.determinarea Si Estimarea Cursului Valutar

CUPRINS

SUMMARY 4

INTRODUCERE 24

CAPITOLUL 1

MODELUL MONETARIST DE DETERMINARE A RATEI DE SCHIMB 26

1.1 Paritatea Puterii de Cumpărare 26

1.2 Paritatea ratelor dobânzii 27

1.2.1 Paritatea ratelor dobânzii neacoperite 28

1.2.2 Paritatea ratelor dobânzii acoperite 29

1.3 Modelul monetarist de determinare a ratei de schimb 31

CAPITOLUL 2

MODELUL MONETARIST CU PREȚURI STICKY 34

2.1 Efectul de overshooting al ratei de schimb în cazul anticipărilor 34

adaptive

Efectul așteptărilor raționale 37

Modelul Buiter-Miller 41

CAPITOLUL 3

MODELUL MUNDELL-FLEMING 45

3.1 Modelul Mundell-Fleming de determinare a cursului valutar 45

3.2 Creșterea ofertei de monedă : politica monetară 47

3.3 Politica fiscală expansionistă 48

3.4 Mobilitatea imperfectă a capitalului 49

3.5 Politica monetară –fiscală : așteptări adaptive 50

CAPITOLUL 4

MODELE CU SUBSTITUIRE ÎNTRE MONEDE 53

4.1 Substituirea intre monede și modelul monetarist 53

4.2 Modelul Kouri 56

4.3 Modelul Calvo-Rodriguez 58

CAPITOLUL 5

MODELUL PORTOFOLIILOR DE DETERMINARE A CURSULUI DE SCHIMB 62

5.1 Modelul portofoliilor 62

5.2 Cumpărarea de titluri de stat de pe piața liberă 67

5.3 Creșterea ofertei de titluri de stat interne 70

5.4 Schimbarea preferinței pentru active 71

CAPITOLUL 6

EVOLUȚIA PIEȚEI VALUTARE ȘI RATEI DE SCHIMB ÎN ROMÂNIA 73

CAPITOLUL 7

ESTIMAREA RATEI DE SCHIMB LEU/DOLAR USA 80

7.1 Estimarea ratei de schimb cu ajutorul unui proces de tip ARIMA 80

7.2 Rata de schimb și alte variabile ale economiei românești 89

BIBLIOGRAFIE 94

ANEXE

BIBLIOGRAFIE

1.Altăr M. – Modelarea deciziilor financiar-monetare ,Note de curs ,ASE, București, 1997

2.Altăr M. – Economie monetară , Note de curs , ASE ,București , 1999

Bishop P.-Foreign Exchange Handbook, Editura Mc Graw-Hill , New York , 1992

Bran P. Relații financiare și monetare internaționale,Editura Economică ,București,1995

Copeland L. – Exchange Rate and International Finance , Editura Addison- Wesley , Reading,1989

Cuthbertson K. , Hall S.G., Taylor M.P.- Applied Econometric Techniques , Editura Philip Allan London , 1992

Dornbusch R, Fisher S.-Macroeconomia , Editura Sedona ,Timișoara ,1997

Floricel C. – Relații valutar- financiare internaționale ,Editura E.D.P , București, 1996

Gaftoniuc S.-Finanțe internaționale , Editura Economică, București , 1997

Gourierox C.,Scaillet O. , Szafarza A.- Econometrie de la Finance , Editura Economica,Paris 1997

Howard F.,Bonita Lee Swan- All you need to know about exchange rates, Editura Sidgwick&Jackson , London , 1988

Levi M.- International finance , Editura Mc Graw-Hill , New York , 1990

MacDonald R. – Floating Exchange Rates :Theories and evidences ,Editura Routledge London,1993

Madura J.-International Financial management ,Editura John Wiley & Sons,New York, 1992

Manzur M.- Exchange rates ,prices and world trade , new methods, evidence and implication Editura Routledge ,London ,1993

Negruș M. –Tehnici de calcul financiar – valutar , Editura Militară, București , 1992

Simon Y.-Techniques financieres internationales ,Editura Economica , Paris , 1994

Simon Y.-Le marche de changes ,Editura Economica , Paris , 1995

Thomas R.L.- Modern Econometrics , Editura Addison –Wesley ,London ,1997

Walmsley J.-International Money and Foreign Exchange Markets, Editura Wiley ,Chichester 1996

Williamson J.- Currency Convertibility in Eastern Europe,Editura Institute for International Economics , Washington , 1991

Zaman C.-Econometrie ,Editura ProDemocrația ,București,1998

*** Buletine trimestriale BNR

***Capital

***Piața finaciară

***Rapoarte Anuale BNR

CUPRINS

SUMMARY 4

INTRODUCERE 24

CAPITOLUL 1

MODELUL MONETARIST DE DETERMINARE A RATEI DE SCHIMB 26

1.1 Paritatea Puterii de Cumpărare 26

1.2 Paritatea ratelor dobânzii 27

1.2.1 Paritatea ratelor dobânzii neacoperite 28

1.2.2 Paritatea ratelor dobânzii acoperite 29

1.3 Modelul monetarist de determinare a ratei de schimb 31

CAPITOLUL 2

MODELUL MONETARIST CU PREȚURI STICKY 34

2.1 Efectul de overshooting al ratei de schimb în cazul anticipărilor 34

adaptive

Efectul așteptărilor raționale 37

Modelul Buiter-Miller 41

CAPITOLUL 3

MODELUL MUNDELL-FLEMING 45

3.1 Modelul Mundell-Fleming de determinare a cursului valutar 45

3.2 Creșterea ofertei de monedă : politica monetară 47

3.3 Politica fiscală expansionistă 48

3.4 Mobilitatea imperfectă a capitalului 49

3.5 Politica monetară –fiscală : așteptări adaptive 50

CAPITOLUL 4

MODELE CU SUBSTITUIRE ÎNTRE MONEDE 53

4.1 Substituirea intre monede și modelul monetarist 53

4.2 Modelul Kouri 56

4.3 Modelul Calvo-Rodriguez 58

CAPITOLUL 5

MODELUL PORTOFOLIILOR DE DETERMINARE A CURSULUI DE SCHIMB 62

5.1 Modelul portofoliilor 62

5.2 Cumpărarea de titluri de stat de pe piața liberă 67

5.3 Creșterea ofertei de titluri de stat interne 70

5.4 Schimbarea preferinței pentru active 71

CAPITOLUL 6

EVOLUȚIA PIEȚEI VALUTARE ȘI RATEI DE SCHIMB ÎN ROMÂNIA 73

CAPITOLUL 7

ESTIMAREA RATEI DE SCHIMB LEU/DOLAR USA 80

7.1 Estimarea ratei de schimb cu ajutorul unui proces de tip ARIMA 80

7.2 Rata de schimb și alte variabile ale economiei românești 89

BIBLIOGRAFIE 94

ANEXE

CONTENTS

SUMMARY 4

INTRODUCTION 24

CHAPTER 1

MONETARY MODEL OF EXCHANGE RATE DETERMINATION 26

Puchasing Power Parity 26

Interest Rate Parity 27

Uncovered Interest Rate Parity 28

Covered Interest Rate Parity 29

Monetary Model 31

CHAPTER 2

STICKY PRICE MONETARY MODEL 34

Regressive Expectations and Overshooting’s Exchange Rate Effect 34

The Effect of the Rational Expectations 37

Buiter –Miller Model 41

CHAPTER 3

MUNDELL-FLEMING MODEL 45

3.1 Mundell-Fleming Model of Exchange Rate Determination 45

Increasing Money Supply : Monetary Policy 47

Expansionary Fiscal Policy 48

Imperfect Capital Mobility 49

Regressive expectations and Monetary-Fiscal Policy 50

CHAPTER 4

CURRENCY SUBSTITUTION MODELS 53

4.1 Currency Substitution and Monetary Model 53

Kouri Model 56

Calvo- Rodriguez Model 58

CHAPTER 5

PORTOFOLIO MODEL OF EXCHANGE RATE DETERMINATION 62

5.1 Portofolio Model 62

5.2 Open Market Purchase of Bonds 67

5.3 An increase in the Supply of Domestic Bonds 70

5.4 Asset preference shift 71

CHAPTER 6

THE EVOLUTION OF THE ROMANIAN FOREIGN EXCHANGE MARKET AND EXCHANGE RATE 73

CHAPTER 7

THE ESTIMATION OF THE EXCHANGE RATE LEU/ dollar USA 80

7.1 Exchange’s rate Estimation with an ARIMA Process 80

7.2 Exchange Rate and the other Variables of the Romanian Economy 89

BIBLIOGRAPHY 94

ANNEXES

=== CAP1 ===

Capitolul 1

MODELUL MONETARIST DE DETERMINARE A RATEI DE SCHIMB

Paritatea Puterii de Cumparare

Principiul parităților puterilor de cumpărare a fost introdus de Gustav Cassel în anul 1920 și explicat prin conexiunea dintre ratele de scimb și prețul local al mărfurilor în diferite țări Legătura dintre ratele de schimb și prețurile mărfurilor este cunoscută ca “Legea prețului unic”.

Posibilitatea obținerii de profit trezește atenția investitorilor oriunde pe glob.O astfel de șansă este oportunitatea de a cumpăra ceva ieftin de pe o piață și de a vinde mai scump pe o altă piață .Spre exemplu dacă prețul unciei de aur este mai mic la București decât la New York trebuie să cumpărăm aur de pe piața românească , să-l transportăm în USA și să-l vindem pe piața americană .Desigur această operațiune necesită timp și costuri de tranzacție , dar dacă diferențele de curs ale aurului sunt suficient de mari , operațiunea poate aduce un profit mic investitorului care poate fi important în cazul vehiculării unor cantități mari de aur.

Operatorii de bursă care fac aceste operațiuni sunt denumiți arbitrajori.Ei încearcă să scoată bani din orice posibilitate ivită pe piață și contribuie la creșterea prețurilor în țările cu costuri mici și le reduc în țările cu costuri ridicate .Deci arbitrajul cu mărfuri va restabili egalitatea puterii de cumpărare a monedelor , prin ajustarea cursurilor de schimb.Sub această formă paritatea puterii de cumpărare absolută este incontestabilă .Cu alte cuvinte prețul unui bun poate fi același , atât în țara de origine , cât și în cea de destinație , în ipoteza unei concurențe pure și perfecte și în absența cheltuielilor cu deplasarea mărfurilor.

Forma absolută a PPP este :

PROM =S (ROL/USD) * PUSA

PROM ; PUSA prețul bunurilor din România și SUA

S – rata de schimb la vedere leu/$

Rata de schimb leu /dolar este :

PROM

S (ROL/USD) =

PUSA

Spre exemplu dacă prețul unui televizor în țara noastră este de 4,5 milioane de lei și în USA ste de 300$ , rata de schimb este de : 4,5mil. lei / 300 USD = 15.000 lei/$.

Ecuația PPP este greu de folosit deoarece calcularea indicilor de preț este diferită de la o țară la alta în funcție de coșul de bunuri luate în calcul .

Pentru a deduce forma relativă a PPP introducem :

PROM ; PUSA : variația prețurilor în România și în Statele Unite pe o perioadă de 1 an de zile

Pornind de la PROM =S(lei/$) * PUSA se ajunge la PROM (1+PROM )=S*(1+S) (1+ PUSA)* PROM

Aceste ecuații sunt valabile pentru cazul dinamic și pentru o rată a inflației de PROM =0,35 în România și de PUSA =0,05 în USA avem S=(0,35-0,05)/1,05=0,28 lei/$ sau 28%.

Forma relativă a PPP arată legătura dintre inflația din cele două țări și cursul de schimb .

Teoria parității puterii de cumpărare se bazează pe trei ipoteze :

-piețele financiare sunt perfecte , ceea ce presupune absența controalelor administrative , fiscalității și costurilor de tranzacție ;

-piețele de mãrfuri sunt perfeccte , ceea ce înseamnă absența taxelor vamale și a costurilor de orice fel ;

-structura consumului agenților economici este identică în toate țările

În urma testelor efectuate s-a arătat că PPP este invalidată pe termen scurt , dar nu și pe termen lung .

1.2 Paritatea ratelor dobânzii

Acest cocept a fost introdus de Keynes (1923) : cursurile la termen ale devizelor se ajustează în funcție de paritățile ratelor dobânzii .Teoria are la bază relațiile dintre piața valutară la vedere și cea la termen , un comportament de arbitraj cu plasamente financiare și nu cu mărfuri ca în cazul PPP.Într-o economie deschisă avem două modalități de abordare a parității ratelor dobânzii : paritatea ratelor dobânzii neacoperită și paritatea ratelor dobânzii acoperite.

1.2.1 Paritatea ratelor dobânzii neacoperite

Acestă teorie ilustreză relația dintre ratele dobânzilor nominale aferente plasamentelor în monedă națională și străină și diferența dintre cursul la vedere și cela termen anticipat.

Un agent economic dispune de un capital de K in moneda națională (lei ) pentru o perioadă de timp h , respectiv K/S în devize .La data h capitalul devine în monedă națională :

r*- remunerarea activelor în devize la data inițială

Se-cursul anticipat în momentul actual pentru data h

S- cursul actual

O asemenea poziție indică o depreciere a monedei naționale , ceea ce însemnă că agentul preferă să împrumute o sumă K în monedă națională pentru a cumpăra la vedere devize ce vor fi revândute la vedere în data h.Câștigul posibil al operatorului va fi :

capital anticipat costul împrumutului în monedă națională

în momentul actual pentru data h

Pentru echilibru ar trebui să avem :

ceea ce înseamnă că diferențele de dobânzi se compensează prin variațiile anticipate ale cursului când h=1 ( ΔSe- rata deprecierii monedei naționale pe perioada analizată).Agentul economic rămâne supus unui dublu riscul de nerambusare și riscul valutar.

