovenian and Romanian caves. Acta Carsol., 36, 3, pp. 493-501.

MOLDOVAN, O. T. – 2008. Why so many Leptodirini (Coleoptera, Leiodidae) in Romania? In: S. E. Makarov & R. N. Dimitriević Advance in Arachnology and Developmental Biology. Inst. Zool. Bulgarian Acad. Sci., Monograph XII, pp. 475-483.

MOLDOVAN O.T., CONSTANTIN S., PANAIOTU C., ROBAN R.D., FRENZEL P., MIKO L. – 2016. Fossil invertebrates records in cave sediments and paleoenvironmental assessments: a study of four cave sites from Romanian Carpathians. Biogeosciences 13: 483-497.

MOLDOVAN O.T., KOVÁČ L., HALSE S. – 2018. Cave Ecology. Springer International Publishing. 532 pp.

MOLDOVAN, O. T., MELEG, I. N. & A. PERSOIU – 2011a. Habitat fragmentation and its effects on groundwater populations. Ecohydrol., 5: 445-452.

MOLDOVAN, O. T., MIHEVC, A., MIKO, L., CONSTANTIN, S., MELEG, I. N., PETCULESCU, A. & P. BOSAK – 2011b. Invertebrate fossils from cave sediments: a new proxy for pre-Quaternary paleoenvironments. Biogeosciences, 8, pp.1825-1837.

MOLDOVAN, O. T., MELEG, I.N., LEVEI, E.& M. TERENTE – 2013. A simple method for assessing biotic indicators and predicting biodiversity in the hyporheic zone of a river polluted with metals. Ecological Indicators, 24, pp. 412-420.

MOLDOVAN, O.T. (2019) Cave Protection in Romania, p. 537-542. In: Cave and Karst Systems of Romania (Ponta, G.M.L. & Onac, B.P. Eds), 544 pp, Springer International Publishing.

MOLDOVAN, O.T., BERCEA, S., NĂSTASE-BUCUR, R., CONSTANTIN, S., KENESZ, M., MIREA, I.C., PETCULESCU, A., ROBU, M., ARGHIR, R.A. – 2020a. Management of water bodies in show caves – A microbial approach. Tourism Management, 78, 104037

MOLDOVAN O.T., IEPURE S., BRAD T., KENESZ M., MIREA I.C., NASTASE-BUCUR R. – 2020b. Database of Romanian cave invertebrates with a Red List of cave species and a list of hotspot/coldspot caves. Biodiversity Data Journal 8: e53571.

MOLDOVAN O.T., IEPURE S., BRAD T., KENESZ M., MIREA I.C., NASTASE-BUCUR R. – 2020c. Database of Romanian cave invertebrates with a Red List of cave species and a list of hotspot/coldspot caves, v5, Dryad, Dataset, https://doi.org/10.5061/dryad.9ghx3fff9

MOTAS, C. & J. SOAREC – 1939 – Sur deux Halacarides recueillis dans les Monts Apuseni, Roumanie. Bull. Mus. roy. Hist. nat. Belg., 15, 38, 11 pp.

MOTAS, C. & J. TANASACHI – 1947. Acariens phréaticoles de Transylvanie. Notationes Biol., 4, 1-3, pp. 3-63.

MOTAS, C., TANASACHI, J. & T. ORGHIDAN – 1946. Diagnoses de quelques nouveaux Hydracacriens phréaticoles de Roumanie. Bul. Sect. Sci. Acad. Roum., ,19, 8, pp. 1-7.

MOTAS, C., TANASACHI, J. & T. ORGHIDAN – 1947. Hydracariens phréaticoles de Roumanie. Notationes Biol., 5, 1-3, pp. 3-65.

MOTAS, C., TANASACHI, J. & T. ORGHIDAN – 1958. Hydrachnelles phréaticoles de la R. P. Roumaine. Acta Soc. Zool. Bohemoslovenicae, 22, 4, pp. 293-333.

MOTAS, C. & E. SERBAN – 1961. Cercetări freatobiologice: Valea Motrului (nota preliminara). St. Cerc. biol., Biol. anim., 13, 2, pp. 227-236.

MOTAS, C. – 1962. Procédé des sondages phréatiques. Division du domaine souterrain. Classification écologique des animaux souterrains. Le psammon. Acta Mus. Mac. Sci. nat., 8, 7 (75), pp. 135-173.

MOTAS, C. & J. TANASACHI – 1962a – Hydrachnellae freatice din bazinul Vïrghisului. Lucr. Inst. Speol. E. Racovitza, I-II, (1962-1963), pp. 311-340.

MOTAS, C. & J. TANASACHI – 1962b. Beschreibung einiger Hydrachnellen aus Rumänien, nebst Verzeichnis der bis jetzt gefundenen Formen von Hydrachnellen, Porohalacariden, Halacariden, Stygothrombiiden und Oribatiden (Acari). Ann. Hist. nat. Mus. nat. Hung., 54, pars Zool., pp. 434-472.

MOTAS, C., DECU, V. & A. BURGHELE – 1967. Sur l'association pariétale des grottes d'Olténie (Roumanie). Ann. Spéléol., 22, 3, pp. 475-522.

MUSCHIOL, D, MARKOVIC, M, THREIS, I. & W. TRAUNSPURGER – 2008. Predatory copepods can control nematode populations: a functional-response experiment with Eucyclops subterraneus and bacterivorous nematodes. Fund. Appl. Limnol., 172, pp. 317–324.

MUSCHIOL, D., GIERE, O. & W. TRAUNSPURGER – 2015. Population dynamics of a cavernicolous nematode community in a chemoautotrophic groundwater system. Limnol. Oceanogr., 60, pp. 127–135.

NAE, A. – 2010. Cercetari biospeologice in masivul Piatra Craiului. Ph. D. Thesis Acad. Romana, 304 pp.

NAE, A. – 2012. Carniella mihaili (Georgescu, 1989) – New contribution of genus and description of the male (Araneae, Theridiidae). Trav. Inst. Spéol. E. Racovitza, 51, pp. 67-72.

