Existence of common xed points on modular spaces with [620032]

Existence of common xed points on modular spaces with
respect toC-class functions
Arslan Hojat Ansari1, Liliana Guran2
Abstract. In this paper, we prove the existence of common xed points for a generalized weak
contractive mapping in modular spaces concerning a new type of functions- Cclass functions. Then,
our results generalize various comparable results in the existing literature.
1. Introduction and mathematical preliminaries
Over the years the well-know Banach's contraction principle has been generalized in many
ways, see([ 8], [9], [11], [26], [33], [32] [34]).
For the case of weakly contractions are studied some extensions of Banach's contraction prin-
ciple. Let us recall the notion of weakly contraction.
A mapping T:X!Xwhere (X;d) is a metric space, is said to be weakly contraction if
(1) d(T(x);T(y))d(x;y)'(d(x;y));
where': [0;1)![0;1) is a continuous and nondecreasing function such that '(t) = 0 if
and only if t= 0.
In 2008 Dutta and Choudhury ([ 14]) introduced a new generalization of contractions in metric
spaces and proved the following theorem.
Theorem 1.1.Let(X;d)be a complete metric space, T:X!Xbe a self-mapping satisfying
the inequality
(2) (d(Tx;Ty )) (d(x;y))'(d(x;y));
where ;' : [0;1)![0;1)are both continuous and monotone nondecreasing functions with
(t) ='(t) = 0 if and only if t= 0.
Then T has a unique xed point.
We note that, if one takes (t) =t, then (2) reduces to (1).
In 2009 Zhang and Song [ 39] used generalized '-weak contractions which is de ned for two
mappings and gave conditions for existence of a common xed point.
Theorem 1.2.Let (X, d) be a complete metric space and T;S :X!Xtwo mapping such
that for all x;y2X
(3) d(Tx;Ty )M(x;y)'(M(x;y));
2010 Mathematics Subject Classi cation. 46T99; 47H10; 54H25.
Key words and phrases. C-class function, common xed point, -modular space.
1

2 A.H. ANSARI, L. GURAN
where': [0;1)![0;1)is lower semi-continuous function with '(t)>0fort2(0;1),
'(0) = 0 , andM(x;y) = maxfd(x;y);d(Tx;x );d(Sy;y );d(y;Tx )+d(x;Sy)
2g.
Then there exists the unique point u2Xsuch thatu=Tu=Su.
Later D. Doric [ 13] has generalized Theorem 1.2 and proved the following theorem.
Theorem 1.3.Let(X;d)be a complete metric space, T:X!Xbe a self-mapping where
(a) : [0;1)![0;1)is a continuous monotone nondecreasing function with (t) = 0 if and
only ift= 0,
(b)': [0;1)![0;1)is a lower semi-continuous function with '(t) = 0 if and only if t= 0,
(c) M is de ned in Theorem 1.2.
Then there exists the unique point u2Xsuch thatu=Tu=Su.
Next, let us present a brief recollection of basic concepts and facts in modular space.
Definition 1.1.LetXbe a vector space over R(orC). A functional :X![0;1]is called
a modular if for arbitrary xandy, elements of X, it satis es the following conditions:
(m1)(x) = 0 if and only if x= 0;
(m2)( x) =(x)for all scalar ; withj j= 1;
(m3)( x+ y)(x) +(y), whenever ; 0and + = 1.
If we replace (m3)by
(m4)( x+ y) s(x) + s(y), for ; 0; s+ s= 1 with ans2(0;1], then the
modularis calleds-convex modular, and if s= 1,is called convex modular.
Proposition 1.1.(1)( x)is a nondecreasing function of 0;
(2) Ifis s – convex then s( x)is a nondecreasing function of 0.
Definition 1.2.The vector space Xgiven by
(4) X=fx2X;(x)!0as!0g
is called a modular space. Xis a vector subspace of X.
Followings are some consequences of condition ( m3):
Remark 1.1.([10])
(r1)Fora,b2Rwithjaj<jbjwe have(ax)<(bx)for allx2X;
(r2)Fora1;:::;an2R+withnP
i=1ai= 1, we have
 nX
i=1aixi!
nX
i=1(xi);for anyx1;:::;xn2X:
Proposition 1.2.([29]) LetXbe a modular space. If a;b2R+withba;then(ax)
(bx).
Remark 1.2.A function modular is said to satisfy:
a)2type condition if there exists K > 0such that for any x2X, we have(2x)K(x)
b)2-condition if (2xn)!0 asn!1 , whenever (xn)!0 asn!1 .