1.2.2 Paritatea ratelor dobânzii acoperite

În cadrul acestei teorii firmele pot utiliza piețele la termen pentru a se acoperi împotriva riscului de curs.Pe baza acelorași date agentul are două posibilități :

-să cumpere la vedere active în monedă națională de valoarea K , caz în care capitalul său va deveni la scadență K(1+r)h ;

-să cumpere active în devize , în proporția K / S , pe care le vinde simultan la termen , situație în care capitalul său la scadență va fi : K(1+r*)h×F / S ,unde F este cursul la termen stabilit în momentul actual .

În cazul în care cele două rate ale dobânzilor sunt egale , această strategie devine interesantă numai dacă cursul la termen este superior celui la vedere.Profitul realizat de pe urma acestor operațiuni la momentul h este :

K(1+r*)h(F/S) – K(1+r)h

Valoarea capitalului Costul împrumutului K

la momentul h în monedă națională

În condițiile unei piețe eficiente profitul realizat dintr-o asemenea strategie trebuie să fie nul , adică :

În această situație , arbitrajiștii se bazează pe dobânzile la termen , fixate în prezent pentru scadențe ulterioare și deci nu pe rate ale dobânzii anticipate ca în cazul parității ratei dobânzii neacoperite .Riscul prezent este cel de neexecutare a contractului la termen sau riscul ce ține de ineficiența arbitrajului acoperit.Toate cele trei teorii ale cursului de schimb prezentate până acum reprezintă baza unor modele de determinare a cursului valutar prezentate în continuare.

Teoriile moderne privind determinarea cursului de schimb se bazează mai mult pe rolul activelor în determinarea ratei de schimb decât pe cel al contului curent.În cadrul abordării pieței activelor distingem două teorii ce diferă între ele de substituibilitatea activelor.Aceste două teorii sunt:

-teoria monetară

-teoria portofoliilor

Teoria monetară se bazează pe ipoteza că activele sunt perfect substituibile ceea ce însemnă că pentru investitori sunt indiferente deținerile de active interne sau externe(rentabilitatea așteptată a fiecărui activ este aceeași U.I.P.).În cadrul abordării monetare sunt esențiale două modele care se deosebesc prin ipoteza în legătură cu flexibilitatea prețurilor.Modelul monetarist are la bază prețuri perfect flexibile , paritatea puterii de cumpărare și ipoteza U.I.P (uncovered interest parity).Dacă prețurile sunt sticky există posibilitatea uneri modificări a ratei deschimb ca urmare a unui șoc monetar și avem modelul overshooting.

Spre deosebire de teoria monetară teoria portofoliilor nu presupune că activele sunt perfect substituibile (C.I.P).În schimb deținătorii de portofolii sunt sensibili la proporția fiecărui activ și le vor reține pe cele la care rentabilitatea este cea mai mare.Astfel pentru modelele pentru țări mici populația poate deține bonuri de tezaur interne dar și externe , iar străinii nu pot deține active interne.Modelele cu preferințe uniforme sunt acelea în care investitorii au dețineri uniforme de titluri interne și externe , iar modelele cu un habitat local preferat sunt cele în care rezidenții interni dețin în portofoliile lor active interne într-o proporție mai mere decât activele externe ; rezidenții străini preferă activele externe.

Frankel (1993) a propus o diagramă care face diferența între aceste două teorii:

Modern Asset View

assumes perfect capital mobility—CIP holds

Portofolio balance approach Monetary approach

imperfect asset substitutability perfect asset substitutability

i.e.p≠0 and UIP does not hold i.e.p=0 and UIP hold

small country preferred uniforme monetarist model overshooting model

model local habitat preference model flexible price sticky prices

model PPP holds

1.3 Modelul monetarist de determinare a ratei de schimb

Modelul monetarist s-a dezvoltat pe trei ipoteze principale :

-oferta de monedă este exogenă și stabilă ;

-activele sunt perfect substituibile și paritatea ratei dobânzii neacoperite este continuă

-cererea de bani este stabilă ;

-venitul este considerat ca fiind cel corespunzător ocupării depline a forței de muncă

-paritatea puterilor de cumpărare este continuă .

Ecuațiile caracteristice ale modelului sunt prezentate în continuare:

m – p = φ y – μ i (1)

m* -p* = φ y* – μ i* (2)

i = i*+∆se (3)

s = p-p* (4)

Prima ecuație reprezintă o funcție de cerere de monedă de tipul Cagan D=AYφe-μi , care trebuie să fie egală cu oferta reală de monedă M/P :

Oferta de monedă este presupusă a fi exogenă ; iar cererea de monedă este o funcție pozitivă de venit (y) și o funcție negativă de rata dobãnzii :

M-masa monetară ( oferta de monedă ) P-indicele prețurilor

i-rata dobânzii nominală Y-venitul (PIB)

Ecuația 2 este similară cu prima doar că prezintă funcția cererii de monedă în țara străină , cu precizarea că parametrii φ și μ sdunt considerați a fi identici pentru simplificarea calculelor.

Ultimele două ecuații reprezintă U.I.P ș P.P.P prezentate la începutul lucrării.

Pentru a obține o exprimare a cererii relative de monedă scădem primele două ecuații și obținem:

(m-m*) – (p-p*) = φ(y-y*) – μ(i-i*)

Din ecuația 3 avem i – i* = ∆se atunci nivelul relativ al prețurilor este dat de relația de mai jos:

(m-m*) – φ(y-y*) + μ(∆se) = ( p-p* ) și știind că s = p – p* obținem ecuația de determinare a cursului de schimb:

s = (m-m*) – φ(y-y*) + μ(∆se) , iar prin înlocuirea lui ∆se = ∆pe – ∆pe* avem:

s = (m-m*) – φ(y-y*) + μ ( ∆pe – ∆pe* )

Această ecuație pune în evidență faptul că rata de schimb a două monede poate fi determinată pe baza cererii relative de bani și a ofertei de monedă din cele două țări.Astfel dacă venitul național crește mai mult decât cel extern atunci are loc o creștere a cererii interne de bani în raport cu oferta de monedă a Bãncii centrale care duce în cele din urmă la o apreciere a cursului de schimb.

O creștere a ofertei interne demonedă în comparație cu cea externă duce la o depreciere a cursului de schimb care are un rol important în promovarea exporturlor.În ceea ce privește expectațiile privind inflația o creștere a celor pe piața internă în comparație cu cele de pe piața externă conduce la o scădere a cererii de bani și implicit la o depreciere a cursului de schimb.

Modelul monetarist precizează expectațiile privind inflația din cele două țări.Frankel (1993 ) face , în cest sens , o ipoteză simplă: așteptările privind inflația sunt raționale și ele depind de rata de creștere a masei monetare .El presupune că creșterea masei monetare urmează un proces de tip random walk.

∆ mt = ∆ m t-1 + u1 și ∆ m*t = ∆ m*t-1 + u2

u1 și u2 sunt procese de tip zgomot alb ( white noise ) cu media zero , dispersia finită iar erorile sunt necorelate între ele .Presupunând că așteptarile privind inflația sunt egale cu rata de creștere a masei monetare care este constantă , atunci rata de schimb devine:

s = (m-m*) – φ(y-y*) + μ ( ∆m-∆m* )

Dacă rata de creștere a masei monetare de pe piața natională este mai mare decât cea de pe piața externă atunci avem o depreciere a cursului de schimb.În scimb dacă ∆m < ∆m* implică o apreciere a ratei de schimb.

În legătură cu simplificările modelului monetarist trebuie făcute unele precizări : paritatea puterilor de cumpărare nu este întotdeauna valabilă , cel puțin din motivele: costurile de transport

și de informare efectele ; diferite de creștere ale masei monetare ; existența barierelor comerciale Cererea de bani nu este mereu o funcție stasbilă de venit și de rata dobânzii , în acest caz modificarea unora din cele două variabile poate să nu conducă la dezechilibre pe piața monetară care să influențeze rata de schimb dintre două monede.În situația în care prețurile nu sunt flexibile trecem la modele cu prețuri sticky.

=== CAP3 ===

Capitolul 3

Modelul Mundell-Fleming

3.1 Modelul Mundell –Fleming de determinare a cursului valutar

Modelul Mundell-Fleming are la bază o economie mică deschisă cu resurse neutilizate , o curbă a ofertei agregate perfect elastică ,expectații privind cursul de schimb statice și capital perfect mobil.

Modelul Mundell-Fleming este conceput pe existența a patru active:

o obligațiune de stat internă și una străină , fiecare cu aceeași maturitate și o monedă internă și una străină .Titlurile de stat sunt presupuse ca fiind perfect substituibile în timp ce monedele nu sunt sustituibile .Expectațiile privind modificarea cursului de schimb sunt considerate ca fiind nule , iar arbitrajul presupune că rentabilitatea obligațiunilor este aceeași.

Aceste ipoteze presupun că rata dobânzii este aceeași oriunde în lume ( capitalul este perfect mobil):

i=i* (1)

Echilibrul pieței monetare interne este următorul :

M/P =L= L(i,Y) Li<0 , LY>0 (2)

M-masa monetară ; L – cererea reală de bani care depinde de rata dobânzii interne i și de venitul real intern Y; P- indicele prețurilor interne ; Li , LY -derivatele parțiale ale lui L în raport cu i și Y.

Echilibrul de pe piața bunurilor este dat de :

Y = D = A(i,Y)+T(S,Y,n)+G (3)

unde Ai<0 , TS>0 Tn>0 , 0<AY<1 , TY<0

Produsul intern brut este determinat de cererea agregată D : cheltuielile interne A care sunt o funcție negativă de rata dobânzii internă și una pozitivă de venit ; de balanța comercială T sau exporturile nete care la rândul lor depind de venit , rata de schimb, un parametru de export n.

Echilibrul balanței de plăți în modelul Mundell-Fleming este dată de relația:

B = T(S,Y,n) + C(i) =0 (4)

unde TS>0 Tn>0 , Ci = ∞, TY<0

Valoarea derivatei parțiale Ci explică mobilitatea perfectă a capitalului.

Grafic modelul Mundell-Fleming este ilustrat mai jos.Dreapta XX reprezintă locul geometric al punctelor curs de schimb-venit care permit echilibrul pe piața bunurilor.Dreapta are o pantă mai mare deoarece un nivel mai ridicat al venitului împreună cu o înclinare marginală spre consum subunitară va conduce la un exces de ofertă de bunuri care necesită o depreciere a ratei de schimb.

S LL

XX

A FF

X

Y

LM IS

i* F

A

i

Dreapta LL reprezintă combinația (S,Y) ce asigură echilibrul pieței monetare ; pentru o rată a dobânzii dată există doar un singur nivel al venitului care permite echilibrul pieței monetare. IS reprezintă combinațiile (i, Y) ce asigură echilibrul pe piața bunurilor , iar LM asigură echilibrul pe piața monetară .FF exprimă combinațiile (i,Y) care permit echilibrul balanței de plăți care se află în echilibru atunci când rata dobânzii este aceeași în orice țară din lume : i=i*.Punctul inițial de echilbru este A.În continuare vom considera două tipuri de șocuri:

-creșterea ofertei de monedă;

-o politică fiscală expansionistă

3.2 Creșterea ofertei de monedă : politica monetară

O politică monetară expansionistă dusă prin intermediul unor cumpărări de bonuri de tezaur de către banca centrală deplasează echilibrul monetar de la LM la LM’.Expansiunea monetară implică un exces de lichiditate .Dacă rata dobânzii este constantă pe plan mondial singura cale de a restaura echilibrul pe piațamonetară este prin creșterea venitului de la Y1 la Y2.Aceasta are loc datorită faptului că o politică monetară expansionistă conduce la o reducere a ratei dobânzii interne care presupune o fugă de capital și o deprecierea cursului de schimb.

IS se deplasează spre dreapta până ce piața monetară revine la echilibru în punctul B.Atãta timp cât înclinarea marginală spre consum este subunitară contul curent prezintă un surplus în punctul B , iar contul de capital un deficit în acest punct ; FF se deplasează în sus spre FF’.

XX

S B FF’

A

0 Y1 Y2 Y

LM IS LM’ IS’

A B

i

Efectele politicii monetare asupra venitului si a cursului de schimb sunt puse înevidență prin derivarea multiplicatorilor monetari :

Atãta timp cât capitalul este perfect mobil este evident că ambii multiplicatori sunt pozitivi.Ca urmare a fixității cursului de schimb autoritatea monetară pierde rezerve valutare.Multiplicatorul monetar este dY / dM= 0 , dS=0.

3.3 Politica fiscală expansionistă

Creșterea cheltuielilor guvernamentale finanțate prin emisiune de obligațiuni deplasează dreptele XX și IS spre dreapta : XX’ și IS’.