NAE, A. SARBU, S.M., WEISS I. – 2018. Kryptonesticus georgescuae spec. nov. from Movile Cave, Romania (Araneae: Nesticidae), Arachnologische Mitteilungen: Arachnology Letters, 55(1), 22-24.

NEGOESCU, I. – 1989. Sur une population troglobie d'Asellus aquaticus (L.) (Isopoda, Asellota, Asellidae). Misc. Speol. Romanica, 1, pp. 47-53.

NEGREA, A. & A. RIEDEL – 1968. Eine neue unterirdische Zonitiden-Art und Gattung (Gastropoda) aus Rumänien. An. Zoologici, 26, 5, pp. 209-215.

NEGREA, A. – 1974. Contribution à l'étude des Zonitidae (Gastropoda) cavernicoles et endogés de Roumanie. Int. J. Speleol., 6, 4, pp. 303-324.

NEGREA, A. – 1979. Contribution à l'étude des Clausiliidae (Gastropoda) des zones karstiques de Roumanie. Trav. Inst. Spéol. E. Racovitza, 18, pp.7-32.

NEGREA, A. – 1994. Gastéropodes (Gasteropoda) connus jusqu’à présent des provinces biospéologiques de Romania. Trav. Mus. natl. Hist. nat. “Grigore Antipa”, 34, pp. 227-264.

NEGREA, S. & I. TABACARU – 1958. Noi specii de Polydesmide cavernicole din R. P. R. An. Univ. Bucuresti, ser. St. Nat., 18, pp. 127-133.

NEGREA, S. – 1964. Observatii asupra variatiei caracterelor si dezvoltarii postembrionare la unele Lithobiidae (Chilopoda) din pesterile R. P. Romane. Lucr. Inst. Speol. E. Racovitza., 3, pp. 311-361.

NEGREA, S. & A. NEGREA – 1968. Contribution à l’étude de l’association pariétale des grottes du Banat. Lucr. Inst. Speol. E. Racovitza, 7, pp. 79-148.

NEGREA, S. – 1969. Aperçu sur les Chilopodes cavernicoles de Roumanie. Bull. Mus. nat. Hist. nat. Paris, 41, p. 102-107.

NEGREA, S. & A. NEGREA – 1972. Recherches sur l'association pariétale des grottes du Banat (Roumanie). Acta Zool. Cracov., 17, 3, pp. 45-96.

NEGREA, S. – 1993. Sur une population troglobionte de Cryptops anomalans Newport, 1844 (Chilopoda, Scolopendromorpha) trouvée dans la grotte « Pestera de la Movile. Trav. Inst. Spéol. E. Racovitza, 32, 87-94.

NEGREA, S. – 1994a. Chilopodes (Chilopoda) de Roumanie connus jusqu’à présent. Trav. Mus. natl. Hist. nat. “Grigore Antipa”, 34, pp. 265-283.

NEGREA, S. – 1994b. Cladocera: pp. 99-104. In: Encyclopaedia Biospeologica, 1. C. Juberthie et V. Decu (eds), Société de Biospéologie, Moulis- Bucarest, 834 pp.

NEGREA, S. & A. MINELLI – 1994. Chilopoda: pp. 249-254.In: Encyclopaedia Biospeologica, 1. C. Juberthie et V. Decu (eds), Société de Biospéologie, Moulis-Bucarest, 834 pp.

NEGREA, S. – 1997. Nouvelles données sur les Chilopodes souterrains et endogés de la zone karstique de Mangalia (Dobrogea, Roumanie). Trav. Mus. natl. Hist. nat. “Grigore Antipa”, 39, pp. 45-51.

NEGREA, S. – 2003a. Diversity of Chilopoda (Myriapoda) in subterranean terrestrial habitats from the speleological province II (Meridional Carpathians, west of river Olt) and III (Banat Mountains). In: Proceed. Int. Workshop on Subsurface Organisms. Fauna Europea project, pp. 31-34.

NEGREA, S. – 2003b. Diversity of Cladocera (Crustacea, Branchiopoda, Cladocera) in groundwater from the Romanian Occidental Carpathians (the Banat and the Apuseni Mountains). In: Proceed. Int. Workshop on Subsurface Organisms. Fauna Europea project, pp. 34-36.

NEGREA, S., NEGREA, A. & A. ARDELEAN – 2004. Biodiversitatea ín mediile subterane din Romania. Vasile Goldis Univ. Press, 246 pp.

NICOLAESCU-PLOPSOR, C. S. – 1957. Le paléolitique dans la République Populaire Roumaine à la lumières des dernières recherches. Dacia, 1, Acad. R.P.R., pp. 41-60.

NITZU, E. & C. JUBERTHIE – 1996. Changement dans l’équipement sensoriel des antennes et des palpes maxillaires en fonction de l’habitat chez les Coléoptères Clivininae (Scaritidae). Mém. Biospéol., 23, pp. 91-102.

NITZU, E. – 1997. Edaphicolous, endogeous and subterranean Coleoptera from the Movile karstic area. Trav. Inst. Spéol. E. Racovitza, 36, 73-98.

NITZU, E. – 1998. Laemostenus (Pristonychus) euxinus n. sp. (Coleoptera Carabidae) in the subterranean habitat from Southern Dobrogea, Romania. Trav. Mus. Natl. Hist. nat. “Grigore Antipa”, 40, pp. 337-346.

NITZU, E. & V. DECU – 1998. First record of Limnastis galileus Brulle, 1875 and Parazuphium chevrolati (Castelnau, 1853) (Coleoptera Caraboidea) in the subterranean habitat from Southern Dobrogea, Romania. Entomol.Mitt. Hamb. Zool. Mus. 12, 157, pp. 229-236.

NITZU, E. – 2000. Edaphicolus, endogeous and subterranean cole-optera from the Movile karstic area (Southern Dobrogea,Romania). Trav. Inst. Spéol. E. Racovitza, 36, 73–79.