Definition 1.3.A sequencefxngin modular space Xis said to be:
(t1)convergent to x2Xif(xnx)!0asn!1
(t2)Cauchy if(xnxm)!0asn; m!1:
Xis calledcomplete if any -Cauchy sequence is -convergent. Note that, convergence
does not imply -Cauchy since does not satisfy the triangle inequality. In fact, one can show that
this will happen if and only if satis es the 2condition.

EXISTENCE OF COMMON FIXED POINTS ON MODULAR SPACES WITH RESPECT TO C-CLASS FUNCTIONS 3
Definition 1.4.LetXbe a modular space, where satis es the 2-condition. Two self-
mappings T and f of Xare called- compatible if (fTxnTfxn)!0asn!1 , whenever
fxngn2Nis a sequence in Xsuch thatfxn!zandTxn!zfor some point z2X.
Mongkolkeha and Kumam (see [ 27], [28]) proved the existence of common xed points as
follows.
Theorem 1.4.([27]) LetXbe a-complete modular space, where satis es the 2-condition.
Letc;l2R+;c>l andT;f:X!Xare two-compatible mappings such that T(X)f(X)
and
(5)Z(c(TxTy))
0'(t) dtZ(l(fxfy))
0'(t) dt Z(l(fxfy))
0'(t) dt!
);
for anyx;y2X;where': [0;1)![0;1)is a Lebesgue integrable which is summable, nonneg-
ative, and for all " >0;R"
0'(t) dt >0;and: [0;1)![0;1)is lower semicontinuous function
with(t)>0for allt>0and(t) = 0 if and only if t= 0. If one of Torfis continuous, then
there exists a unique common xed point of Tandf.
Theorem 1.5.([28]) LetXbe a-complete modular space, where satis es the 2-condition.
Letc;l2R+;c>l andT;f:X!Xare two-compatible mappings such that T(X)f(X)
and satisfying the inequality
(6) ((c(TxTy))) ((l(fxfy)))((l(fxfy)));
for anyx;y2X;where ;: [0;1)![0;1)are both continuous and monotone nondecreasing
functions with (t) =(t) = 0 if and only if t= 0. If one of Torfis continuous, then there
exists a unique common xed point of Tandf.
In [29] Mongkolkeha and Kumam proved the existence of xed points as follows.
Theorem 1.6.([29]) LetXbe a-complete modular space, where satis es the 2-condition.
Letc;l2R+;c>l andT:X!Xbe a mapping satisfying the inequality
(7) ((c(TxTy))) ((l(xy)))((l(xy)));
for anyx;y2X;where ;: [0;1)![0;1)are both continuous and monotone nondecreasing
functions with (t) =(t) = 0 if and only if t= 0. Then,Thas a unique xed point.
With note to ((l(TxTy))) ((c(TxTy))) andlT(X)lf(X);they can revise to
following forms.
Theorem 1.7.LetXbe a-complete modular space, where satis es the 2-condition. Let
T;f:X!Xare two-compatible mappings such that T(X)f(X)and
Z(TxTy)
0'(t) dtZ(fxfy)
0'(t) dt Z(fxfy)
0'(t) dt!
);
for anyx;y2X;where': [0;1)![0;1)is a Lebesgue integrable which is summable, nonneg-
ative, and for all " >0;R"
0'(t) dt >0;and: [0;1)![0;1)is lower semicontinuous function
with(t)>0for allt>0and(t) = 0 if and only if t= 0. If one of Torfis continuous, then
there exists a unique common xed point of Tandf.
Theorem 1.8.LetXbe a-complete modular space, where satis es the 2-condition. Let
T;f :X!Xare two-compatible mappings such that T(X)f(X)and satisfying the
inequality
((TxTy)) ((fxfy))((fxfy));

4 A.H. ANSARI, L. GURAN
for anyx;y2X;where where ;: [0;1)![0;1)are both continuous and monotone nonde-
creasing functions with (t) =(t) = 0 if and only if t= 0. If one of Torfis continuous, then
there exists a unique common xed point of Tandf.
Another useful xed point result was proved by Mongkolkeha and Kumam (see [ 29]) as follows.
Theorem 1.9.LetXbe a-complete modular space, where satis es the 2-condition. Let
T:X!Xbe a mapping satisfying the inequality
((TxTy)) ((xy))((l(xy)));
for anyx;y2X;where ;: [0;1)![0;1)are both continuous and monotone nondecreasing
functions with (t) =(t) = 0 if and only if t= 0. Then,Thas a unique xed point.