Reprezentarea grafică a impactului creșterii cheltuielilor guvernamentale în modelul Mundell-Fleming este următoarea:

S LL

XX XX’ FF

FF’

0

LM IS IS’ Y

i*

i

Politica fiscală în modelul Mundell-Fleming

O creștere a cheltuielilor guvernamentale prin creșterea veniturilor va determina o creștere a acererii de bani și a ratei dobânzii care va atrage un puternic aflux de capital străin , deplasând dreapta LM și mărind venitul .În cazul cursurilor de schimb flotante creșterea ratei dobânzii la o apreciere a a ratei de schimb care va afecta balanța comercială prin diminuarea exporturilor și mărirea importurilor împingând IS’ spre IS.Dacă politica fiscală nu influențează rata dobânzii , atunci nu influențează nici viteza de circulație a banilor ( Y/M ) și în cele din urmă este un singur nivel al output-ului care poate fi suportat de o anumită ofertă de monedă.

Efectul modificării cheltuielilor guvrnamentale asupra venittului și cursului de schimb , cu o rată de schimb flexibilă și o perfectă mobilitate a capitalului este pus în evidență de următorii multiplicatori :

3.4 Mobilitatea imperfectă a capitalului

Mobilitatea perfectă a capitalului și rate de schimb flexibile sugerează că politica monetară este extrem de puternică în timp ce cea fiscală este complet nesemnificativă.În situația în care capitalul nu este perfect mobil ( Ci < ∞ ) ambele politici monetară și fiscală sunt eficiente pentru cursuri schimb flotante. Deci multiplicatorii politicilor dY/dG și dY/dM sunt ambii pozitivi.Efectul unei mobilități mai restrânse a capitalului asupra diagramei MF constă în reducerea pantei curbei FF mai puțin elastică până ce o creștere mai mică a ratei dobânzii va conduce la un puternic influx de capital.

i i

LM

LM LM’

FF B

C C

A B FF’ FF

E

D IS’ A IS” IS’

0 IS Y IS 0 Y0 Y1 Y2 Y

Capital imperfect mobil și expansiunea monetară Capital imperfect mobil și expansiunea fiscală

În aceste grafice FF reprezintă locul geometric al combinațiilor (i,Y) care asigură echilibrul balanței de plăți cu diferite pante corespunzătoare A, B . În punctul B venitul este mai mare , iar deficitul balanței comerciale este mai mare decât în A ; pentru a menține echilibrul balanței de plăți este necesar un surplus al contului de capital în B și deci o rată a dobânzii mai mare. Dreapta FF are o pantă mai mică decât LM ,deoarece chiar și în cazul unei mobilități restrânse a capitalului fluxurile de capital sunt mai elastice decât cererea de bani în raport cu rata dobânzii ( Ci>Li ) .

Punctele de deasupra dreptei FF reprezintă un surplus al balanței de plăți în cazul unor rate de schimb fixe sauo rată de schimb apreciată pentru cursurile de schimb flotante.Punctele din josul lui FF rerpezintă deficit al balanței de plăți în cazul unor rate de schimb fixe sauo rată de schimb depreciată pentru cursurile de schimb flotante.

Pe graficele anterioare expansiunea monetară deplasează LM spre dreapta , punctul de echilibru devine din C D .Noul punct de echilibru D corespunde unui deficit al balanței de plăți .Rata de schimb se va deprecia , IS se deplasează spre dreapta , dar datorită mobilității restrânse a capitalului FF se deplasează în jos.Un nou punct de echilibru este E în care venitul este mai mare , rata dobânzii este mai mică , iar balanța comercială este îmbunătățită.

O politică fiscală expansionistă de la punctul A conduce ca și în cazul mobilității perfecte a capitalului la o deplasare spre dreapta a curbei IS.În punctul B avem o tendință de apreciere a cursului de schimb . Prin efectul asupra balanței comerciale FF se deplasează în sus iar IS se deplasează de la IS’ la IS’’.Punctul C reprezintă echilibrul final . O politică fiscală expansionistă generează un venit mai mare , o apreciere a ratei de schimb și un deficit al contului curent care este compensat de efectul unei rate a dobânzii ridicate asupra influxurilor de capital.

Ca și în cazul mobilității perfecte a capitalului o parte a cheltuielilor constă în scăderea cheltuielior sectorului privat; Y2 se deplasează spre Y1…

În concluzie efectele unor politici monetare și fiscale cu rate de schimb flexibile depind esențial de mobilitatea capitalului.

3.5 Politica monetară – fiscală : așteptări adaptive

Rata de schimb este liberă să fluctueze , ea se schimbă zilnic , în timp ce în modelul Mundell-Fleming cursurile de schimb sunt fixe iar agenții nu au nici un fel de anticipații în legătură cu evoluția viitoare a ratei de schimb.

Argy &Porter (1972) au presupus că așteptările sunt inelastice sau adaptive pe termen scurt :

Deprecierea sau aprecierea ratei de schimb depinde de poziția ratei dobânzii interne față de cea externă.

i i

IS IS’ LM

B

IS LM IS’ LM’ i FF’

J ∆se A

i* FF i* FF

∆se K

i FF’

0 Y0 Y2 Y1 Y 0 Y0 Y1 Y

Politica monetară și fiscală expansionistă-așteptări adaptive

În cazul unei politici monertare expansioniste prezentată în graficul din partea stângă LM se deplasează spre dreapta .Scăderea ratei dobânzii generează o ‘fugă’ de capital urmată de o depreciere a ratei de schimb IS-IS’ și de o aștreptare privind aprecierea ratei de schimb în viitor.Cu timpul rata dobânzii interne se apropie de cea externă și astfel se reduce fluxul spre exterior al capitalului.

Atãta timp cât rata dobânzii poate scădea pentru a readuce echilibrul monetar rata de schimb are nevoie de o depreciere cu o cantitate necesară pentru a crește venitul cu multiplicatorul respectiv.Rata de schimb nu se va deprecia mai mult decât in modelul Mundell-Fleming din cauza regresivității așteptărilor.Modelul simplu MF rezultă pentru așteptări statice și el este J în figura noastră.

Prin intermediul așteptărilor adaptive politica fiscală este îmbunătățită.Expectațiile inelastice privind aprecierea inițială a ratei de schimb dă agenților expectații privind o viitoare depreciere a cursului de schimb urmată de un influx de capital.În figura noastră echilibrul inițial este A , iar punctul final de echilibru este B .Așteptările adaptive privind aprecierea ratei de schimb generază expectații privind o viitoare depreciere a cursului de schimb în care rata dobânzii interne este mai mică decât cea externă Pentru un stoc de monedă dat apare un exces al ofertei de bani care poate fi eliminată doar printr- o creștere de venit.

=== CAP4 ===

Capitolul 4

Modele cu substituire între monede

4.1 Substituirea între monede și modelul monetarist

În modelele considerate până în acest moment am considerat că rezidenții interni pot deține doar monedă națională. În continuare vom considera că agenții pot deține cel puțin două monede. Corporațiile internaționale și toți participanții la schimburile economice internaționale urăresc să păstreze în portofolii monede în curs de apreciere pentru a reduce riscul legat de rata de schimb. În aceste condiții este greu de făcut separația între conceptele de capital mobil și substituire între monede.

McKinnon ( 1982) face distincția între substituire directă și indirectă de monede. Agenții dețin monedele după criteriul rentabilitate-risc , în cazul abordării directe a acestui proces. În cadrul substituirii indirecte de monede avem posibilitatea substituirii de active nemonetare. Deci expectațiile privind modificarea ratei de schimb induc o substituire între active nemonetare (obligațiuni spre exemplu) și aceasta determină o substituire între monede .

Considerând că în lume avem două țări A și B paritatea ratei dobânzii neacoperite se menține și în cazul activelor nemonetare.

Se presupune că cele două țări au aceleși număr de bond-uri ,V, iar ratele dobânzilor în cele două țări sunt determinate astfel:

unde a este a=VA/VB , iar s este cursul de schimb.Dacă a=0.5 și deprecierea monedei A este de 10% va rezulta o creștere a ratei dobânzii în țara A de 5% și scădere a lui iB cu 5%.O rată a dobânzii mai ridicată(mică) în A(B) îi va determina pe agenții din A(B) să schimbe monedă pentru obligațiunii de stat ( obligațiuni pentru monedă) ceea ce va conduce la o diminuare a diferențialului de dobândă și prin urmare la eliminarea arbitrajului.Afluxul de capital dinspre A spre B reprezintă o consecință a reducerii cererii pentru monedă cash în A și o creștere a cererii

în B.Ca urmare este greu de făcut distincția între substiutuirea de monedă și mobilitatea perfectă a capitalului.

În cele ce urează vom examina impactul substituirii înre monede asupra abordării monetariste privind determinarea ratei de schimb..Rezidenții unei economii mici deschise pot deține în portofoliile (W-averea) lor atât monedă națională (M) cât și străină (M*):

W=M+M* (4)

Ponderea celor două monede în portofolii depind de expectațiile privind modificarea cursului.

În modelul monetarist serviciile monetare sunt furnizate decătre o singură monedă .Așa cum arătat este o ipoteză nereală , majoritatea companiilor internaționale deținând o gamă variată de monede în portofoliile lor și deci beneficiind de servicii monetare furnizate de diferite monede.Acest fapt este ilustrat astfel :

MD/P=Ω(Y,i) 0<Ω<1 (5)

unde Ω rerpezintă serviciile monetare furnizate de moneda internă, iar celelalte notații sunt cele consacrate: MD cererea de bani , P – prețurile , Y-PIB, i – rata dobânzii.Dacă Ω=0 ne aflăm în situația prețurilor sticky.Proporția serviciilor furnizate de moneda străină este 1-Ω.

King, Putnam , și Wilford (1977) considerăcă acțiunea monedei străine depinde de modificarea așteptată a ratei de schimb și de factorul de incertitudine Γ specific acestor expectații.

Expectațiile privind deprecierea ratei de schimb conduc la scăderea deținerilor de monedă internă și la creșterea incertitudinii.Expectațiile privind rata de schimb depind de rata așteptată a creșterii monetare pentru o structură dată a politicii monetare externe și incertitudinea este o funcție de variația ofertei interne de monedă.Creșterea volatilității cursului duce la creșterea riscului portofoliilor formate din monedă națională.Deci putem rescrie ecuația 6 astfel:

Ecuația 8 pune în evidență forma monetară redusă a substituirii între monede .Schimbarea preferinței pentru monede are un efect independent și direct asupra ratei de schimb.

Presupunând că ecuația 7 are forma :

De exemplu ca urmare a unei expansiuni monetare in modelul Mundell –Fleming cu rate de schimb flexibile economia deschisă realizează un surplus al balanței de plăți.Acest suplus schimbă stocul de active al țării , deoarece sub o rată de schimb flexibilă rezidenții interni vor economisi active externe ( un deficit al contului de capital va fi compensat de un surplus al contului curent) și averea financiară se va modifica.Averea are implicații asupra cheltuielilor și implicit a consumului și asupra pieței activelor dacă cererea de bani este o funcție de avere,

Modificarea avalorii averii împinge economia spre un nou stoc de echilibru în care fluxurile sunt zero.Aceste concluzii sunt valabile pentru modelul Mundell –Fleming în care rolul contului curent asupra echilibrului pe piața activelor este ignorat.

Încontinuare introducem averea în funcția de cererii de active și celei de cheltuieli.Cele două modele prezentate în continuare ne reliefează rolul averii și al fluxurilor de capital asupra ratei de schimb.

O caracteristică a acestor două modele este faptul că agenții pot acumula sau dezacumula monedă străină în funcție de surplusul sau deficitul contului curent.

4.2 Modelul lui Kouri

Modelul de dinamică propus de Kouri ( 1976 ) ilustrează rolul jucat de contul curent în determinarea ratei de schimb .În acest modelse presupune că țara respectivă produce un singur bun care este un substitut perfect pentru bunul străin.

Prețul extern este asumat a fi constant și egal cu 1 , deci din paritatea puterilor de cumpărare prețul intern este egal cu rata de schimb.

S = PT

În continuare se presupune că avem o ocupare deplină a forței de muncă și că YT este constant.Rezidenții interni își pot păstra averea reală w într-o monedă străină M* , iar rezidenții străini nu pot deținemonedă națională:

w = M’ + M* unde M’=M/S

Cererea internă pentru monedă străină și internă depinde de așteptările privind evoluția cursului de schimb.Ecuația echilibrului pe piața activelor este:

Pentru un echilibru pe termen lung , stocul de monedă este neschimbat ceea e necesită ca contul curent să fie egal cu zero ; el este păstrat în anumite proporții.Pe de altă parte modificarea așteptată a cursului de schimb ( egală cu rata de inflație aștepată ) este egală cu rata actuală a inflației care la rândul ei egalează rata creșterii monetare.Echilibrul pe termen scurt al modelului poate fi ilustrat prin graficul:

YTYT

A S0

CTCT MM

cererea și oferta internă M*0

stocul de active externe

Orice creștere a ofertei de monedăstrăină ,M*, este urmată de o apreciere a ratei de schimb pentru amenține averea constantă.Dreapta CTCT reprezintă consumul intern ca o funcție de rata de schimb cu pantă negativă atâta timpcât o depreciere a ratei de schimb conduce la scăderea averii și ca urmare și a consumuluui.Punctul de echilibru A este cel în care contul curent este zero , stocul de avere este constant, iar rezidenții interni dețin o cantitate de bani străini M*0 la o rată de schimb S0.