NITZU, E. & V. ILIE – 2002-2003. Contribution to the knowledge of edaphic and subterranean Coleoptera from the Closani karstic area (Oltenia, Romania) – with special references on the Mesovoid Shallow Substratum. Trav. Inst. Spéol. E. Racovitza, 41-42: 159-168.

NITZU, E. & NAE, A. & I. POPA – 2007. Eco-faunistic study on the invertebrate fauna (Aranea, Collembola and Coleoptera) from the Varghis Gorge natural reserve (Eastern Carpathians, Romania), with special note on the micro-refugial role of the subterranean habitats. Trav. Inst. Spéol. E. Racovitza, 46, (2006-2007), pp. 31-50.

NITZU, E., NAE, A., GIURGINCA, A & I. POPA – 2010. Invertebrates communities from the mesovoid shallow substratum of the Carpato-Euxinic area. Trav. Inst. Spéol. E. Racovitza, 49, pp. 41-80.

NITZU, E. – 2013. The Cholevinae of Romania (exclusive of Leptodirini) (Coleoptera, Leiodidae) with special reference to the hypogeal fauna. Zootaxa, 3620, pp. 351-378.

NITZU, E., NAE, A., BĂNCILĂ, R., POPA, I., GIURGINCA, A & R. PLĂiaȘu– 2014. Scree habitats: ecological function, species conservation and spatial-temporal variation in the arthropod community. Systematics and Biodiversity, 12, 1, pp. 65-75.

NITZU E., GIURGINCA A., NAE A., POPA I., BABA S., MELEG I.N. & VLAICU M. 2016 – The catalogue of caves with endemic cavernicolous arthropod fauna of Romania. Travaux de l’Institut de Spéologie “Emile Racovitza”, 55: 3-62.

NOVAKOVA A, HUBKA V, VALINOVA Š, KOLARIK M, HILLEBRAND-VOICULESCU AM (2018) Cultivable microscopic fungi from an underground chemosynthesis-based ecosystem: a preliminary study. Folia Microbiol 63(1):43–55.

OLTEANU, R. – 2006. Paleo-ecologia ecosistemelor salmastre din Bazinul Dacic. GeoEcoMar, Bucuresti, 90 pp.

ORGHIDAN, T. – 1955 – Un nouveau domaine de vie souterraine aquatique: le biotope hyporhéique. Bull. Biol. Acad. R. P. Romania, 7, 3, pp. 657-676.

ORGHIDAN, T. – 1959. Ein neuer Lebensraum des unterirdischen Wassers: das hyporheische Biotop. Arch. Hydrobiol., 55, pp. 392-414.

ORGHIDAN, T., PUSCARIU, V., BLEAHU, M., DECU, V., RUSU, T. & A. BUNESCU – 1965. Harta regiunilor carstice din Romania. Lucr. Inst. Speol. E. Racovitza, 4, pp. 75-105.

ORGHIDAN, N. & E. NEDELCU – 1969. Vaile transversale din Romania. Studiu geomorphologic. Acad. Romana, 190 pp.

ORGHIDAN, T., GEORGESCU, M. & S. SARBU – 1982. Deux espèces nouvelles d'Eukoenenia (Arachnida, Palpigradida) vivant dans les grottes de Roumanie. Trav. Mus. Hist. nat. G. Antipa, 24, p. 19-27.

PALACIOS-VARGAS, J. F., DECU, V., IAVORSCHI, V., HUTU, M. & C. JUBERTHIE – 1998. Acari terrestria, pp. 929-952. In: C. Juberthie et V. Decu (eds), Encyclopaedia Biospeologica, 2, Soc. Biospeol. Moulis-Bucarest, 839-1372 pp.

PAPÁČ, V. & L. KOVÁČ – 2013. Four new troglobiotic species of the genus Megalothorax Willem, 1900 (Collembola: Neopleona) from the Carpathian Mountains (Slovakia, Romania). Zootaxa, 3737 (5), pp. 545-575.

PAULIAN, R. – 1988. Biologie des Coléoptères. Lechevalier, 719 pp.

Persoiu, a – 2011. Paleoclimatic significance of perrenial ice accumulations in caves: an exemple from Scarisoara Ice Cave, Romania. Univ. South Florida, Depart. Geol., 126 pp.

Persoiu, a. & A. PAZDUR – 2011. Ice genesis and its long-term mass balance and dynamics in Scarisoara Ice Cave, Romania. The Cryosphera, 5, pp. 5-45.

PLĂIAȘU, R., OZGUL, A., SCHMIDT, B. R., & BĂNCILĂ, R. I. (2017).  Estimation of apparent survival probability of the harvestman Paranemastoma sillii sillii (Herman, 1871) from two caves. Animal Biology, 67, 165– 176.

PLĂIAȘU, R. & R.I. BĂNCILĂ – 2018. Fluctuating asymmetry as a bio-marker to account for in conservation and management of cave-dwelling species. Journal of Insect Conservation 22 (2), 221-229.

PLESA, C. – 1958. Conspectul sistematic al Cyclopidelor (Crustacee copepode) cunoscute pana in prezent din R. P. R. St. Univ. V. Babes-Bolyai, 3, 7, pp. 137-150.

PLESA, C., BOTEA, F. & Gh. RACOVITA – 1964. Cercetari asupra faunei acvatice subterane din bazinul Crisului Repede. I. Valea Misidului si afluenti. Lucr. Inst. Speol. E. Racovitza, 3, pp. 367-397.

PLESA, C. – 1967. Recherches sur la périodicité de la reproduction chez les cavernicoles. Spelunca, Mém. 5, pp. 295-299.

PLESA, C. – 1969a. Nota critica asupra unor ciclopide (Crustacea, Copepoda) din apele subterane ale Romaniei. Lucr. Inst. Speol. E. Racovitza, 8, pp. 81-91.

PLESA, C. – 1969b. Cercetari asupra periodicitatii reproductive la unele crustacee cavernicole troglobionte. Thèse Doct. d'Etat Inst. Biol. "T. Savulescu", Bucuresti.

PLESA, C. – 1977. Nouvelles données sur la répartition et l'écologie de Troglochaetus beranecki Delachaux (Archiannelida) en Roumanie. Trav. Inst. Spéol. E. Racovitza, 16, pp. 9-17.