Beygmohammadi and Razani [ 10] proved the existence of xed points as follows.
Theorem 1.10.([10]) LetXbe a-complete modular space, where satis es the 2-condition.
Assume that ':R+![0;1)is an increasing and upper semicontinuous function satisfying
(t)t;8t>0
Let': [0;1)![0;1)is a Lebesgue integrable which is summable, nonnegative, and for all
">0;R"
0'(t) dt>0;and letf:X!Xbe a mapping such that there are c;l2Rwherel<c ,
(8)Z(c(fxfy))
0'(t) dt Z(l(xy))
0'(t) dt!
;
for anyx;y2X:Thenfhas a unique xed point in X:
As a particular case we have the following result.
Theorem 1.11.LetXbe a-complete modular space, where satis es the 2-condition.
Assume that ':R+![0;1)is an increasing and upper semicontinuous function satisfying
(t)t;8t>0
Let': [0;1)![0;1)is a Lebesgue integrable which is summable, nonnegative, and for all
">0;R"
0'(t) dt>0;and letf:X!Xbe a mapping such that ,
(9)Z(fxfy)
0'(t) dt Z(xy)
0'(t) dt!
;
for anyx;y2X:Thenfhas a unique xed point in X:
T.L. Shateri (see [ 37]) proved the existence of common xed points as follows.
Theorem 1.12.LetXbe a complete modular space, where satis es the 2-condition. Suppose
that':R+![0;1)is an increasing and upper semicontinuous function satisfying '(t)t, with
t>0.
LetCbe a-closed subset of Xand letT;S :C!Cbe mappings such that there exist
; 2R+with > , and( (TxSy))'(( (xy))), for allx;y2C. ThenTandShave
a unique common xed point in C.
As a particular case we have the following result.
Theorem 1.13.LetXbe a complete modular space, where satis es the 2-condition. Suppose
that':R+![0;1)is an increasing and upper semicontinuous function satisfying '(t)t, with
t>0.
LetCbe a-closed subset of Xand letT;S :C!Cbe mappings such that (TxSy)
'((xy));for allx;y2C. ThenTandShave a unique common xed point in C.

EXISTENCE OF COMMON FIXED POINTS ON MODULAR SPACES WITH RESPECT TO C-CLASS FUNCTIONS 5
Now, we recall the notion of C-class function introduced by Ansari in [ 5]. For examples and
more applications see also [ 15, 16, 24 ].
Definition 1.5.[5]A mapping F: [0;+1)2!Ris calledC-class function if it is continuous
and the following conditions hold:
(1)F(s;t)sfor alls;t2[0;+1);
(2)F(s;t) =simplies that either s= 0 ort= 0.
Denote Cthe family ofC-class functions.
Following examples show that the class Cis nonempty.
Example 1.1.[5]LetF: [0;+1)2!R, withs;t2[0;+1). Then we have:
(1)F(s;t) =st,F(s;t) =s)t= 0;
(2)F(s;t) =ms,0<m< 1,F(s;t) =s)s= 0;
(3)F(s;t) =s
(1+t)r,r2(0;+1),F(s;t) =s)s= 0 ort= 0;
(4)F(s;t) = loga[(t+as)=(1 +t)],a>1,F(s;t) =s)s= 0 ort= 0;
(5)F(s;t) = ln[(1 + as)=2],e>a> 1,F(s;t) =s)s= 0;
(6)F(s;t) = (s+l)(1=(1+t)r)l,l>1;r2(0;+1),F(s;t) =s)t= 0;
(7)F(s;t) =slogt+aa,a>1,F(s;t) =s)s= 0 ort= 0;
(8)F(s;t) =s(1+s
2+s)(t
1+t),F(s;t) =s)t= 0;
(9)F(s;t) =s (s), : [0;+1)![0;1)a continuous function, F(s;t) =s)s= 0;
(10)F(s;t) =st
k+t;F(s;t) =s)t= 0;
(11)F(s;t) =s'(t),F(s;t) =s)t= 0;here': [0;+1)![0;+1)is a continuous
function such that '(t) = 0,t= 0;
(12)F(s;t) =sh(s;t),F(s;t) =s)s= 0;hereh: [0;+1)[0;+1)![0;+1)is a
continuous function such that h(t;s)<1for allt;s> 0;
(13)F(s;t) =s(2+t
1+t)t,F(s;t) =s)t= 0;
(14)F(s;t) =np
ln(1 +sn),F(s;t) =s)s= 0;
(15)F(s;t) =(s),F(s;t) =s)s= 0;here: [0;+1)![0;+1)is a continuous function
such that(0) = 0 and(t)<tfort>0;
(16)F(s;t) =s
(1+s)r;r2(0;+1),F(s;t) =s)s= 0
2. Common Fixed Point of Almost Generalized ( ;')-Contraction
In this section, we obtain common xed point results for a pair of mappings satisfying gener-
alized ( ;')-contractive condition in the framework of a modular space.