YTYT

surplusul contului

curent inițial S1 B

X Y

S2

S0

A

CTCT’ MM MM’

CTCT

oferta și cererea internă 0 M* M*0 (stocul de active externe)

Cumpărare de valută de piata liberă de către Banca Centrală

Presupunând că expectațiile privind rata de schimb sunt statice , atunci o cumpărare neanticipată de monedă străină M*M*0 de la rezidenții interni de către banca centrală va deplasa curba MM spre dreapta.Are loc o depreciere a cusului de schimb de la S0 la S1 , care reduce valoarea reală a averii financiare concomitent cu un surplus suplimentar al contului curent cu o cantitate XY.

Punctul B reflectă ehilibrul pe termen scurt .Surplusul contului curent va modifica averea , iar curba CTCT se va deplasa spre stânga ; aprecierea ratei de schimb contribuie la creșterea consumului.Noul echilibru se stabilește la S2 , punct în care contul curent și portofoliul se află în echilibru , iar averea reală este constantă ,echilibrul finaldiferă de cel inițial printr-o valoare a lui S mai ridicată.

Acest model ne prezintă un alt exemplu de overshooting al ratei de schimb care apare ca urmare a naturii expectațiilor.Deci în cazul asțeptărilor statice rata de schimb se va deprecia mai mult decât creșterea ofertei de monedă.O creștere propoțională a lui S va restabili echilibrul monetar dar cu un stoc de active străine redus cursul valutar se va deprecia mai mult decât creșterea ofertei de bani.Acest overshooting depinde de natura statică a expectațiilor .Dacă expectațiile sunt raționale nu este permis un overshooting al ratei de schimb .Modelul propus de Kouri permite reflectarea rolului contului curent în determinarea cursului de schimb.

4.3 Modelul Calvo – Rodriguez

Acest model pornește de la echilibrul pe piața activelor:

Ca și în modelul prezentat anterior moneda națională nu poate fi deținută de rezidenți străini , iar moneda străină poate fi acumulată doar în cazul unui surplus al contului curent.La fel se presupune că tara produce doar un singur bun tranzacționat și spre deosebire de modelul lui Kouri se mai produce și un bun netranzacționat.Raportul dintre prețul bunului tranzacționat (PT) și cel al bunului netranzacționat (PN) guvernează decizia de producție și putem scrie că rata de schimb reală este q=S/PN.

YT=YT(q) ; Yq > 0 ;

YN=YN(q) ; Yq < 0 ;

unde YN rerpezintă cererea pentru bunuri netranzacționate ,iar derivatele parțiale exprimă efectul creșterii ratei de schimb reale asupra producției.Deci o creștere a cursului de schimb real conduce la o creștere a producției a bunului tranzacționat și o scădere a producție bunului netranzacționat.Cererea pentru fiecare bun notată CT ,CN depinde de q și de averea reală :

CT=CT(q,w) ; CTq<0 , CTw>0

CN=CN(q,w) ; CNq>0 , CNw>0

derivatele parțiale arată că o creștere a cursului de schimb real produce o reducere a consumului bunului tranzacționat și creștere a consumului bunului netranzacționat ; o creștere a averii conduce la o creștere a cererii pentru ambele bunuri Acumularea de monedă străină este dată de diferența dintre consumul și producția de bunuri comercilizate:

Atâta timp cât prețurile sunt flexibile echilibrul pe piața bunurilor netranzacționate este dat de :

YN(q) = CN(q,w) ;

Între averea reală și cursul de schimb real trebuie să existe relația :

q=q(w) ; qw<0

Acumularea de capital străin poate fi scrisă ca funcție de avere:

iar schimbarea în averea reală estre dată de:

w SP

w0 M*=0

q(w) w=0

q q0 0 M*0 M*

Substituire între monede cu prognoză perfectă și bunuri netranzanționate

În graficul de mai sus din partea stângă q(w) prezintă combinația averea reală și cursul de schimb real care asigură echilibrul pe piața bunurilor netranzacționate ( o creștere a lui w este asociată cu o reducere a lui q ).

În situația în care considerăm o creștere aratei expansiunii monetare ( de la φ0 la φ1 cu φ1 > φ0) curba w. =0 se deplasează spre dreapta ., iar noul punct de echilibru devine C după cum se poate observa din graficul de mai jos:

w

A C M.*=0

q0

q1 B w=0

q q1 q0 0 M*

Creșterea ratei de creștere a masei monetare are ca efect expectații instantanee privind deprecierea ratei de schimb exprimată prin dorința deținătorilor de active de a înlocui monedă străină cu cea internă .

Punctul C nu poate fi atins instantaneu atâta timp cât se presupune că M* apare numai ca urmare a unui surplus al contului curent.B reprezintă echilibrul pe termen scurt , iar prin nivelul averii reale corespunzător acestui punct care scade ,detinătorii de active își exprimă opțiunea lor cu privire cu activele dorite în portofoliu.

Pentru menținerea echilibrului pe piața bunurilor netranzacționate acestă scădere a averii reale trebuie să fie compensată de o creștere a ratei de schimb reale ( de la q0 la q1 , S>PN).Ca urmare a deprecierii inițiale a cursului de schinb producătorii interni se orientează către producția de bunuri tranzacționate ceea ce duce la o reducere a averii și implicit a consumului pentru ambele tipuri de bunuri .Surplusul contului curent rezultat permite acumularea lui M* urmată de aprecierea ratei de schimb.

=== CAP5 ===

Capitolul 5

Modelul portofoliilor de determinare a cursului de schimb

5.1 Modelul portofoliilor

Acest model de determinare a ratei de schimb dintre două monede naționale se bazează pe includerea în portofolii a două active: obligațiuni de stat interne și externe ( sau alte titluri de stat).Spre deosebire de celelate modele de determinare a cursului de schimb aceste titluri de stat ( obligațiunii nu sunt perfect substituibile.Sunt luați în considerare o serie de factori legați de :

-riscul aferent taxelor și impozitelor;

-riscul de lichiditate al fiecărei țări ;

-riscul politic;

-riscul valutar.

Asa cum operatorii pe piețele finaciare internaționale doresc să păstreze în portofoliile lor valute ‘tari’ , tot așa investitorii internaționali doresc să păstreze în portofolii active monetare pe termen scurt în funcție de factorii de risc/rentabilitate doriți.

Astfel în modelul portofoliilor pariatea ratei dobânzii neacoperite nu se păstreză în forma ințială și este înlocuită de ecuația :

i-i*-∆se = λ (1)

unde λ reprezintă prima de risc.

Dacă investitrorii internaționali constată că o valută devine mai riscantă ei își realocă fondurile în alte titluri de stat cu risc mai redus.Modelul portofoliilor prezentat în continuare poatre fi considerat o extensie a modelului Mundell –Fleming care presupune o interacțiune între stocuri și permite o substituibilitate imperfectă a activelor . Acest model a fost dezvoltat de McKinnon și Oates în 1966, Branson în 1968 și 1977 , Allen și Kenen 1978, Genberg și Kierkowsky în 1979 Isard 1980 si Dornbusch și Fisher în 1980.

SF=f(i,i*+∆se)W ; fi < 0 , fi*+∆se > 0 (5)

YT=YT(q) ; YTq > 0 (6)

YN=YN(q) ; YNq < 0 (7)

CT=CT (q,w) ; CTq <0, CTw >0 (8)

CN=CN (q,w) ; CNq >0, CNw >0 (9)

YD = YT+YN+(i*+∆se)(SF) (10)

C=CT+CN (11)

P=PαNS1-α (12)

––––––-

q=S/PN ; S=PT ; w=W/P=M/P+B/P+SF/P

Primele trei ecuații sunt caracteristice pieței activelor și exprimă faptul că rezidenții interni își pot pãstra averea în monedă națională , obligațiuni interne și obligațiuni externe.Deoarece obligațiunile sunt considerate a fi titluri pe termen foarte scurt nu este nevoie să luăm în considerare câștigurile sau pierderile de capital datorate ratei de schimb.

Cererea de active depinde de ratele dobânzii din cele două țări care sun t considerate exogene și omogene de grad 1în averea nominală .Orice creștere a averii în monedă națională este păstrată în obligațiuni interne atunci când bi>fi și fi*+∆se < bi*+∆se .

Allen & Kenen ( 1980) explică asimetria modelului portofoliilor arătând că piața bunurilor nu afectează piața financiară ,în timp ce rata de schimb le afectează pe amândouă.

Rezidenții interni pot păstra în portofoliu toate aceste trei active : obligațiuni de stat interne , monedă națională și obligațiuni externe în timp ce rezidenții străini pot deține doar titluri externe.

Populația ueni țări mici poate acumula obligațiuni interne numai dacă prezintă un surplus al contului de econoiii ( excedent).Atât masa monetară M cât și nivelul obligațiunilor interne sunt considerate exogene fiind stabilite la un nivel necesar autorităților centrale .

Sectorul real al modelului este descris de ecuațiile (6)…..(9) în care YT reprezintă nivelul produsului intern brut la nivelul sau natural pentru bunuri tranzacționate ( ocupare deplină a forței de muncă) ; YN – PIB-ul aferent bunurilor netranzacționate ; CT -cererea pentru bunuri tranzacționate ; CN -cererea pentru bunuri netranzacționate .

Ecuația (10) pune în evidență venitul național al rezidenților ca sumă a venitului aferent bunurilor tranzacționate și a celor necomercializate plus câștigul de dobândă aferent titlurilor de stat externe .

Prețurile interne sunt descrise printr-o funcție simplă de tip Cobb-Douglas.Contul curent din Balanța de Plăți a țării noastre este dat de diferența dintre producția și consumul de bunuri vândute plus câștigul de dobândă aferent economiilor păstrate în active externe :

∆F=CA=YT(q) – CT(q,w) + (i*+∆se)SF

Condiția de echilibru pentru bunurile netranzacționate este dată de realația :

YN(q) = CN(q,w)

Surplusul sau deficitul contului curent este legat de economisirile sau neconomisirile din economie.Dacă ținta agenților economici privind ninelul real al averii este w , atunci economiile a pot fi reprezentate astfel :

În orice moment , prețul activelor –rata dobânzii interne , rata de schimb și așteptarea privind evoluția cursului valutar sunt independente de stocurile de active .Sistemul de ecuații pentru active (2) ..(5) cuprinde 3 ecuații din care 2 sunt independente și 3 necumoscute .

În model sunt necesare 2 ipoteze :

nu există anticipări și ∆se = 0

există anticipări raționale și ∆se = ∆st+1 + εt+1

Modificarea așteptată a cursului de schimb este egală cu sxhimbarea actuală plus un zgomot alb.Cu alte cuvinte sectorul activelor determină rate de schimb spot și rata dobânzii interne i.În continuare vom considera că așteptările sunt nule ∆se = 0.

Pentru o bună întelegere a efectelor șocurilor variate în modelul nostru este necesară o separare a ajustărilor necesare în două perioade :

-perioada de impact

-perioada de ajustare pe termen scurt.

Perioada deimpact reliefează ajustarea instantanee a pieței activelor ca urmare a unui șoc .În cea de-a doua perioadă de ajustare pe termen scurt prețul determuinat în prima etapă are efecte reale și produce schimbări ; astfel apar discrepanțe între nivelul dorit și nivelul actual al averii cu consecințe asupra contului curent.

S

BB MM

S0

FF

0 i0 i

Echilibru pe piața activelor

Acest grafic arată combinația (i,S) care face ca cererea de bani să fie egală cu oferta (MM) , cererea de obligațiuni interne să fie egală cu oferta de obligațiuni interne (BB) , cererea de active externe = oferta de active externe (FF) .

Dacă cererea de bani crește pentru o ofertă dată , rata dobânzii trebuie să crească pentru a menține echilibrul pe piața monetară .Dreapta BB are o pantă negativă atâta timp cât o cerere exagerată în comparație cu oferta crește prețul obligațiunilor și scade dobânda .panta negativă a lui FF este explicată prin faptul că orice scădere-creștere a ratei dobânzii permite o creștere a atractivității activelor monetare externe conducând la o depreciere a cursului de schimb.Deci BB este mai abruptă în raport cu FF deoarece cererea internă este mai sensibilă decât cea externă la modificarea ratei dobânzii interne.

O creștere a ofertei de bani deplasează curba MM în stânga , pentru o valoare dată a lui S rata dobânzii i trebuie să scadă pentru a reface echilibrul balanței portofoliului .O creștere a ofertei de bond-uri deplasează curba BB spre dreapta , iar pentru echilibru rata dobânzii pentru obligațiuni trebuie să crească ( prețul scade).O creștere a activelor externe determină o mișcare în jos a curbei FF , respectiv pentru o vasloare dată a lui i echilibrul portofoliului necesită o apreciere a ratei de schimb.

Constrângerile averii W=M+B+F determină ca doar două din trei ecuații ale activelor să fie independente .Deci o schimbare readuce echilibrul pe două piețe , cea de-a treia piață trebuie să fie în echilibru.Echilibrul pe piața bunurilor e pus în evidență de graficul de mai jos.

S YTYT

CTCT

YT , CT

Producția de bunuri comercialzate este o funcție pozitivă de cursul de schimb , în timp ce consumul este o funcție negativă de cursul de schimb .Pentru un preț dat la bunurilor netranzacționate o creștere a prețului bunurilor tranzacționate conduce la o scădere a consumului după cum consumatorii se îndreaptă spre bunurile netranzacționate.O creștere a averii deplasează CTCT spre dreapta și lasă YTYT neafectat.O creștere a prețului bunurilor netranzacționate deplasează CTCT spre dreapta și YTYT spre stânga.