PLESA, C. – 1987. Les aqueducs en tant qu'habitats temporaires pour la stygofaune. Trav. Inst. Spéol. E. Racovitza, 26, pp. 39-45.

PLESA, C. – 1989. Etude préliminaire des Cyclopides (Crustacea, Copepoda) de la grotte « Pestera Movile », Mangalia, Roumanie. Misc. Speol. Romanica, 1, pp. 39-45.

PLESA, C. – 1996. Sur un remarquable cas d’adaptation à la vie interstitielle (psammal): Microcerberus plesai Chappuis et Delamare Deboutteville (Crustacé, Isopode, Microcerberidae). Mém. Biospéol., 23, pp. 87-89.

PLESA, C., MOLDOVAN, O. & A. MUNTEANU – 1996. Aperçu biospéologique sur la grotte Vadu-Crisului, Monts Pãdurea Craiului (Transylvanie, Roumanie). Trav. Inst. Spéol. E. Racovitza, 35, pp. 115-142.

PLESA, C. & R. BUZILA – 2000. Nouvelles données sur la biodiversité de la stygofauna. II. Le bassin inférieur de la vallée de Garda Seaca (Monts Apuseni). Evolution et adaptation, Cluj-Napoca, 6, pp. 89-102.

POGGI, R. & V. DECU – 1992. Coléoptères édaphicoles de grottes de la Roumanie. Trav. Inst. Spéol. E. Racovitza, 31, pp. 69-73.

POGGI, R. – 1994. Descrizione di un nuovo pselafide rumeno, primo reppresentante cavernicolo della tribu Tyrini. Boll. Sol. Entomol. Ital., 125, pp. 221-218.

POGGI, R. & S. SARBU – 2013. Two new Pselaphinae beetles from Movile cave (Romania) (Coleoptera Staphylinidae-Pselaphinae). Ann. Mus. Civ. St. Nat. ”G. Doria”, Genova, 105, pp. 115-121.

POINAR, Jr. G. O., & S. M. SARBU – 1994. Chronogaster troglodytes sp. n. (Nemastoda Chronogasteridae) from Movile Cave, with a review of cavernicolous nematods. Fundam. Appl. Nematology, 17, pp. 231-237.

POLHEMUS, J. T., NIESER, N. & L. S. KEFFER – 1994. Synonymical notes on the Nepa cinerea Linnaeus complex (Nepidae: Heteroptera) Tijds. Entomol., 137, pp. 331-336.

POP E., 1949 – Bacterii nitrificante in pestera dela Scărișoara. Buletin Științific, 1: 901-907

POP, E. & I. CIOBANU – 1950 – Analize de polen in ghiata de la Scarisoara. An. Acad. R. P. R., 3, 2.

POPA, I. – 2010. Contributii la studiul taxonomic, ecologic si biogeografic al Colembolelor din Romania. Ph. D. Thesis, 187 pp.

POPA, R. & S. SARBU – 1991. Trophic structure in an aquatic troglobitic community based upon chemoantotrophic carbon fixation.Trav. Inst. Spéol. E. Racovitza, 30, pp. 51-58.

POPOV, S. V., F., ROGL, A. Y., ROZANOV, F. F., STEININGER, I. G. SHCHERBA & M. KOVAC – 2004. Lithological-Paleogeographic maps of Paratethys. Late Eocene to Pliocene. Courier Forschunginstitut Senckenburg. Band 250. Frankfurt am Main, 46 pp., maps 1-10.

POPOVICI, I. – 2011. Increngatura Nematoda, pp. 151-155. In: S. Godeanu (red), Determinatorul ilustrat al florei si faunei Romaniei, Vol. IV, Mediul subteran. „Vasile Goldis” University Press, Arad, 423 pp.

POSEA, G., POPESCU, N. E. & I. IELENICZ – 1974. Relieful Romaniei. Ed. Stiintifica, 483 pp.

POVARA, I., DIACONU & C. GORAN – 1972. Observations préliminaires sur les grottes influencées par les eaux thermo- minérales de la zone de Baile Herculane. Trav. Inst. Spéol. E. Racovitza, 11, pp. 355-365.

POVARA, I – 2012. Valea Cernei. Morfologie, hydrologie, ape termominerale. Ed. Agir, 304 pp.

RACOVITZA, E. – 1907. Essai sur les problèmes biospéologiques. Arch. Zool. expér. Génér., 6, pp. 371-388.

RACOVITZA, E. – 1927. Observations sur la glacière naturelle dite “Ghetarul de la Scarisoara ». Bull. Soc. Sci Cluj., pp. 75-108.

RACOVITZA, G. – 1967. Nouvelles contributions à l’étude du topoclimat de la grotte Ghețarul de la Scarisoara. Ann. Spéléol., 22, 4, pp. 757-786.

RACOVITA, G. – 1970. La périodocité reproductrice chez Pholeuon proserpinae glaciale Jean. (Coleoptera, Bathysciinae). In: Livre Cent. E. Racovitza (1868-1968), pp. 445-458. Ed. Acad. R.S.R., 699 pp.

RACOVITA, G. – 1971. La variation numérique de la population de Pholeuon moczaryi Cs. de la grotte de Vadu-Crisului. Trav. Inst. Spéol. E. Racovitza, 10, pp. 273-279.

RACOVITA, G. – 1973. Quelques significations de la variation numérique des populations de Coléoptères cavernicoles. Trav. Inst. Spéol. E. Racovitza, 12, pp. 9-31.

RACOVITA, G. – 1975. La classification topoclimatique des cavités souterraines. Trav. Inst. Spéol. E. Racovitza, 14, pp. 197-216.

RACOVITA, G. & M. SERBAN – 1975. Recherches sur la biologie de la population de Coléoptères cavernicoles de la Pestera cu Apa din Valea Lesului. Ann. Spéléol., 30, 2, pp. 351-363.

RACOVITA, G. – 1978. Données écologiques sur une population souterraine de Drimeotus horvathi Trav. Inst. Spéol. E. Racovitza,17, pp. 81-94.