Let us de ne the following sets:
 =f : [0;1)![0;1) : is continuous nondecreasing function and (t) = 0 if and
only ift= 0g:
 =f': [ 0;1)![0;1) :'is lower-semi continuous function and '(t) = 0 if and only
ift= 0g:
u=f': [0;1)![0;1) :'is lower-semi continuous function and '(0)0g:
Theorem 2.1.LetXbe a-complete modular space, where satis es the 2-condition. Let
T;f:X!Xare two-compatible mappings such that T(X)f(X)and
(10) Z(TxTy)
0'(t) dt!
F( Z(fxfy)
0'(t) dt!
; Z(fxfy)
0'(t) dt!
)

6 A.H. ANSARI, L. GURAN
for anyx;y2X;whereF2C, 2 ; 2u': [0;1)![0;1)is a Lebesgue integrable which
is summable, nonnegative, and for all " >0;R"
0'(t) dt >0. If one of Torfis continuous, then
there exists a unique common xed point of Tandf.
Proof. Letx2Xand generate inductively the sequence fTxngn2Nas follow:Txn=fxn+1:
First, we prove that the sequence f(TxnTxn1)gconverges to 0. Then we have:
(11) R(TxnTxn1)
0'(t) dt
F( R(fxnfxn1)
0'(t) dt
;R(fxnfxn1)
0'(t) dt
)
=F( R(Txn1Txn2)
0'(t) dt
;R(Txn1Txn2)
0'(t) dt
)
 R(Txn1Txn2)
0'(t) dt
=)R(TxnTxn1)
0'(t) dtR(Txn1Txn2)
0'(t) dt:
This means that the sequence fR(TxnTxn1)
0'(t) dtgis decreasing and bounded below. Hence,
there exists r0 such that
lim
n!1Z(TxnTxn1)
0'(t) dt=r:
On taking limit as n!1 on both sides of the inequality (11), we have
(r)F( (r);'(r));
which implies that (r) = 0 or'(r) = 0, that is r= 0. Hence
(12) lim
n!1(TxnTxn1) = 0:
Now we show that fTxngis a-Cauchy sequence.
Assume on contrary, there exists ">0 such that we can nd two subsequences fmkgandfnkg
of positive integers satisfying nk>mkksuch the following inequalities hold:
(13) (TxnkTxmk)";  (2(Txnk1Txmk))<":
From (13) and Remark1.1, it follows that
"(TxnkTxmk)
=(TxnkTxnk1+Txnk1Txmk)
(2(TxnkTxnk1)) +(2(Txnk1Txmk))
<"+(2(TxnkTxnk1)):
On taking limit as k!1 , we obtain that
(14) lim
k!1(TxnkTxmk) ="
Usingx=xnkandy=xmk1in (19), we have
(15) R(TxnkTxmk)
0'(t) dt
F( R(fxnkfxmk)
0'(t) dt
;R(fxnkfxmk)
0'(t) dt
)
F( R(Txnk1Txmk1)
0'(t) dt
;R(Txnk1Txmk1)
0'(t) dt
)

EXISTENCE OF COMMON FIXED POINTS ON MODULAR SPACES WITH RESPECT TO C-CLASS FUNCTIONS 7
Also, from (13) we have
(16)(Txnk1Txmk1) =(Txnk1Txnk+TxnkTxmk1)
(2(Txmk1Txmk)) +(2(TxmkTxnk1))
<(2(Txmk1Txmk)) +":
Taking limit as k!1 on both sides of (15) and by using (12), Proposition 1.2, we get
Z"
0'(t) dt
F( Z"
0'(t) dt
;'Z"
0'(t) dt
)
which implies that R"
0'(t) dt
= 0;or; 'R"
0'(t) dt
= 0, that is,R"
0'(t) dt= 0, a contradic-
tion.
HencefTxngis a-Cauchy sequence.
Next, let us prove the existence of a xed point of one mapping.
AsXis a-complete, there exists a u2Xsuch that(Txnu)!0 asn!1 .
That isTxn!uand implies that fxn!uasn!1 . IfTis continuous, then T2xn!Tu
andTfxn!Tuasn!1 .