S BB MM

YTYT CTCT

S0

FF

YT0,CT 0 0 i0 i

Figura de pe pagina precedentă oferă o reprezentare combinată a pieței activelor și a celei a bunurilor.

În continuare vom considera diferite posiblități de politică monetară :

5.2 Cumpărarea de titluri de stat de pe piața liberă

Grafic această operațiune poate fi prezentată astfel :

S BB

BB’ MM’

YTYT

CTCT

MM

Y

Surplus B

comercial A

initial Z

X

X

Echilitbrul

pe termen

lung -deficit

comercial

YT,CT O i

Perioada de impact

O cumpărare de titluri de stat de pe piața liberă de ăre Banca centrală va deplasa dreptele BB și MM spre stânga în BB’ și MM’. Operațiunile de piața liberă îi lasă pe deținătorii de active în portofolii cu un exces de ofertă de bani și o cerere de titluri .

În așteptarea lor pentru a cumpăra obligațiuni investitorii vor împinge rata dobânzii interne în jos , are loc o ieftinire a creditului ,ceea ce conduce la o creștere a cererii pentru titluri de stat străine împingând cursul în sus până ce excesul de cerere pentru “foreign bonds” va fi eliminat.

Dacă elasticitatea dobânzii în raport cu cererea de bani este mai mică decât elasticitatea dobânzii interne în raport cu cererea pentru titluri externe , procentajul schimbării în cererea de pentru titluri externe este mai mare decât procentul de creșrtere al stocului de bani .Rata de schimb urmează un proces de overshoot.Echilibrul perioadei de impact este Y.

Perioada de ajustare pe termen scurt

Efectul ratei de schimb asupra activului extern conduce la o creștere a avedrii nominale , care pe termen scurt este compensată de efectul de overshoot ratei deschimb asupra prețurilor și deci asupra averii reale ; averea actuală este mai mică decât cea dorită .Ca urmare a pierderii de avere reală și dorită , agenții trebuie să economisească producând o creștere a Contului Curent (CC)în perioada de ajustare.

Restaurarea valorii inițiale dorite a averii poate fi realizată doar printr-un surplus al contului curent și o creștere a deținerilor de active externe.Aceste lucruri sunt posibile atâta timp cât în perioada de impact prețurile relative se deplaseză în favoarea sectorului bunurilor tranzacționate producând o schimbare în producție a bunurilor netranzacționate.

Surplusul contului curent determină o scădere a cursului de schimb ( F creșrte , S scade) , conduc znd la o diminuare a ratei economilor până la restaurarea echilibrului .Aceasta este reprezentată pe grafic printr-o deplasare a dreptei la stânga.

În concluzie în perioada de ajustare aprecierea cursului de schimb conduce la o scădere a prețurilor relative a bunurilor comercializate și necomercializate.

Noul punct de echilibru corespunde unui deficit al balanței comerciale .Dacă, în echilibrul inițial prețul bunurilor tranzacționate este egal cu cel al bunurilor netranzacționate ,în noul punct de echilibru prețul relațiv al bunurilor tranzacționate scade ; creșterea masei minetare nu a condus la o creștere proporțională în nivelull prețurilor .

În perioada de ajustare țara acumulerază activeexterne ,ar în noul echilibru dobânzile primite pentru obligațuni străine trebuie să fie mai mari decât cele din perioada inițială .Cât timp contul curent reprezintă suma balanței conerciale plus câștigul de dobândă și atâta timp cât o balanță comercială zero este o conidiție pentru echilibru, câștigurile de dobândă trebuie să fie compensate de un deficit al balanței de plăți.

Noul punct de echilibru al activelor este Z. cu alte cuvinte acumularea de active externe în timpul perioadei de ajustare necesită o apreciere a ratei de schimb pentru a menține echilibrul pe piața activelor : FF se deplasează în jos.Acumularea de active monetare externe implică o creștere a mărimii portofoliului și deci cererea pentru obligațiuni și bani va crește.

Are loc o deplasare a dreptei BB spre stânga , iar cererea pentru obligațiuni va determina o creștere a prețului și o scăderea a ratei dobânzii concomitent cu deplasarea lui MM spre dreapta.

Simplu rata de schimb, balanța comercială și contul de capital al balanței de plăți sub impactul unui șoc monetar pot fi ilustrate astfel:

+ + tn

0 timp 0 timp

– to tn – to

s1

so

0 timp

to tn

Expansiunea monetară are loc în to și sistemul revine la echilibru în ; deprecierea inițială a ratei de schimb apare ca o fluctuație a cursului de So la S1 și după cum am văzut aprecierea ratei de schimb în timpul perioadei de ajustare ,datorată neomgenității sistemului, nu face ca rata de schimb să revină la echilibrul inițial în tn. Contul comercial prezintă în to un surplus , care peste timp , ca urmare a aprecierii cursului valutar , prezintă deficit finanțat prin câștigurile din dobânzii și active externe.

5.3 Creșterea ofertei de titluri de stat interne

O creștere a ofertei de bonuri de tezaur determină o creștere a averii și pentru o rată a dobânzii interne dată este necesară o creștere a ratei de schimb S pentru a menține piața valutară în echilibru , FF se deplasează spre dreapta.

Pentru o valoare dată a ratei de schimb creșterea ofertei de obligațiuni de stat interne necesită o creștere a dobânzii pentru a menține echilibrul pe piața titlurilor de stat : BB se deplasează spre dreapta și noul punct de echilibru este Y.

S

YTYT CTCT BB BB’

Y

Z FF’

X

FF

YT,CT 0 i

Creșterea ofertei de titluri de stat depășește orice avere apărută ca urmare a creșterii cererii de titluri și ratei dobânzii.Noul punct de echilibru Y arată o rată a dobânzii mai ridicată , efectul asupra cursului de schimb produs de o creșterre a stocului de titluri de stat interne fiind ambiguu.Aceasta deoarece o creștere a ratei dobânzii interne induce o reducere a cererii pentru active externe și tinde să compenseze creșterea cererii pentru titiluri externe cu prețuri fixe datorată creșterii averii.

Valoarea lui S în punctul Y este mai mică sau mai mare decât ea în X după cumtitilurile de stat interne sau externe sunt privite ca substitute mai bune sau mai puțin bune ale monedei naționale .Dacă F și B sunt privite ca substitute mai bune , cursul de schimb va fi mai redus în noul punct e echilibru pentru că schimbările în cerere de F la B ca o rezultantă a creșterii ratei dobânzii va fi mai mare decât felul î n care F și B sunt –privite ca substitute.

Considerând că B și M sunt substitute mai bunedecât F și B atunci ajustarea de l aY lanoulpunct de echilibru pe termen lung Z va fi la fel ca și cea de piața liberă ; la un nivel scăzut al averii reale , agenții vor economisi și averea va fi acumulată în timp , curba CTCT deplasându-se spre stânga.

5.4 Schimbarea preferinței pentru active

Având în vedere cele arătate până acum ne putem pune o întrebare : ce efect va avea asupra punctului de echilibru situația în care obligațiunile interne ar deveni mai atractive decât cele externe ?

În momentul inițial creșterea cererii pentru titluri interne poate fi satisfăcută printr-o reducere a ratei dobânzii ; BB și FF se deplasează spre stânga.Astfel impactul creșterii cererii pentru titlurile interne se materializează într-o reducere a ratei dobânzii și a cursului de schimb de la i0 la i1 și de la S0 la S1.

Grafic acest lucru se prezintă astfel :

S

YTYT CTCT BB

surplus CTCT’ BB’

final

S0 Z FF

A B S1 FF’

deficit

comercial inițial

YT, CT O i1 i0 i

În perioada de ajustare averea sectorului privat crește datorită scăderii prețului bunurilor tranzacționate și deci w trebuie să fie mai mare decât w și deci agenții treuie să deseconomisească.

În figura de mai sus deficitul contului curent este egal cu AB.Cu timpul acest deficit va rezulta într-o pierdere de active externe ,oreducere a averii care deplasează dreapta CTCT spre dreapta și rata de schimb crește.Punctul final de echilibru este Z.

Concluzii

Prin cele arătate până acum se demonstrează că șocurile pe piața activelor financiare produc un efect de overshooting al ratei de schimb ; afectează comerțul pe termen lung, rata de schimb reală , iar un surplus al contului curent este asociat cu o apreciere a cursului de schimb.

Aceste modele prezentate până acum sunt foarte greu de aplicat pe piața romãnească datorită stadiului incipient în care se află aceasta , lipsei de date până în 1990.

=== en15 ===

SUMMARY

Following the evolution of the leu/$ exchange rate for two last years ,I realized how difficult is to forecast the exchange rate for the next day.That’s why I decided to concentrate my work on possibilities of determination and forecasting the leu/$ exchange rate.

My paper ,entitled “Possibilities of Determination and Estimation of the Exchange Rate” tries to put together some theoretical models and techniques which can be used to explain the exchange rate’s fluctuations.I’ve also tried to show how specific conditions of the Romanian foreign exchange market can influence the exchange rate leu/$.

In the beginning of the first chapter ,I defined some basic notions as , Purchasing Power –Parity Principle, Uncovered Interest Rate Parity and Covered Interest Rate Parity.

The PPP principle ,which was popularized by Gustav Cassel in the 1920s , is most easily explained if we begin by considering the connection between exchange rates and the local currency prices of an individual commodity in different countries.This connection beetwen exchange rates and commodity price is known as “law the of the one price”.The PPP has two forms: absolute form and relative form.The most used form is the absolute form of PPP which is an assumption for the other models of the exchange rate determination :

SP* =P

where P is domestic price level , P*- foreign price level and S is the exchange rate.

The Uncovered Interest Rate Parity (U.I.R.P) can be written as:

r=r*+∆se

where r is domestic interest rate ,r* is the foreign interest rate and ∆se is the expected rate of depreciation.In words : the domestic interest rate must be higher ( lower) than the foreign interest rate rate by an amount equal to the expected depreciation ( appreciation) of the domestic currency.

The Covered Interest Rate Parity (C.I.R.P) condition is :

r=r*+f

where r is domestic interest rate ,r* is the foreign interest rate and f is the forward premium (discount) –the proportion by which a country’s forward exchange rate exceeds ( falls below ) its spot rate. C.I.R.P states : the domestic interest rate must be higher ( lower) than the foreign interest rate rate by an amount equal to the forward discount (premium) on the domestic currency.

Also in the first chapter I presented the role of assets in determining the exchange rate .Using the assumption about asset substitutability can be distinguished two theories : moonetary theories and portofolio theories.Frankel (1993) provides a useful and informative diagram which traces out the differences beetwen this two theories:

Modern Asset View

assumes perfect capital mobility—CIP holds

Portofolio balance approach Monetary approach

imperfect asset substitutability perfect asset substitutability

i.e.p≠0 and UIP does not hold i.e.p=0 and UIP hold

small country preferred uniforme monetarist model overshooting model

model local habitat preference model flexible price sticky prices

model PPP holds

The monetary theories assumes that assets are perfectly substitutable , which means that investors are indifferent in holding domestic and foreign assets.The portofolio theories not assumes perfectly assets substitutable.Within the monetary approach , there are two mai models which are distinguished according the assumptions which are made about price flexibility. With perfectly flexible prices , PPP, U.I.R.P we have the monetarist version of the monetary approach which I presented in this chapter .By contrast, if the prices are sticky , then is the possibility that exchange rate overshoots its long run value , following a monetary shock.

The monetary model focuses exclusively on the money market and studies the relationship beetwen money demand and and money supply which causes changes in the exchange rate.In particular , the exchange rate is seen as an equilibrium price beetwen twostocks of money.

The equations of the monetary model in log-linear form are:

m – p = φ y – μ i (1)

m* -p* = φ y* – μ i* (2)

i = i*+∆se (3)

s = p-p* (4)

First equation is a conventional money demand function where m is money supply and p represents prices.

Money demand is a positive function of income y and a negative function of domestic interest rate i .Equation (2) is a similar money demand function for the foreign country.The parameters φ and μ are assumed to be identical for simplicity.Equation (3) represents U.I.R.P and the last equation represents the PPP.

In the monetary model the money supply is assumed to be exogenous and stable ; the assets are perfectly substitutable and U.I.R.P holds continuosly; the demand function is a stable function of few variables; income is assumed to be at its full employment level ; PPP holds continuosly.

Equation for relative money demand can be written as:

(m-m*) – (p-p*) = φ(y-y*) – μ(i-i*)

and using U.I.R.P we obtain

(m-m*) – φ(y-y*) + μ(∆se) = ( p-p* )

which from equation (3) gives us the equation for the exchange rate :

s = (m-m*) – φ(y-y*) + μ(∆se) and by replacing ∆se = ∆pe – ∆pe* we have:

s = (m-m*) – φ(y-y*) + μ ( ∆pe – ∆pe* )

The last equation states that exchange rate is determinated by relative money demands and money supplies.If domestic income increases more than foreign income then this increases the demand for money more than supply .There is an excess demand for domestic money which causes the exchange rate appreciation. ( s falls ).By contrast an increase in money supply causes an depreciation of the exchange rate.Similarly if expected domestic inflation rise above that expected in the foreign country , then the demand for money falls and the exchange rate will depreciate.Thus the impact of exogenous shocks is always examined through its effect on the money market.

In the first part of the Chapter 2 I investigate the consequences of imposing regressives expectations on the monetary approach of exchange rate determination.This model is also named overshooting model.