RACOVITZA, G. – 1980. Etude écologique sur les Coléoptères Bathysciinae cavernicoles. Mém. Biospéol., 6, pp. 1-199.

RACOVITA, G. & V. DECU – 1981. Un nou biotop subteran si implicatiile lui in protectia faunei hipogee. Ocrot. Nat. Med. inconj., 25, 2, pp. 179-183.

RACOVITA, G. & M. SERBAN – 1982. Recherches sur la dynamique de la faune du milieu souterrain superficiel. Trav. Inst. Spéol. E. Racovitza, 21, pp. 33-42.

RACOVITZA, G. – 1983. Sur les relations dynamiques entre le milieu souterrain superficiel et le milieu cavernicole. Mém. Biospéol., 10, pp. 85-89.

RACOVITA, G. – 1984a. Sur la structure méroclimatique des cavités souterraines. Theor. Appl. Karstology, 1, pp. 123-130.

RACOVITA, G. – 1984b – Etude faunistique et écologique du milieu souterrain superficiel de la vallée d'Ordincusa (Monts du Bihor). Trav. Inst. Spéol. E. Racovitza, 23, pp. 27-37.

RACOVITA, G. – 1985. Taxonomie quantitative des Bathysciinae (Coleoptera, Catopidae) du bassin de la Valea Iadului (Monts Apuseni). Trav. Inst. Spéol. E. Racovitza, 24, pp. 69-83.

RACOVITA, G. – 1993. Recherches éthologiques sur les Bathysciinae troglobies du genre Pholeuon (Coleoptera, Catopidae). Mém. Biospéol., 20, pp. 169- 176.

RACOVITA, G. – 1994. Bilan climatique de la grotte glacière de Scarisoara (Monts du Bihor, Roumanie), dressé sur dix années d’observations. Trav. Inst. Spéol. E. Racovitza, 33, pp. 107-158.

RACOVITA, G. – 1995. Révision systématique des Leptodirinae souterrains des Monts Apuseni. I. Variabilité individuelle et valeur taxonomique des caractères morphologiques dans la série phylétique des Drimeotus (Coleoptera, Bathysciinae). Trav. Inst. Spéol. E. Racovitza, 34, pp. 103-129.

RACOVITA, G. – 1996. Révision systématique des Leptodirinae souterrains des Monts Apuseni. II. Le sous-genre Parapholeuon Gangl.du bassin de Crisul Repede (Monts Padurea Craiului). Trav. Inst. Spéol. E. Racovitza, 35, pp. 71-105.

RACOVITA, G. – 1998-1999. Révision systématique des Leptodirinae souterrains des Monts Apuseni. III. Le sous-genre Parapholeuon Gangl.du bassin de Crisul Negru (Monts Padurea Craiului). Trav. Inst. Spéol. E. Racovitza, 37-38, pp. 175-216.

RACOVIȚĂ, G. – 2000. Ice caves in temperate regions. In: Wilkens H, Culver D, Humphreys B (Eds) Ecosystems of the world – 30: Subterranean Ecosystems. Elsevier Sciences, Amsterdam, 567–574.

RACOVITA, G., MOLDOVAN, O. & B. ONAC – 2002. Monografia carstului dín Munții Padurea Craiului. Cluj-Napoca, 264 pp.

RACOVITA, G., SERBAN, M., VIEHMANN, I. & B. P. ONAC – 2003. Scarisoara. Press. Univ., Cluj-Napoca, 155 pp.

RACOVITA, G. – 2004-2005. Révision systématique des Leptodirinae souterrains des Monts Apuseni. IV. Le sous-genre Pholeuon (s. str.) du bassin de l’Aries (Monts du Bihor). Trav. Inst. Spéol. E. Racovitza, 43-44, pp. 165-191.

RACOVITA, G. – 2006-2007. Révision systématique des Leptodirinae souterrains des Monts Apuseni. V. Le sous-genre Pholeuon (s. str.) de la zone de Padis (Monts du Bihor). Trav. Inst. Spéol. E. Racovitza, 45-46, pp. 13-30.

RACOVITA, G. – 2009. Révision systématique des Leptodirinae souterrains des Monts Apuseni. VI. Le sous-genre Pholeuon (s. str.) du bassin de Somesul Cald Padis (Monts du Bihor). Trav. Inst. Spéol. E. Racovitza, 48, pp. 11-29.

RACOVITA, G. – 2010. Révision systématique des Leptodirinae souterrains des Monts Apuseni. VII. Le sous-genre Pholeuon (s.str.) du bassin supérieur de Crisul Negru (Monts du Bihor). Trav. Inst. Spéol. E. Racovitza, 49, pp. 3-28.

RACOVITA, G.– 2011. Révision systématique des Leptodirinae souterrains des Monts Apuseni. VIII. Aperçu synthétique sur le genre Pholeuon. Trav. Inst. Spéol. E. Racovitza, 50, pp. 37-60.

RIESS, W., GIERE, O., KOHLS, O. & S. M. SARBU – 1999. Anoxic thermomineral cave waters and bacterial mats as habitat for freshwater nematodes. Aquat. Microb. Ecol., 18, pp. 157–164.

ROHWERDER T, SAND W, LASCU C (2003) Preliminary evidence for a sulfur cycle in Movile Cave, Romania. Acta Biotechnol 23:101–107.

ROUGIER, H. – 2012. Homo sapiens en Europe. Dossiers d'Archéol., 351, pp. 22-27.

RUSDEA, E. – 1989. Dynamique de la population de Pholeuon (s. str.) knirschi Breit (Coleoptera, Bathysciinae) de la grotte Ghetarul de la Virtop (Monts du Bihor, Roumanie). Mém. Biospéol., 16, 201-213.

RUSU, T., RacoviȚĂ, GH. & D. COMAN – 1970. Contributions à l’étude du complexe karstique de Scarisoara. Ann. Spéléol., 25, 2, pp. 383-408.