By-compatible,( fTxnTfxn)!0 asn!1 , thus,fTxn!Tuasn!1 .
Next, we prove that uis a unique xed point of T. Indeed,
(17) R(T2xnTxn)
0 '(t) dt
= R(TTx nTxn)
0'(t) dt
F( R(fTx nfxn)
0'(t) dt
;R(fTx nfxn)
0'(t) dt
)
Takingn!1 in the inequality (32), we have
Z(uTu)
0'(t) dt!
F( Z(uTu)
0'(t) dt!
;' Z(uTu)
0'(t) dt!
)
which implies that R(uTu)
0'(t) dt
= 0;or;'R(uTu)
0'(t) dt
= 0 and soR(uTu)
0'(t) dt=
0;therefore(uTu) = 0.
Then, we obtain that Tu=u.
Thuszis a xed point of T.
SinceT(X)f(X), then there exists a point u1such thatu=Tu=fu1. The inequality,
Z(T2xnTu1)
0'(t) dt!
F( Z(fTx nfu1)
0'(t) dt!
;' Z(fTx nfu1)
0'(t) dt!
)
Asn!1 , yields
Z(TuTu1)
0'(t) dt!
F( Z(Tufu1)
0'(t) dt!
;' Z(Tufu1)
0'(t) dt!
)
Thus,
Z(uTu1)
0'(t) dt!
F( Z(uu)
0'(t) dt!
;' Z(uu)
0'(t) dt!
)
F( Z0
0'(t) dt
;'Z0
0'(t) dt
)0
Which implies that, u=Tu1=fu1and alsofu=fTu 1=Tfu 1=Tu=u.
Hence,fu=Tu=u.

8 A.H. ANSARI, L. GURAN
Suppose that wis an another common xed point, that is, w=Sw,w=Tw, andw6=z.
(18) R(zw)
0'(t) dt
= R(TzTw)
0'(t) dt
F( R(fufw)
0'(t) dt
;'R(fufw)
0'(t) dt
)
F( R(zw)
0'(t) dt
;'R(zw)
0'(t) dt
)
which implies that R(zw)
0'(t) dt
= 0;or;'R(zw)
0'(t) dt
= 0 and so (zw) = 0 a
contradiction. Hence z=w. 
As a consequence of the theorem above let us present the following result.
Corollary 2.1.LetXbe a-complete modular space, where satis es the 2-condition.
LetT;f:X!Xare two-compatible mappings such that T(X)f(X)and
(19)  Z(TxTy)
0'(t) dt!
F( Z(fxfy)
0'(t) dt!
; Z(fxfy)
0'(t) dt!
)
for anyx;y2X;where2(0;1),F2C,2u': [0;1)![0;1)is a Lebesgue integrable
which is summable, nonnegative, and for all ">0;R"
0'(t) dt>0. If one of Torfis continuous,
then there exists a unique common xed point of Tandf.
Proof. By taking (t) =twhere2(0;1) follow the conclusion. 
Next, let us present another xed point result.
Theorem 2.2.LetXbe a-complete modular space, where satis es the 2-condition. Let
T;f:X!Xare two-compatible mappings such that T(X)f(X)and
(20) Z(TxTy)
0'(t) dt!
F( Zm(x;y)
0'(t) dt!
; Zm(x;y)
0'(t) dt!
)
for anyx;y2X;wherem(x;y) = maxf(xy);(xfx);(yfy);(1
2(xfy))+(1
2(yfx))
2g,F2C,
2 ; 2u': [0;1)![0;1)is a Lebesgue integrable which is summable, nonnegative, all
">0;R"
0'(t) dt>0. If one ofTorfis continuous, then there exists a unique common xed point
ofTandf.