Overshooting refers to the tendency for the exchange rate to overshoot its new equilibrium level following some exogenous shock to the system .Assume ,for example, a shock which warrants depreciation of the exchange rate to a new long run level. Overshooting implies in the short run, the exchange rate will tend to over- depreciate , before appreciating towards its new long run equilibrium value.The key result of overshooting arises in the model from differentialk speeds adjustement in the goods and assets markets.

In particular , it is assumed that following a disturbance , the asset market moves rapidly to its new equilibrium .The goods market it is characterised by sticky prices and takes longer to adjust to a new equilibrium..

In this chapter ,I also discuss the impact of the rational expectations on model structure which allows us to to make an important distinction between policies anticipated and unanticipated .

In the end of the chapter 2 , I presented an extension of the Sticky Price Monetary Model which include inflationary expectations, deviations of output from the natural rate and monetary growth shocks , an extensions which follows from Buiter and Miller (1981).

In the chapter 3 , I presented Mundell Fleming model and some extensions which has a fundamental influence on international monetary economics , particularly the branch dealing with floating exchange rates.

Mundell-Fleming Model (MF model) is a model for a small open economy facing a given world interest rate and a perfectly elastic supply of imports at a given price in terms of foreign currency.In the MF model are assumed to be four assets :

a domestic and a foreign bond with same maturity

a domestic and a foreign money

The bonds are assumed to be substitutes while moneys are assumed to be non-substitutable and thuss held in the country of issue .Expectations are assumed to be static (the expected change in the exchange rate is equal to zero) and arbitrage is assumed to ensure that bond yields are continually equalized.

In the MF model the domestic rate of interest is continually equal the foreign rate:

i = i* – the representation of perfect capital mobility

Money market equilibrum for the domestic economy is given by:

M/P =L= L(i,Y) Li<0 , LY>0

where M-money supply ; L – real money demand which depand upon the domestic interest rate ,i, and domestic real income de Y; P- the price ofdomestic output which is assumed constant ; Li , LY represent the partial derivatives.

Underlying the condition for goods market equilibrum are the assumptions of unemployed resourcves , constant returns to scale and fixed money wages resulting in a typically Keynesian ‘deep depression’ aggregate supply schedule .

Equilibrum in the goods market is given by :

Y = D = A(i,Y)+T(S,Y,n)+G

where Ai<0 , TS>0 Tn>0 , 0<AY<1 , TY<0

Thus Y , domestic output is determined by aggregate demand,D , where the components are : domestic absorption or spending ,A, which is a negativefunction of the rate of interst i and

a positive function of income ( where the marginal propensity to spend lies beetwen zero and unity ) ; T , the trade balance , or net exports , depends upon income , the exchange rate , which for a fixed home price level ( the small-country assumption ) is the terms of trade ; and an export shift parameter n .

The balance of payments equilibrium condition in the Mundell-Flemig Model is given by:

B = T(S,Y,n) + C(i) =0

where TS>0 Tn>0 , Ci = ∞, TY<0

which simply states the familiar condition that the sum of thecurrent and capital accounts of the balance of payments must , with a floating exchange rate , sum to zero.

În this model I considered two types of schok : an increase in the money supply and an expansionary fiscal policy.

Until now I considered monetary models in which domestic residents are allowed to hold only the home currency and , so I decided to study in the Chapter 4 the phenomenon of currency substitution where residents of the home country hold at least two currencies.The ability of foreign exchange market participants to substitute between different currencieshasbeen made possible due to the lifting of exchange rate controls in the 1970s by most of the participanting members of the generalized float.

For example, assume the world consists of two countries A and B and U.I.R.P is maintained between their non-money assets.

The two countries are assumed to have issued quantities of bonds , V , and the interest rate in each country are determined as:

where iA and iB are the interests rates for each country ; se is the expected depreciation of the currency in A.

The domestic residents can hold their wealth (W) in a portofolio of domestic money M or foreign money M* :

W=M+M*

International companies can hold a variety of currencies in their portofolios and therefore monetary services provided by other countries.

MD/P=Ω(Y,i) 0<Ω<1

where Ω is the proportion of monetary services provided by domestic money ;

MD is demand of money , P – prices , Y- income, i –interest rate.

Following King and Putnam ,the share of foreign currency, for a given institutional structure,depends upon exchange rate expectations and the uncertainty, , with which these expectations are held.

Thus expectations of an exchange rate depreciation tend to decrease holdings of domestic money as does increased uncertainty.Exchange rate expectations are argued to depend on de expected future monetary growth for a given structure of foreign monetary policy.Equation can be rewritten as :

The last equation represents monetary currency substitution reduced form.

Assuming that :

In the chapter 4 , I presented other two models representing extensions of this model. In the model due to Kouri (1976) , the current account is introduced into currency substitution model by including wealth as a scale variable in the money demand equations.Current account surplus or deficits , by changing wealth , result in changes in the demand for the home and foreign currency and as a corollary changes in the exchange rate.

In the other model due to Calvo and Rodriguez (1977) the previous model is pushed further by allowing the current account to depend upon the real exchange rate .Both this models assume that asset markets adjust instantaneuously following a shock.

In the chapter 5 of this paper I considered the stock –flow interactions in the context of two currency substitution models.I expand the range of assets available to portofolio holders to include domestic and foreign bonds and use the stock flow to analyze the effects of various asset market changes.

In contrast to the monetary approach of exchange rate determination the domestic bonds are not assumed to be perfect substitutes.There is in fact a number of factors ( such as tax risk,exchange risk , political risk) which suggest that non-money assets issued in different country are unlikely to be viewed as perfect substitutes.

This implies that uncovered interest rate parity is replaced with an equation as:

i-i*-∆se = λ (1)

where λ is a risk premium.

SF=f(i,i*+∆se)W ; f < 0 , fi*+∆se > 0 (5)

YT=YT(q) ; YTq > 0 (6)

YN=YN(q) ; YNq < 0 (7)

CT=CT (q,w) ; CTq <0, CTw >0 (8)

CN=CN (q,w) ; CNq >0, CNw >0 (9)

YD = YT+YN+(i*+∆se)(SF) (10)

C=CT+CN (11)

P=PαNS1-α (12)

––––––-

q=S/PN ; S=PT ; w=W/P=M/P+B/P+SF/P

The assets demands depend upon the domestic and foreign rate if interest, which are assumed to be exogenously given and are homogenous of degree 1 in nominal wealth.It is also assumed that the bonds are gross substitutes (bi>fi and fi*+∆se < bi*+∆se ) and a greater proportion of any increase in domestic wealth is held in domestic bonds rather than foreign bonds.Domestic residents can hold all three assets and foreign residents can only hold foreign bonds.

The real sector of the model is described by equation (6)—(9) where :

YT is production of the traded goods ; YN is production the non -traded goods CT is the consumption of traded goods ;CN is the consumption of nontraded goods

Prices are assumed to be continuously flexible and the economy operates at full employment.Equation (10) represents domestic residents’ disposable income which is assumed equal to income derived from trade and non-traded goods plus interest earnings of foreign bonds.The price level is given by a simple Cobb-Douglas formulation.

The capital account of the balance of the payments is :

∆F=CA=YT(q) – CT(q,w) + (i*+∆se)SF

In this chapter , I also discuss the effects of the monetary and fiscal policy and the assets preference between domestic and foreign bonds.

In the chapter 6 I presented the evolution of the romanian foreign exchange market, foreign exchange policy of the National Bank of Romania and the main steps in the evolution of domestic currency ‘leul’ after 1990.

As I had proved in the chapter 6 , the exchange rate leu/dollar during the period after december 1989 revoluțion recorded important fluctuations mostly due to the real situationof our country’economy , characterized by the decrease of the real production and by impermissible delays in the realisation ot the social and economic reforms.

In my attempt to study the exchange rate evolution from this period ,I started from the data series regarding the monthly average values of the nominal exchange rate leu/$ from 1992 to 1998 , published in the Annual Reports and The Quartely Bulletins of the National Bank of Romania ( which I noted by ‘r’ – see annex1).

The series of the data regarding the exchange rate evolution offers the first information about it : the exchange rate is not a stationary process.

On the other hand , to bring this fact into reflief I used the ADF econometric test from the Eviews 3.1 programme which considers an autoregressive process AR(1) :

yt=μ+ρyt-1+εt

where μ and ρ are the parameters , and εt is an white noise having the ussually properties:

E(εi )=0 ; VAR(εi )= 2i ; COV(εi ,εj )=0 , i # j

The null tested hypothesis is:

H0 : ρ=1

and the alternative one is:

H1 : ρ ≠ 0

If the null hypothesis isaccepted , then the series is nonstationary and we deal with a random walk with drift type process.

In the case of the series of the data for the exchange rate leu/$ , the value of the ADF test for 1 lag is the following one:

This test shows us that the exchange rate is not stationary ( constant average, finite dispersion, and the covarince between two different periods of the time of the stochastic process is constant and independent ) :ADF Test statistic is smaller in modulus than the critical value s calculated by MacKinnon.

To eliminate the trend series we uses the first order differences:

∆r = rt – rt-1 , following which thegraphic of the series looks like this:

and the ADF test has the following values:

As ADF Test Statistic is bigger in modulus than the critical values calculated by MacKinnon , we may say that the series of the exchange rate difference is stationary.

By analysing the graphic of the correlograms of the series of the of the exchange rate differences we may draw the conclusion that is resonable to analyse an ARMA(1,1) model .

The inclusionof a constant isinsignifiant ,that is why we shall abandon it.

An ARMA process isgenerated by a combination of past values of yt variable and by white noiseresidual terms .An ARMA (p,q) process is a symbiosis between an AR process and a MA process having two orders : p and q.

ARMA(p,q) yt =ρ1yt-1 + ρ2yt-2 +….+ ρpyt-p+ εt +θ1εt-1 + θ2εt-2 +….+ θqεt-q

Correlogram of exchanges rate differences is:

The equation of the regression , which contains as an independent variable the series of the exchange rates ttransformed by application of the differences is estimated by ordinary least squares method.

Summing it up , the relation of the dependence between the variables , expressed by the regression equation is the following one:

∆r = AR(1)×∆rt-1+ εt + MA(1)× εt-1

where AR(1)= 0.328142 and MA(1)= 0.625312

Then we may say that the initial series of the exchange rates from 1992 to 1998is generated by an ARIMA(1,1,1) process.

It may be noticed that the estimation leads to important coefficients from statistic point of view (t-statistic +afferent probabilities are good).The other parameters of the regression are also acceptable , except the R-squared , which , in such cases , should not be considered as being essential , in point of its value.At the same time the inverted roots of AR and MA process are subunitary.

It may be said that the general results of the estimation are important to the specified econometric model .The exchange rateseries is generated by an ARMA (1,1) process in its variant transformed by the application of the first order differences andby an integrated ARIMA (1,1,1) process .

The analysis of the residual terms is made through the partial corelogram and the simple are presented below.It may be established that no coefficint outruns the critical limits imposed by the standard trust interval, so the errors are not correlated , conclusion that also resultsfrom the value of the Durbin –Watson test.Besides ,the value of Q-Statistic-Ljung-Box test is inferior to the maximum permissible level.

Q-Statistic –Test is based on the summation of the autocorrelation for the specified number of temporal disparities.The theoretic expression is the following one :

where r represents the autocorrelation coefficient corresponding to the j period ,T is the number of statistic observations and p the number of the correlated terms .

The hypothesis verified by the Q-test is the absence of autocorrelation:

H0 : rj = 0

H1 : rj ≠ 0 ,

In accordance with this hypothesis ,Q has a χ2 distribution with p-degree of freedom.The resuls of the test consist in the Q values and in the probabilities associates ,as well as the graphic of the residual term coresponding to the autocorrelation .If the errors are framed by the two vertical lines , then the errors are generated by a white noise process.

For one degree of freedom we have Q-Stat = 0.5170 < χ2 table = 2.71 for 5% interval of trust and the probabilities associated to Q-Stat grow very closely to one .As a result we may state that the errors are generated by a white noise process.

So based on this analysis ,I proved that the exchange rate leu/$ from1992 to 1998 followed an ARIMA(1,1,1) process, respectively:

rt=rt-1+∆r sau

rt= rt-1 + AR(1)×∆rt-1+ εt + MA(1)× εt-1

In order to test the model ,I ellaborated a forecasting for 1998 and respectively for january 1999 ( see also annex1)

The value of the average exchange rate published NBR for January was of 11.353,6 lei/$ , and the one estimated on the basis of the model is of 10.869 lei/$., between the 2 rates existing a difference of 486 lei/$ due to the stressed depreciation of the leu in relation to the $ of about 7,8% compared to the previous month , namely 825,5 lei.

In order to test the stability of the econometric model I used the Chow Forecast test of forecasting which consist in the division of the original statistis sample , containing T observation in a T1 subset , that will be used to estimate , respectively T2=T-T1 subset , in the determination of the two subsets.Ussually different points of modulation are used , such as the unexpected depreciation of the exchange rate ( such a point may be considered the end of 1996 and the beginning of 1997 ; see annex4) , and in the case of the lack of these structural modifications , the general accepted rule is the utilisation of the 85% of the observations to estimate and the rest to test the stability.

By application of this test, we arrive to a F-Statistic and LR-Statistic with the associated probabilities.