SARBU, S. – 1990. The unusual fauna from a cave with thermomineral waters containing H2S, from southern Dobrogea, Romania. Mém. Biospéol., 17, 191-195.

SARBU, S. – 1991. Contributions to the biological investigation of the “Movile Cave”: the species composition and the trophic structure of the cave community and the origin of the fauna. Mém Biospéol., 18, 193-197.

SARBU S.M., LASCU C. – 1997. Condensation corrosion in Movile Cave, Romania. J Cave Karst Stud, 59, 99–102.

SARBU. S., POPA, R. & I. GOLIAT – 1991. Chemoautotrophic production in a thermomineral sulfurous cave. Trav. Inst. Spéol. E. Racovitza, 30, pp. 59-61.

SARBU, S. & R. POPA – 1992. A unique chemoautotrophically based cave ecosystem, pp. 638-666. In: A. Camacho (ed.), The natural history of Biospeleology. Madrid, 680 pp.

SARBU, S., GHEORGHE, C., POPESCU-JARNEA, VLASCEANU, L., POPA, R. & C. LASCU – 1995. Stable isotope in Movile cave. Trav. Inst. Spéol. E. Racovitza, 34, pp. 99-102.

SARBU, S. & T. C. KANE – 1995. A subterranean chemoautotrophycally based ecosystem. N. S. S. Bull., 57, pp. 91-98.

SARBU, S., T. C. KANE & B. KLINKLE – 1996. A chemoauto-trophically based cave ecosystem. Science, 272, pp. 1953-1955.

SARBU, S. – 2000. Movile Cave: A chemoautotrophycally based groundwater ecosystem. In: H. Wilkens, D. C. Culver & W. H. Humphreys. Ecosystems of the World, 30, Subterranean Ecosystems. Elsevier, Amsterdam and N.Y., pp. 317-343.

SARBU S. M., LASCU C. & BRAD T. – 2019. Dobrogea: Movile Cave, in Ponta GML, Onac BP (eds) Cave and karst systems of Romania. Cave and karst systems of the world, Springer, Cham, p. 429-436

SARBU, S., VLASCEANU, L., POPA, R., SHERIDAN, P., KINKLE, B. K. & T. C. KANE – 1994. Microbial mats in a thermomineral sulfurous cave. In: L. J. Stal and P. Chaumette (eds). Microbial mats: Structure, Development and Environmental Significance. Springer Verlag, Berlin, pp. 45-50.

SAULEA, E. – 1967. Geologia istorica. Ed. Did. si Pedagogica.

SCHIRMACK J, MANGELSDORF K, GANZERT L, SAND W, HILLEBRAND-VOICULESCU AM, WAGNER D (2014) Methanobacterium movilensesp. nov., a hydrogenotrophic, secondary-alcohol-utilizing methanogen from the anoxic sediment of a subsurface lake. Int J Syst Evol Microbiol 64:522–527.

SENDRA, A., NITZU, E. & A. SANJUAN – 2012. Half a century after Ionescu's work on Romanian Diplura – A faunal contribution based on material collected from karst area. Trav. Inst. Spéol. E. Racovitza, 51, pp. 37-66.

SERBAN, E. – 1964. Nouvelles données sur les Microparasellides (Isopodes) de Roumanie : Microcharon motasi nov. sp., Microcharon orghidani nov. sp. et Microcharon oltenicus nov. sp. Vie et Milieu, 15, 2, pp. 341-364.

SERBAN, E. – 1965. Concerning the presence of Bathynella natans stammeri Jakobi (Crustacea, Syncarida) in England and Rumania. Ann. Mag. Nat. Hist., 13, 8, pp. 513-522.

SERBAN, E. – 1966. Nouvelles contributions à l'étude de Bathynella (Bathynella) natans Vejd. et Bathynella (Antrobathynella) stammeri Jakobi. Int. J. Speleol., II, pp. 208-221.

SERBAN, E. – 1971. Quatre nouvelles Bathynella (Crustacea, Syncarida) de Roumanie ; de nouveau sur le "Dilemme Bathynella natans Vejd." Int. J. Speleol., 3, 3 + 4, pp. 225-240.

SERBAN, E. – 1972. Bathynella (Podophallocarida Bathynellacea). Ph. D. Thesis. Trav. Inst. Spéol. E. Racovitza, 11, pp. 11-224.

SERBAN, E. – 1975. Sur les Bathynella de Roumanie. Première partie. Int. J. Speleology., 7, pp. 357-378.

SERBAN, E. – 1976. Sur les Bathynella de Roumanie. Deuxième partie. Int. J. Speleology, 8, pp. 269-283.

SERBAN, E. – 1989. Taxa nouveaux des Bathynellidés d'Europe (Bathynellacea, Podophalacarida, Malacostraca). Trav. Inst. Spéol. E. Racovitza, 28, pp. 3-47.

SERBAN, M., COMAN, D. & R. GIVULESCO – 1948. Découvertes récentes et observations sur la glacière naturelle dite ‘Ghețarul de la Scarisoara”. Bull. Soc. Sci. Cluj, 10, pp. 174-210.

SERBANESCU, M. & V. DECU – 1962. Contribution à la connaissance des algues cavernicoles d'Olténie. Rev. Biol., 7, 2, pp. 201-214 (in Russian).

SKET, B. – 2008. Can we agree on an ecological classification of subterranean animals? J. Nat. Hist., 42:21, 1549-1563.

STEFUREAC, I. T. – 1970. Bryophytes trouvées à l'entrée de quelques grottes de Roumanie. Livre Cent. Emile Racovitza (1868-1968), pp. 473-486. Ed. Acad. R.S.R., 699 pp.

StiUca, E. & H. ILINCA – 1995. Pleistocen mammals (Rodentia) from Movile Cave (Romania). Theor. Appl. Karstology., 8, pp. 157-161.

STOCCHINO, G. A., SLUYS, R., KAWAKATSU, M., SARBU, S. M. & R. MANCONI – 2017. A new species of freshwater flatworm (Platyhelminthes, Tricladida, Dendrocoelidae) inhabiting a chemoautotrophic groundwater ecosystem in Romania. Eur. J. Taxon., 342, 1–21.