Proof. Letx2Xand generate inductively the sequence fTxngn2Nas follow:Txn=fxn+1:
First, we prove that the sequence f(TxnTxn1)gconverges to 0. Then we have:
(21) R(TxnTxn1)
0'(t) dt
F( Rm(fxn;fxn1)
0'(t) dt
;Rm(fxn;fxn1)
0'(t) dt
)
 Rm(fxn;fxn1)
0'(t) dt
:
Then we have:
(22)Z(TxnTxn1)
0'(t) dtZm(fxn;fxn1)
0'(t) dt:
By the de nition of m(x;y) we obtain:
(23)m(fxn;fxn1) = maxf(fxn+1fxn);(fxnfxn1);1
2(fxn+1fxn1)
2g;

EXISTENCE OF COMMON FIXED POINTS ON MODULAR SPACES WITH RESPECT TO C-CLASS FUNCTIONS 9
(1
2(fxn+1fxn1))
2(fxn+1fxn) +(fxnfxn1)
2maxf(fxn+1fxn);(fxnfxn1)g:
Hence:
(24) m(fxn;fxn1) = maxf(fxn+1fxn);(fxnfxn1)g:
Replacing in (22) we obtain:
Z(TxnTxn1)
0'(t) dtZm(fxn;fxn1)
0'(t) dt=Zmaxf(fxn+1fxn);(fxnfxn1)g
0'(t) dt=
(25) = maxfZ(fxn+1fxn)
0'(t) dt;Z(fxnfxn1)
0'(t) dtg=Z(fxnfxn1)
0'(t) dt=
=Z(Txn1Txn2)
0'(t) dt:
This means that the sequence fR(TxnTxn1)
0'(t) dtgis decreasing and bounded below. Hence,
there exists r0 such that:
lim
n!1Z(TxnTxn1)
0'(t) dt=r:
On taking limit as n!1 on both sides of the inequality (21), we have
(r)F( (r);'(r));
which implies that (r) = 0 or'(r) = 0, that is r= 0. Hence:
(26) lim
n!1(TxnTxn1) = 0:
Now we show that fTxngis a-Cauchy sequence.
As in the proof of Theorem 2.1, we assume on contrary, there exists ">0 such that we can nd
two subsequences fmkgandfnkgof positive integers satisfying nk> mkksuch the following
inequalities hold:
(27) (TxnkTxmk)";  (2(Txnk1Txmk))<":
Then, it is easy to prove that:
(28) lim
k!1(TxnkTxmk) ="
Usingx=xnkandy=xmk1in (20), we have:
(29)
R(TxnkTxmk1)
0 '(t) dt
F( Rm(fxnk;fxmk1)
0 '(t) dt
;Rm(fxnk;fxmk1)
0 '(t) dt
)
(Rm(fxnk;fxmk1)
0 '(t) dt):
By the de nition of m(x;y) we get:
(30)m(fxnk;fxmk1) = maxf(fxnkfxmk1);(fxnkfxnk+1);(fxmk1fxmk);
(1
2(fxnkfxmk)) +(1
2(fxmk1fxnk+1))
2g:

10 A.H. ANSARI, L. GURAN
Also, from (27) we have
(31)(Txnk1Txmk1) =(Txnk1Txnk+TxnkTxmk1)
(2(Txmk1Txmk)) +(2(TxmkTxnk1))
<(2(Txmk1Txmk)) +":
Taking limit as k!1 on both sides of (29) and by using (26), Proposition 1.2, we get
Z"
0'(t) dt
F( Z"
0'(t) dt
;'Z"
0'(t) dt
)
which implies that R"
0'(t) dt
= 0;or; 'R"
0'(t) dt
= 0, that is,R"
0'(t) dt= 0, a contradic-
tion.
HencefTxngis a-Cauchy sequence.
Next, let us prove the existence of a xed point of one mapping.
AsXis a-complete, there exists a u2Xsuch that(Txnu)!0 asn!1 .
That isTxn!uand implies that fxn!uasn!1 . IfTis continuous, then T2xn!Tu
andTfxn!Tuasn!1 .
By-compatible,( fTxnTfxn)!0 asn!1 , thus,fTxn!Tuasn!1 .
Next, we prove that uis a unique xed point of T. Indeed,
(32) R(T2xnTxn)
0 '(t) dt
= R(TTx nTxn)
0'(t) dt
F( R(fTx nfxn)
0'(t) dt
;R(fTx nfxn)
0'(t) dt
)
Takingn!1 in the inequality (32), we have
Z(uTu)
0'(t) dt!
F( Z(uTu)
0'(t) dt!
;' Z(uTu)
0'(t) dt!
)
which implies that R(uTu)
0'(t) dt
= 0;or;'R(uTu)
0'(t) dt
= 0 and soR(uTu)
0'(t) dt=
0;therefore(uTu) = 0.
Then, we obtain that Tu=u.
Thuszis a xed point of T.
SinceT(X)f(X), then there exists a point u1such thatu=Tu=fu1. The inequality,
Z(T2xnTu1)
0'(t) dt!
F( Z(fTx nfu1)
0'(t) dt!
;' Z(fTx nfu1)
0'(t) dt!
)
Asn!1 , yields
Z(TuTu1)
0'(t) dt!
F( Z(Tufu1)
0'(t) dt!
;' Z(Tufu1)
0'(t) dt!
)
Thus,
Z(uTu1)
0'(t) dt!