The null hypothesis tested by Chow Forecast is:

H0 : the model is not stable

H1 : the model is stable

For the intervals of time between 1992 and 1998 the values of the Chow Forecast test accept the null hypothesis due to insufficient basis of observations and the huge fluctuation of the exchange rate ,at the same time the estimated coefficients suffer important modifications(see annex2) .Beginning with the end of the 1997 , the coefficients are more stable ( annex3)

On the basis of analyse of the data from 1992 to 1998 I proved that the exchange rate leu/$ followed an ARIMA(1,1,1) process , depending on the previous rate, on the previous exchange rate differences and on a white noise process.

rt=rt-1+∆r

∆r = AR(1)×∆rt-1+ εt + MA(1)× εt-1

where AR(1)= 0.328142 and MA(1)= 0.625312

rt= rt-1 + AR(1)×∆rt-1+ εt + MA(1)× εt-1

rt= rt-1 +0.328142×∆rt-1+ εt +0.625312 × εt-1

rt= 1.328142×rt-1 -0.328142×rt-2+ εt +0.625312 × εt-

The variation of the exchange rate at the t-1 moment with one unit brings a growth with 0.32 of the present variation of the exchange rate and a growth with one unit of the residual brings about a growth with 0.62 of the current exchange rate differences.

The model can not be applied to the next period 1999 because of the great volatility of the exchange rate from that period.In other words , the variation of the exchange rate depends on the previous variation of and on the various shocks on the foreign exchange market , the present and the previous values of the residuals.

After I had established that the exchange rate differences follow an ARMA process ,I decided to study the impact of the principal economic variables which determine the exchange rate .

In order to do it ,I used series of monthly data for the nominal exchange rate ( lei/$ , monthly average), broad money (M2 – billions lei at the end of the period :made up by currency outside banks +demand deposits-M1 and the quasi-money –household savings, lei deposits at term , resident’ forex deposits) , industrial output ( billions of lei ) , export ( milions $ FOB ) , and the consumer prices index for the period between 1992-1998 which I took from the Annual Reports and Quartely Bulletins of the National Bank of Romania ( see annex5) .

To facilitate the computations ,I decided to work with these series logarithmic data for the exchange rate , broad money , industrial output and the export( see annex6).

The link between thelogarithmic exchange rate and these variables is brought into relief by scatter diagram( see annex7).

I used the following notations:

R-nominal exchange rate ; r = ln R r- growth rate of the exchange rate

M2- broad money ; m =ln M2 m- growth rate of the broad money

XFOB-export ; x fob=ln Xfob xfob-growth rate of the export

IPC-consumer prices index

Y –industrial output ; y =ln Y y- growth rate of the industrial output

By the method of estimation of the ordinary least squares ,I obtaining the following results:

The relation of dependency between the dependent variable ( actual exchange rate ) and these independent ones is estimated by means of a equation of regression such as:

rt = 0.117119*mt – 0.098210*yt + 0.977373*rt-1 – 0.078714*xfobt + 0.410018*IPCt

It may be observed that the estimation leads to coefficients important from statistic point of view for the growth rate of the broad money , to the exchange rate at the t-1 moment , consumer prices index and less important for the growth rate of the industrial output and the export.

The- R squared coefficient which measures the intensity of the correlation between the dependent variable and the independent ones has a very high value ( near to 1) and indicates a very strong correlation , therefore the validation of the theoretic model on which the regression is based.

As for the errors Durbin –Watson test has a 1.3 value indicating the existence of a slightly positive correlation between them.Using Q-Stat-Ljung box test we notice that :

calculated values of the Ljung-Box test are close to those of the χ2 distribution..For example for 10 degree of freedom Q-stat=21.769 < χ2 table=23.2 for a 1%interval of trust.The errors are therefore weakly correlated , so we validate the regression.

The graphic of the residuals shows that they do not lay in the established band , existing three importasnt fluctuations. : in 1992 when during 3-4 months the exchange rate suffered a depreciation of near 100% from 198lei/$ to 375 lei/$ ,; between the end of the 1993- the beginning of 1994 – when the national currency depreciated in nominal terms from 1067 lei/$ in november to 1601.3 lei/$ in march on the basis of an demand bigger than supply due to the importation of energy at winter ( gas , oil ) ; between the end of 1996 and the beginning of 1997 when the rate suffered an important depreciation from 3478 lei/$ in november 1996 to 7235 lei/$ in march 1997 , period during which the liberalisation of the foreign exchange market also took place.The estimated data for the exchange rate based on this equation of regression are presented in the annex7.

In order to test the stability of the econometric model ,I used The Chow Forecast test and I noticed that we had similar results as in the case of ARIMA model.For the period between 1992 and 1997 the values of the test are rather inconclusive , its value indicating that the regression equation estimated for the growth rate of the exchange rate is not characterized by a stability of the coefficients ( annex8 and annex9) due to the strong exchange ratefluctuations and so the small number of the data contained in the sample.

For the last period the Chow Forecast test indicates a good stability of the coefficients .

Therefore it may be said that the general results of the estimation are acceptable for the specified econometric model .

From the viewpoint of the economic theory , the results of the regression are correct , but this model cannot be used to forecast the exchhange rate,as for January 1999 the difference between the exchange rate estimated on the basis of the model is over 400 lei.

Thus , an increase of the growth rate of the broad money determines a growth of the domestic currency supply , which leads to a cheapening of the credit , so a decrease of the rate and on the terms of perfectly mobility of the capital to run out of the capital and finally a depreciation of the exchange rate ,so to an increase of the growth rate of the exchange rate.

An increase of the growth rate of the industrial output leads to a decrease of the exchange rate in nominal terms , thus to its appreciation.

The present exchange rate is strongly influenced by its previous value ,in other words , there is a strong correlation between the actual growth rate of the exchange rate ansd the previous one , which can be also noticed from the graphic (annex7) .

An increase of the growth rate of the export leads to an increase of the supply of dollars on the domestic market and implicitely to the decrease of the exchange rate and therefore of its

growth rate.The increase of the consumer prices index materialized by the increase of the inflation leads inevitably to the depreciation of the exchange rate and implicitely to an increase of its growth rate.

Following the evolution of the National Bank of Romania exchange rate policy we realize that from 1990 to 1992 the exchange rate was used as inflationary anchor , this one maintaining overevaluated when related to the purchasing power of the nationasl currency ,the exports being gravely affected and by tis , the equilibrium of the external balance payments .Thus, a relation of cause – effect , exchange rate-prices which ignores the initial effect of the interne inflation ,over the puchasing power of the national currency which reduces propotionally with that of the foreign currency.

It must be mentioned that the deepreciation national currency contributes to the stimulation of the exports only if it is sustained by a profound reform of the real sector; in the long run term , it proved to be a source of inflation.

During this period , the coexistence of a real appreciation of the exchange rate and an increase of the exports is apparently paradoxical ; the evolution of the current account shows that the real depreciation of the leu in order to stimulate failed as a consequence of the nonexecution of the economic reforms : the inflation has grown constantly , but the exports have remained inflexible to the exchange rate .At the same time the disfunctions of the foreign exchange market and its fragility ( with about 60-70 milions of dollars the exchange rate may be positively or negatively influenced ) shows the beginning phase of the reforms in our country.

Considering the facts shown , the forecast of the exchange rate in Romania is highly difficult, actually impossible.

=== introducere. ===

INTRODUCERE

Atunci când vorbim despre evoluția vieții economice în România trebuie să amintim obligatoriu două perioade distincte .Una din aceste perioade se desfășoară până în 1989, când România avea o economie închisă, centralizat-planificată , cealaltă ,după 1989 , încercând să pună bazele unei economii de piață libere caracterizată de concurență și calitate.

Frământările politice și sociale apărute după decembrie 1989 și-au găsit întrutotul reflectarea în viața economică, în sensul că înscurt timp România s-a confruntat cu o situație inedită care a constat în acoperirea foarte mică a bunurilor aflate pe piață.

Reforma economică începută în 1990 a cuprins și sistemul bancar .Reforma sistemului bancar a constat în împărțirea cestuia pe două nivele , în decembrie 1990 :BNR , ca bancă centrală și Băncile comerciale.În procesul de organizare a sistemului bancar de tip occidental , Banca Națională a României afost degrevată de toatte activitățile specifice bâncilorcomerciale , aceztea fiin preluate de o bancă nou înființată BCR, ea căpătând funcțiile tradiționale ale unei bănci centrale : controlul masei monetare și al creditului , supravegherea activității bancare , politica valutară , adminstrarea rezervelor valutare.

Totodată, Banca națională a Românieki estepricipalul actor în crearea pieței valutare interbancare , în care moneda națională să poată fi convertită înalte valute care ș2 dea posibilitatea plății tranzacțiilor curente.În această calitate BNR a fost organizatorul ședințelor

de licitație în care principalele bănci desfășoară operațiuni de vânzare /cumpărare de valută.

Din luna august 1994 BNR a renunțat la rolul de organizatorprincipal al pieței valutare interbancare , lăsând omai mare libetrtate tranzacțiilor valutare ale băncilor comerciale șiformării cursului de schimb.După o scurtă perioadă de restricționare a pieței valutare în lun martie 1998 a avut loc liberalizarea integrală a pieței valutare și a mecanismului de formare a cursului valutar , pe baza cererii și ofertei.

Ultimul pas în funcționarea pe bazeliberale a pieței valutare în România a fost făcută odată cua acceptarea obligațiilo ce decurg din Art. VIII din Statutul FMI privind liberalizarea trasnzacțiilor de cont curent..În acest context volumul tranzacțiilor valutare a crescut continuu concomitent cu deprecierea continuă a cursului de schimb

În lucrarea de fața am încercat să prezint principalele teorii economice privind determiarea ratei de schimb și diferite posibilități de estimare a cursului de schimb în țara

noastră. Capitolul 1 prezintă concepte de bază privind determinarea ratei de schimb valutar : PPP ,U.I.R.P , C.I.R.P alături de modelul monetarist.

Capitolul 2 prezintă caracteristicile modelului monetarist de determinare a cursului de schimb în cazul în care prețurile sunt considerate sticky, separat pentru cele două tipuri de așteptări : adaptive și raționale , precum și o extensie a acestui model prezentat deBuiter –Miller.

Capitolul 3 prezintă modelul monetarist dedeterminare a ratei de schimb împreună cu caracteriazarea impactului unor politici monetare sau fiscale asupra cursului.

În Capitolul 4 este prezentată substituirea de monede și posibilitatea utilizării acesteia în stabiliea ratei de schimb între două țări.

Capitolul 5 prezintă posibilitatea utilizării potofoliilor în determinarea ratei de schimb , modul în care acestea explică formarea cursului valutar și impactul politicilor fiscale și monetare asupra acestuia.

În capitolul 6 am prezentat principalele etape în evoluția pieței valutare și a cursului de schimb în România postcomunistă.

Capitolul 7 reliefează două posibilități de estimare a ratei de schimb a ratei de schimb în perioada 1992-1998.

În final doresc să mulțumesc tuturor celor care m-au sprijinit și îndrumat în elaborarea acestei lucrări și în special domnilor profesori Moisă Altăr și Paul Bran.

=== ult1 ===

Capitolul 7

Estimarea ratei de schimb leu/ dolar USA

7.1 Estimarea ratei de schimb cu ajutorul unui proces ARIMA

După cum am arătat mai înainte rata de schimb leu/dolar în perioada posterioară revoluției din decembrie 1989 a înregistrat puternice fluctuații datorate în principal stării ecomomiei reale a țării noastre , caracterizată prin scăderea producției reale și prin întârzieri nepermise în înfăptuirea reformelor economico-sociale.

În încercarea mea de a studia evoluția ratei de schimb pe această perioadă am pornit de la seria de date privind valoriile medii lunare ale ratei de schimb nominale leu/dolar în perioada 1992-1998 publicate în Rapoartele anuale și Buletinele trimestriale ale Băncii Naționale a României ( pe care am notat-o cu “ r ” – annex1) .

Seria datelor privind evoluția cursului de schimb ne oferă o primă informație înlegătură cu acesta : cursul de schimb nu este un proces staționar:

Totodată pentru a pune în evidență acest fapt am folosit testul econometric ADF (Augmented Dickey –Fuller) din programul Eviews 3.1 care consideră un proces autoregresiv deordinul 1 AR(1) :

yt=μ+ρyt-1+εt

unde μ și ρ sunt parametrii ,iar εt este un zgomot alb (‘white noise’) cu proprietățile obișnuite:

E(εi )=0 ; VAR(εi )= 2i ; COV(εi ,εj )=0 , i # j

Ipoteza nulă testată este :

H0 : ρ=1

iar cea alternativă este :

H1 : ρ ≠ 0

Dacă se acceptă ipoteza nulă atunci seria nu este staționară și avem de a face cu proces de tip random walk cu drift.

În cazul seriei de date pentru cursul de schimb (r) leu/$ valoarea testului ADF pentru 1 lag este următoarea:

Acest test ne arată că rata de schimb nu este staționară ( medie constantă, dispersie finită, iar covarianța dintre două perioade de timp diferite ale procesului stochastic este constantă și independentă) : ADF Test Statistic este mai mic în modul decât valorile critice calculate de MacKinnon.

Pentru a elimina trendul serie folosim diferențele de ordinul întâi :

∆r = rt – rt-1 ; in urma cărora graficul seriei arată astfel

iar testul ADF are următorile valori:

Deoarece ADF Test Statistic este mai mare în modul decât valorile critice calculate de MacKinnon putem spune că seria diferențelor de curs este staționară.