SUCIU, M. – 1968. Sifonaptere colectate in pesteri din Romania. St. Cerc., ser. Zool., 20, 3, pp. 245-254.

SUCIU, M. – 1970. Contributii la studiul sistematic, ecologic si zoogeografic al siphonapterelor (Siphonaptera, Latreille) din Romania. Ph. D. Thesis, rezumat, Univ. Bucuresti

SUCIU, M. – 1973. Catalogue of the Syphonaptera from Romania.St. cerc. Muz. St. Nat. Bacau, pp. 47-72.

TABACARU, I. & S. NEGREA – 1962. Beitrage zur Revision der Gattung Polydesmus in der Fauna Rumäniens nebst Betrachtungen uber Polydesmiden-faune der Nachbarländer. Acta Mus. Maced. Sci. nat. Skopje, 8, pp. 1-27.

TABACARU, I. – 1963a. Biharoniscus racovitzai n. g. n. sp. nouvel Isopode terrestre cavernicole de Roumanie. Ann. Spéléol., 18, 4, pp. 473-481.

TABACARU, I. – 1963b. Dezvoltarea postembrionara la specii cavernicole de Gervaisia (Diplopoda, Gervaisiidae). Lucr. Inst. Speol. E. Racovitza, I-II, pp. 341-399.

TABACARU, I. – 1964. Observatii zoogeografice asupra faunei cavernicole din Oltenia si Banat. Trav. Inst. Spéol. E. Racovitza, 3, pp. 293-340.

TABACARU, I. – 1965. Orobainosoma hungaricum orientale n. ssp. (Diplopoda, Ascospermophora) si dezvoltarea sa postembrionara. Lucr. Inst. Speol. E. Racovitza, 4, pp. 229-243.

TABACARU, I. – 1966. Contributii la cunoasterea faunei de diplopode din Dobrogea, a originii si relatiilor ei zoogeografice. Lucr. Inst. Speol. E. Racovitza, 5, pp. 169-183.

TABACARU, I. – 1968a. Contributii la cunoasterea originii si istoriei raspindirii diplopodelor cavernicole din Romania. Lucr. Inst. Speol. E. Racovitza, 8, pp. 149-161.

TABACARU, I. – 1968b. Beitrage zur Kenntnis der cavernicolen Antroleucosomiden (Diplopoda, Ascospermophora). Int. J. Speleol, 3, pp. 1-31.

TABACARU, I. – 1969a. Einige Bemerkungen über die Verbreitung der Höhlendiplopoden der Balkanhalbinsel und der Karpatengebiete. Actes IV Congr. Int. Spéléol., Ljubljana, 4-5, pp. 245-251.

TABACARU, I. – 1969b. Uber die Verbreitung der cavernicolen Landisopoden der Balkanhalbinsel und der Karpatengebiete. Abandl.VInt. Kongr. Späleol., Stuttgart, 4, 20, pp. 1-5.

TABACARU, I. – 1970a. Sur la répartition des Diplopodes cavernicoles européens. Livre Cent. Emile Racovitza (1868-1968), pp. 421-443. Ed. Acad. R.S.R., 699 pp.

TABACARU, I. – 1970b. Description d'une nouvelle espèce cavernicole du genre Haplophthalmus (Crustacea, Isopoda). Trav. Inst. Spéol. E. Racovitza, 9, pp. 151-158.

TABACARU, I. – 1973. Contribution à l'étude du genre Biharoniscus Tabacaru (Crustacea, Isopoda, Oniscoidea). Trav. Inst. Spéol. E. Racovitza, 12, pp. 121-125.

TABACARU, I. – 1975. Napocodesmus florentzae n. sp. (Diplopoda Polydesmida). Trav. Inst. Spéol. E. Racovitza, 14, p. 71-82.

TABACARU, I. – 1976. Sur un nouvel Iulide cavernicole de Roumanie : Typhloiulus (Lamellotyphlus) mehedintzensis n. sg., n. sp. Trav. Inst. Spéol. E. Racovitza, 15, pp. 63-75.

TABACARU, I. – 1980. Trichopolydesmus (Banatodesmus) jeanneli n. sg., n. sp. (Diplopoda, Polydesmida). Trav. Inst. Spéol. E. Racovitza, 19, pp. 155-161.

TABACARU, I. – 1983-1987. Sur le genre Trachysphaera Heller, 1858 (Diplopoda, Glomerida, Trachysphaeridae). Trav. Inst. Spéol. E. Racovitza, 22 (1983), pp. 51-66; 25 (1986), pp. 33-39; 26 (1987), pp. 9-27.

TABACARU, I. – 1985. Banatoiulus troglobius n. g., n. sp., nouveau Diplopode Iulide cavernicole de Roumanie. Trav. Inst. Spéol. E. Racovitza,24, pp. 63-68.

TABACARU, I. – 1989. Le genre Trachysphaera Heller, 1858 (Diplopoda, Glomerida, Trachysphaeridae) dans les grottes de Roumanie. Trav. Inst. Spéol. E. Racovitza, 28, pp. 19-27.

TABACARU, I. & V. BOGHEAN – 1989. Découverte en Dobrogea (Roumanie) d'une espèce troglobie du genre Trachelipus (Isopoda, Oniscoidea, Trachelipidae). Misc. Speol. Romanica, I, pp. 53-76.

TABACARU, I. – 1990. Le genre Trachysphaera Heller, 1858 (Diplopoda, Glomerida, Trachysphaeridae) dans les grottes de Roumanie. II. T. schmidti Heller. Trav. Inst. Spéol. E. Racovitza, 29, pp. 25-31.

TABACARU, I. – 1991. Un nouvel Isopode terrestre cavernicole de Roumanie Banatoniscus karbani n. g., n. sp. Remarques sur la systématique des Haplophthalminae. Trav. Inst. Spéol. E. Racovitza, 30, pp-12.

TABACARU, I. – 1993. Sur Caucasonethes vandeli n. sp. (Crustacea, Isopoda, Oniscidea) Isopode terrestre cavernicole de Roumanie. Mém. Biospéol., 20, pp. 231-238.