F( Z(uu)
0'(t) dt!
;' Z(uu)
0'(t) dt!
)
F( Z0
0'(t) dt
;'Z0
0'(t) dt
)0
Which implies that, u=Tu1=fu1and alsofu=fTu 1=Tfu 1=Tu=u.
Hence,fu=Tu=u.

EXISTENCE OF COMMON FIXED POINTS ON MODULAR SPACES WITH RESPECT TO C-CLASS FUNCTIONS 11
Suppose that wis an another common xed point, that is, w=Sw,w=Tw, andw6=z.
(33) R(zw)
0'(t) dt
= R(TzTw)
0'(t) dt
F( R(fufw)
0'(t) dt
;'R(fufw)
0'(t) dt
)
F( R(zw)
0'(t) dt
;'R(zw)
0'(t) dt
)
which implies that R(zw)
0'(t) dt
= 0;or;'R(zw)
0'(t) dt
= 0 and so (zw) = 0 a
contradiction. Hence z=w. 
Con
ict of Interests
The authors declare that there is no con
ict of interests regarding the publication of this article.
Acknowledgement
References
[1] M. Abbas, and D. Ilic, Common Fixed Points of Generalized Almost Nonexpansive Mappings , Filomat,
24:13 (2010), 11-18.
[2] M. Abbas, G. V. R. Babu and G. N. Alemayehu, On common xed of weakly compatible mappings satisfying
generalized condition (B) , Filomat, 25(2) (2011), 9-19.
[3] M. Abbas, M. A. Khamsi, and A. R. Khan, Common xed point and invariant approximation in hyperbolic
ordered metric spaces , Fixed Point Theory and Appl., 2011:25 (2011), doi:10.1186/1687-1812-2011-25.
[4] M. Abbas, T. Nazir, Common xed point of a power graphic contraction pair in partial metric spaces endowed
with a graph , Fixed Point Theory and Applications, 2013:20 (2013), 8 pages.
[5] A.H. Ansari, Note on "'- -contractive type mappings and related xed point ", The 2nd Regional Conference
on Mathematics and Applications, Payame Noor University, September 2014, pages 377{380.
[6] A. H. Ansari, M. Demma, L. Guran, C-class functions On non-Archimedean Modular Metric Spaces and Some
Nonlinear Contraction Mappings (submmited for publication).
[7] I. Beg, A. Rashid Butt, Fixed point of set-valued graph contractive mappings , Journal of Inequalities and
Applications, 2013:252 (2013), doi: 10.1186/1029-242X-2013-252.
[8] T.D. Benavides, Fixed point theorems for uniformly Lipschitzian mappings and asymptotically regular mappings ,
Nonlinear Anal., 32(1998), 15-27.
[9] T. D. Benavides, M. A. Khamsi, and S. Samadi, Uniformly Lipschitzian mappings in modular function spaces ,
Nonlinear Analysis, 46(2001a), 267-278.
[10] M. Beygmohammadi, A. Razani, Two Fixed-Point Theorems for Mappings Satisfying a General Contractive
Condition of Integral Type in the Modular Space , Int. J. Math. Math. Sci., 2010 (2010), Article ID 317107, 10
pages.
[11] S. K. Chatterjea, Fixed point theorem , C.R. Acad. Bulgare Sci., 25(1972), 727-730.
[12] L. Ciri c, M. Abbas, R. Saadati and N. Hussain, Common xed points of almost generalized contractive mappings
in ordered metric spaces, Appl. Math. Comput., 217(2011), 5784-5789.
[13] D. Doric, Common xed point for generalized ( ;')-weak contractions, Applied Mathematics Letters, 22
(2009), 1896{1900.
[14] P. N. Dutta, B. S. Choudhury, A Generalisation of Contraction Principle in Metric Spaces , Fixed Point Theory
and Applications, Volume 2008, Article ID 406368, 8 pages, doi:10.1155/2008/406368.
[15] Z.M. Fadail, A.G.B. Ahmad, A.H. Ansari, S. Radenovic and M. Rajovi c, Some common xed point results of
mappings in -complete metric-like spaces via new function , Appl. Math. Sci., 92015, no. 83, 4109 – 4127.
[16] E. Hoxha, A.H. Ansari and K. Zoto, Some common xed point results through generalized altering distances on
dislocated metric spaces , Proceedings of EIIC, september 1-5, 2014, pages 403-409.
[17] J. Jachymski, The contraction principle for mappings on a metric space endowed with a graph , Proc. Amer.
Math. Soc., 136(2008), 1359-1373.
[18] M. A. Khamsi, W. K. Kozolowski and S. Reich, Fixed point theory in modular function spaces , Nonlinear
Anal., 14(1990), 935-953.

12 A.H. ANSARI, L. GURAN
[19] M. A. Khamsi, A convexity property in modular function spaces , Math. Japonica, 44(1996), 269-279.
[20] K. Kuakket, P. Kumam, Fixed points of asymptotic pointwise contractions in modular spaces , Applied Mathe-
matic Letters, 24:11 (2004), 1795-1798.
[21] P. Kumam, Some geometric properties and xed point theorem in modular spaces , in Book: Fixed Point
Theorem and Its Applications, J. Garcia Falset, L. Fuster, and B. Sims, (Editors), Yokohama Publishers,
(2004), 173-188.
[22] P. Kumam, Fixed point theorems for nonexpansive mappings in modular spaces , Archivum Mathematicum,
40:4 (2004), 345-353.
[23] M. A. Kutbi and A. Latif, Fixed points of multivalued mappings in modular function spaces , Fixed Point Theory
and Applications, (2009) Article ID 786357, 12 pages.
[24] A. Latif, H. Isik, A.H. Ansari, Fixed points and functional equation problems via cyclic admissible generalized
contractive type mappings , J. Nonlinear Sci. Appl., 9(2016), 1129-1142.
[25] W.A.J. Luxemburg, Banach function spaces , Thesis, Delft, Inst of Techn Asser, The Netherlands, (1955).
[26] S. Mazur, W. Orlicz, On some classes of linear spaces , Studia Math, 17(1958), 97-119. Reprinted in [21],
981-1003.
[27] C. Mongkolkeha, P. Kumam, Fixed Point and Common Fixed Point Theorems for Generalized Weak Contrac-
tion Mappings of Integral Type in Modular Spaces , Int. J. Math. Math. Sci., 2011 (2011), Article ID 705943,
12 pages.
[28] C. Mongkolkeha, P. Kumam, Common xed points for generalized weak contraction mappings in modular
spaces , Scientiae. Mathematicae. Japonicae, Online, e-2012, 117-127.
[29] C. Mongkolkeha, P. Kumam, Some xed point results for generalized weak contraction mappings in modular
spaces , International Journal of Analysis, 2013 (2013), Article ID 247378, 6 pages.
[30] T. Musielak, W. Orlicz, On Modular spaces , Studia Math, 18(1959), 49-65.
[31] H. Nakano, Modulared Semi-Ordered Linear Spaces , In Tokyo Math Book Ser, (1), Maruzen Co., Tokyo (1950).
[32] M. Ozt urk, M. Abbas, E. Girgin, Fixed Points of Mappings Satisfying Contractive Condition of Integral Type in
Modular Spaces endowed with a Graph , Fixed Point Theory and Applications 2014 (2014:220),doi:10.1186/1687-
1812-2014-220.
[33] M. Ozt urk, E. Girgin, On some xed-point theorems for -contraction on metric space involving a graph ,
Journal of Inequalities and Applications, 2014:39 (2014), doi: 10.1186/1029-242X-2014-39.
[34] A. C. M. Ran and M. C. B. Reurings, A xed point theorem in partially ordered sets and some application to
matrix equations , Proc. Amer. Math. Soc., 132(2004), 1435-1443.
[35] B. E. Rhoades, Two xed point theorems for mappings satisfying a general contractive condition of integral
type, Int. J. Math. Math. Sci., 63(2003), 4007-4013.
[36] J.R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei, W. Shatanawi, Common xed points of almost gen-
eralized ( ;')s-contractive mappings in ordered b-metric spaces , Fixed Point Theory and Applications,
2013:159 (2013), 23 pages.
[37] T.L. Shateri, Fixed points in modular spaces with new type contractivity , International Journal of Applied
Mathematical Research, 3 (4) (2014) 587-591.
[38] PH. Turpin, Fubini inequalities and bounded multiplier property in generalized modular spaces , Comment, Math
Tomus specialis in homorem Ladislai Orlicz I, (1978), 331-353.
[39] Q. Zhang and Y. Song, Fixed point theory for generalized -weak contractions Applied Mathematics Letters,
22(2009), pp. 75-78.
1Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran.
Email address :analsisamirmath2@gmail.com
2Department of Pharmaceutical Sciences, "Vasile Goldis " Western University of Arad,
Revolut iei Avenue, no. 94-96, 310414 Arad, Roumania.
Email address :lguran@uvvg.ro, gliliana.math@gmail.com

Similar Posts