TABACARU, I. – 1994. Les Trichoniscidae des grottes de Roumanie. Description d’une nouvelle espèce troglobie : Trichoniscus racovitzai n. sp. (Crustacea, Isopoda, Oniscidae). Trav. Inst. Spéol. E. Racovitza, 33, pp. 49-61.

TABACARU, I. – 1996a. Contribution à l’étude du genre Hyloniscus (Crustacea, Isopoda) II. Diagnoses des genres Hyloniscus et Nippononethes nov. gen. La tribu des Spelaeonethini. Trav. Inst. Spéol. E. Racovitza, 35, pp. 21-62.

TABACARU, I. – 1996b. Sur un groupe d’espèces cavernicoles de Trichoniscus (Crustacea, Isopoda, Oniscidea) caractérisées par des organes glandulopilifères. Mém. Biospéol., 23, pp. 241-248.

TABACARU, I. & D. DANIELOPOL – 1996. Phylogenèse et convergence chez les Isopodes terrestres. Vie et Milieu, 46, 2, pp. 171-181.

TABACARU, I., GIURGINCA, A. & L. VANOAICA – 2002- 2003. Cavernicolous Diplopoda of Romania. Trav. Inst. Spéol. E. Racovitza, 41-42, pp. 121-148.

TABACARU, I. & A. GIURGINCA – 2003. The presence of the family Scleropactidae in Dobrogea. Systematic and zoogeographic remarks. The Biology of Terrestrial Isopods, V. Crustaceana Monographs, 2, Brill, pp. 13-22.

TABACARU, I. – 2011. Ordinul Isopoda, pp. 273-283. In: S. Godeanu (red.), Determinatorul ilustrat al florei si faunei Romaniei. Vol. IV, Mediul subteran. “Vasile Goldis” University Press, Arad, 423 pp.

TANASACHI, J. & T. ORGHIDAN – 1955. Hidracarieni orbi diu apele freatice. Bul. St. Biol. Agr. Geol., Geogr., 7, 2, pp. 369-381.

TOLLET, R. – 1955. Etudes biospéologiques. 36. Révision des Mycetophilidae cavernicoles de Transylvanie (Diptera Nematocera) recueillis par R. Leruth. Mém. Soc. roy. Entomol. Belg., 27, pp. 443-465.

TRINKAUS, E., MILOTA, S., RODRIGO, R., GHERASE, M. & O. MOLDOVAN – 2003. Early modern human cranial remains from the Pestera cu Oase, Romania. J. HumanEvol., 45, pp. 245-253.

TRINKAUS, E., CONSTANTIN, S. & J. ZILHAO – 2013. Life and death at the Pestera cu Oase: a setting for modern human emergernce in Europa. Oxford Univ. Press, New York, 436 pp.

TUFESCU, M. & V. DECU – 1977. Modèles préliminaires de la dynamique des populations principales de la biocénose duguano de la grotte "Pestera lui Adam" de Baile Herculane (Roumanie). Trav. Inst. Spéol. E. Racovitza, 16, pp. 85-99.

TURQUIN, M. J. – 1994. Lepidoptera: pp. 333-339. In: C. Juberthie et V. Decu (eds), Encyclopaedia Biospeologica, 1, Soc. Biospéol. Moulis-Bucarest, 834 pp.

TURK, S., SKET, B. & S. SARBU – 1996. Comparison between some epigean and hypogean populations of Asellus aquaticus (Crustacea: Isopoda: Asellidae). Hydrobiologia, 337, pp. 161-170.

TURK-PREVORCNIK & A. BLEJEC – 1998. Asellus aquaticus infernus new subspecies (Isopoda: Asellota; Asellidae) from Romania hypogean waters. J. Crust. Biol., 18, pp. 763-773.

VALENCIUC, N. – 2003. Mammalia. Chiroptera. Fauna Romaniei. Ed. Acad., 16, 3, 160 pp.

VASILIU, N. & O. IVAN – 2011. New oppiid species (Acari, Oribatida, Opiidae) from Romanian caves. Trav. Inst. Spéol. E. Racovitza, 50, pp. 3-14.

VERHOEFF, K. W. – 1898. Uber neue und wenig bekannte Polydesmiden aus Siebenbürgen, Rumänien und Banat. Arch. Natur., 64, 1, 3, pp. 363-372.

VIEHMANN, I., RACOVITZA, Gh. & M. SERBAN – 1963. Ghetarul de la Scarisoara. Meridiane, Bucarest.

VLASceanu, L, POPA, R. & B. K. KINKLE – 1997. Characterization of Thiobacillus thioprus LV43 and its distribution in a chemoautotrophycally based ground ecosystem. Appl. Environ. Microbiol., 63, pp. 3123-3127.

WEISS, I. & S. SARBU – 1994. Die Höhlenspinne Agraecina cristiani (Georgescu, 1989) n. comb. (Arachnida, Araneae, Liocranidae). Verh. Naturwiss. Ver. Hamburg, 34, pp. 249-257

WEISS, I. & S. SARBU – 1996. Das unbekannte Männchen der Höhlenspinne Hahnia caeca n. comb., mit Hinweisen zur Funktion der Tibial – Apophyse der männlichen Pedipalpus (Arachnida, Araneae, Hahniidae). Verh. Naturwiss. Ver. Hamburg. 36, pp. 163-171

WOLFF, B. – 1934-1938. Animalium cavernarum catalogus. W. Junk 's-Gravenhage, I (108 pp), II (616 pp), III (918 pp).

ZACHARDA, M. – 1978. Soil mites of the family Rhagidiidae (Actinedida: Eupodoida). Morphology, systematics, ecology. Acta Univ. Carolinae, Biol., 5-6, pp. 489-785.

ZINCENCO, D. – 1971. Nouvelles données sur la morphologie et la répartition de Parastenocaris aquaeductus Chappuis, 1925 (Copepoda-Harpacticoida). Trav. Inst. Spéol. E. Racovitza, 10, pp. 179-188.

Similar Posts