Prin analiza graficului corelogramelor seriei diferențelor de curs putem trage concluzia că este rezonabil să analizăm un model ARMA (1,1).Includerea unei constante este nesemnificativă de aceea vom renunța la ea.

Un proces ARMA este generat de o combinație de valori trecute ale variabilei yt și de termeni reziduali white noise εt .Un proces ARMA este o simbioză între un proces AR și un proces MA , având două ordine de mărime .

ARMA(p,q) yt =ρ1yt-1 + ρ2yt-2 +….+ ρpyt-p+ εt +θ1εt-1 + θ2εt-2 +….+ θqεt-q

In cazul în care q=0 , procesul ARMA(p,0) devine un proces AR(p), iar când p=0 avem un proces MA(q).

Un proces de tip AR este caracterizat prin relația de determinare care există între nivelul curent al variabilei și valorile sale precedente .Forma generală a unui proces autoregresiv de ordin p este următoarea :

yt =ρ1yt-1 + ρ2yt-2 +….+ ρpyt-p+ δ+εt

Intr-un proces stochastic de tip MA , fiecare observație yt este generată de o medie ponderată de factori aleatori din q perioade precedente.Forma generală a unui proces de tip MA(q) este:

yt = μ+εt -θ1εt-1 – θ2εt-2 -….- θqεt-q ,

unde θi (i=1…q) sunt coeficienții procesului iar εt-i sunt termenii reziduali generați de un proces de tip white noise.

Ecuația de regresie ce conține ca variabilă independentă seria cursurilor de schimb transformată prin aplicarea diferențelor este estimată prin metoda celor mai mici pătrate:

Rezumând , relația de dependență dintre variabile , exprimată prin ecuația de regresie este următoarea:

∆r = AR(1)×∆rt-1+ εt + MA(1)× εt-1

unde AR(1)= 0.328142 și MA(1)= 0.625312

Atunci putem spune că seria inițială a cursurilor de schimb din perioada 1992-1998 este generată de un proces de tip ARIMA(1,1,1).

Se observă că estimarea duce la coeficienți semnificativi dinpunct de vedere statistic (t-statistic + probabilitățile aferente sunt buni).De asemenea ceilalți parametrii ai regresiei sunt acceptabili , cu excepția coeficientului de determinare , care în astfel de situații nu trebuie să fie considerat ca fiind esențial din punct de vedere al valorii sale.Totodată rădăcinile inverse ale proceselor AR și MA sunt subunitare.

Se poate spune așadar că rezultatele generale ale estimării sunt semnificative pentru modelul econometric specificat.Seria cursului de schimb este generată în varianta sa transformată prin aplicarea diferențelor de ordinul întâi de un proces de tip ARMA(1,1), iar în varianta sa originală de un proces integrat de tip ARIMA(1,1,1).

Analiza termenilor reziduali se face prin intermediul corelogramei parțiale și a celei simple prezentate mai jos.Se poate constata că nici un coeficient nu depășește limitele critice impuse de intervalul deîncredere standard , deci erorile sunt necorelate, concluzie care rezultă și din valoarea testului Durbin -Watson (1,99).

În plus valoarea , valoarea testului Q-Statistic- Ljung –Box este inferioară nivelului maxim admisibil .

Testul Q-Stat se bazează pe însumarea autocorelației pentru numărul de decalaje temporale specificat .Expresia sa teoretică este următoarea :

unde rj reprezintă coeficientul autocorelației corespunzând perioadei j, T este numărul observațiilor statistice , iar p numărul termenilor corelați .Ipoteza verificată prin testul Q este inexistența autocorelației :

H0 : rj = 0

H1 : rj ≠ 0

Conform acestei ipoteze Q are o distribuție χ2 cu p grade de libertate .Rezultatele testului constau în valorile Q împreună cu probabilitățile asociatelor , precum și reprezentarea grafică a termenilor reziduali corespunzători autocorelației respectiv autocorelației parțiale .Dacă erorile sunt încadrate de cele două linii trasate vertical atunci erorile sunt generate de un proces de tip white noise.

Pentru un grad de libertate avem Q-Stat=0.5170 < χ2 tabelar = 2.71 pentru un interval de încredere de 5% și totodată probabilitățile asociate lui Q-Stat cresc foarte aproapre de 1.Ca urmare putem afirma că erorile sunt generate de un proces de tip zgomot alb.

Deci pe baza acestei analize am arătat că rata de schimb a urmat în perioada 1992-1998 un proces de tip ARIMA(1,1,1) ,respectiv:

rt=rt-1+∆r sau

rt= rt-1 + AR(1)×∆rt-1+ εt + MA(1)× εt-1

Pentru a testa modelul am făcut o previziune pentru anul 1998 și respectiv luna ianuarie 1999 ( a se vedea și anexa 1)

Valoarea cursului mediu publicat de BNR pentru luna ianuarie a fost de 11.353,6

lei/$ , iar cel estimat pe baza modelului este de 10.869 lei/$ între cele două cursuri existând o diferență de 484,6 lei datorată deprecierii accentuate a leului în raport cu dolarul de de circa 7,8% față de luna precedentă adică 825,01 lei.

Pentru a testa stabilitatea modelului econometric am utilizat testul Chow Forecast pentru previziune care constă în divizarea eșantionului statistic original , conținând T observații într-un subset T1 , care va fi folosit pentru estimare , respectiv susetul T2=T-T1 , utilizat pentru a testa stabilitatea coeficienților.Nu există practic reguli stricte pentru determinarea celor două subeturi.De obicei se folosesc diferite puncte de inflexiune cum este de exemplu deprecierea cursului de schimb bruscă ( un astfel punct poate fi considerat sfârșitul anului 1996 și începutul anului 1997 ; vezi anexa 4 ), iar în cazul absenței acestor modificări structurale regula generală acceptată este folosirea a 85% din observații pentru estimare și restul pentru testarea stabilității.

Prin aplicarea acestui test obținem un F-Statistic șiun LR-Statistic împreună cu probabilitățile asociate .

Expresia teoretică a lui F-statistic este :

Pentru determinarea testului LR-Statistic funcția de verosimilitare maximă nerestricționată este maximizată prin ajustarea ecuației cu punctele prognozate , introducănd o variabilă dummy cu valoarea 1 pentru aceste puncte.

Ipoteza nulă testată de Chow Forecast este :

H0 : modelul nu este stabil

H1: modelul este stabil

Pentru intervale de timp cuprinse între 1992-1997:05 valorile testului Chow Forecast acceptă ipoteza nulă datorită bazei insuficiente de observații și a fluctuației mari a cursului de schimb , totodată coeficienții estimați suferă modificări importante (annex 2).

De exemplu pentru 1996:5 testul Chow Forecast este:

Începãnd cu sfârșitul anului 1997 coeficienții sunt mai stabili (annex3) :

Pe baza analizării datelor din perioada 1992-1998 am arătat că rata de schimb leu/dolar a urmat un proces de tip ARIMA (1,1,1) depinzând de cursul precedent,diferențele de curs anterioare și de un proces de tip zgomot alb.

rt=rt-1+∆r

∆r = AR(1)×∆rt-1+ εt + MA(1)× εt-1

unde AR(1)= 0.328142 și MA(1)= 0.625312

rt= rt-1 + AR(1)×∆rt-1+ εt + MA(1)× εt-1

rt= rt-1 +0.328142×∆rt-1+ εt +0.625312 × εt-1

rt= 1.328142×rt-1 -0.328142×rt-2+ εt +0.625312 × εt-1

Variația cursului la momentul t-1 cu o unitate determină o creștere cu 0.32 a variației prezente a cursului și o creștere cu o unitate a reziduului determină o creștere cu 0.62 a diferențelor actuale de curs .Modelul nu poate fi aplicat și pentru perioada următoare 1999 datorită volatilității mare ratei de schimb din această perioadă .

Cu alte cuvinte variația cursului depinde de variația anterioară și de diferite șocuri pe piața valutară , valorile prezente și anterioare ale reziduurilor.

=== ult2 ===

7.2 Rata de schimb și alte variabile reale ale economiei românești

După ce am determinat că diferențele decurs urmează un proces detip ARMA(1,1) m-am decis să studiez impactul pincipalelor variabile economice care determină rata de schimb.

Pentru aceasta am folosit serii de date lunare pentru rata de schimb nominală ( lei/$ , medie lunară), masa monetară ( M2-miliarde lei la sfârșitul perioadei : formată din numerar în afara sistemului bancar+conturi la vedere-M1 și cvasibanii-economii ale populației. depozite înlei la termen , depozite în valută ale rezidenților ) , producția industrială ( miliarde lei ) , exportul ( milioane dolari FOB) și indicele prețurilor de consum pentru perioada 1992-1998 pe care le-am luat din Rapoartele Anuale și Buletinele trimestriale ale Băncii Naționale a României (anexa5).

Pentru o ușurare a calculelor am decis să lucrez cu aceste serii de date logaritmate pentru rata de schimb , masa monetară , producția industrială și export (anexa6).

Legătura dintre cursul de schimb logaritmat și aceste variabile logaritmate este pusă în evidență de graficele norurilor de puncte (anexa 7).

În calcule am folosit următoarele notații:

R-rata de schimb nominală ; r = ln R r-ritmul de creștere al cursului de schimb

M2-masa monetară ; m =ln M2 m-ritmul de creștere al masei monetare

XFOB-exportul ; x fob=ln Xfob xfob-ritmul de creștere al exporturilor

IPC-indicele prețurilor de consum

Y –producția industrială ; y =ln Y y-ritmul de creștere al producției industriale

Prin metoda de estimare a celor mai mici pătrate cu ajutorul programului econometric Eviews am obținut următoarele rezultate:

Relația de dependență dintre variabila dependentă și cele independente este estimată cu ajutorul unei ecuații de regresie de forma:

rt = 0.117119*m – 0.098210*y + 0.977373*rt-1 – 0.078714*xfob + 0.410018*IPC

Se observă că estimarea duce la coeficienți semnificativi din punct de vedere statistic pentru ritmul de creștere al masei monetare , rata de schimb la momentul t-1 , indicele prețurilor de consum, și mai puțin semnificativi pentru ritmul de creștere al producției industriale și cel al exporturilor .

Coeficientul de determinare R2 care măsoară intensitatea corelației dintre variabila dependentă și cele independente are o valoare foarte mare ( 0.997543 apropiată de 1) și indică o corelație foarte puternică , deci validarea modelului teoretic pe care se bazează regresia.

În ceea ce privește erorile testul Durbin –Watson are o valoare de 1.3 indicând existența unei corelări pozitive ușoare a acestora.Folosind testul Correlogram-Q-Statistics-Ljung-Box , analizat în cazul modelului ARIMA de determinare a cursului de schimb, observăm că :

valorile calculate ale testului Ljung –Box sunt apropiate de cele ale distribuției χ2 .Spre exemplu pentru 10 grade de libertate Q-stat=21.769< χ2 tabelar=23.2 pentru un interval de încredere de 1%.Erorile sunt ,așadar slab corelate ,deci putem valida regresia.

Graficul reziduurilor ne arată că acestea nu se situează în banda stabilită existând trei flucțuații importante : în 1992 când în decurs de trei –patru luni cursul a suferit o depreciere de aproape 100% dela 198 lei/$ la 375 lei/$ ; sfârșitul anului 1993 -începutul anului 1994 când moneda națională s-a depreciat de la 1067 lei/$ în noiembrie la 1601.3 lei/$ în martie pe baza unei cereri mai mare decât oferta datorată importurilor de energie pe timp de iarnă ( gaze, petrol ) ; la sfârșitul lui 1996 și începutul lui 1997 când la fel cursul a suferit o depreciere semnificativă de 3478 lei/$ în noiembrie 1996 la 7235lei/$ în martie 1997 , perioadă în care a avut loc și liberalizarea deplină a pieței valutare.Datele estimate pentru rata de schimb pe baza ecuației de regresie sunt prezentate în anexa 6.

Pentru a testa stabilitatea modelului econometric am utilizat testul Chow Forecast pentru previziune și am oservat că avem rezultate asemănătoare ca și în cazul modelului ARIMA.

Pentru perioada 1992-1997 valorile testului sunt destul de neconcludente , valoarea testului indicând că ecuația de regresie estimată pentru curs nu este caracterizată printr-o stabilitate a coeficienților.(anexele 8 și 9 ) datorită fluctuațiiilor puternice de curs și a numărului mic de date cuprins în eșantion.

Pentru ultima perioadă 1997-1998 testul Chow Forecast indică o stabilitate a coeficienților destul de bună:

Se poate spune așadar că rezultatele generale ale estimării sunt acceptabile pentru modelul econometric specificat.

rt = 0.117119*mt – 0.098210*yt + 0.977373*rt-1 – 0.078714*xfob t + 0.410018*IPCt

Din punct de vedere al teoriei economice rezultatele acestei regresii sunt corecte, dar acest model nu poatefi folosit pentru prognozarea cursului de schimb deoarece pentru luna ianuarie 1999 deoarece diferența dintre cursul estimat pe baza modelului este de peste 400 lei.

Astfel o creștere a ritmului de creștere a masei monetare determină o creștere a ofertei de monedă , care duce la o ieftinire a creditului , deci la o scădere a dobânzilor , iar în condițiile unui capital perfect mobil la o ‘fugă’ de capital și în final la o depreciere a cursului de schimb , deci la o creștere a ritmului de creștere a cursului.

O creștere a ritmului de creștere al prroducției industriale (y) conduce la o scădere a cursului de schimb în termeni nominali deci , la o apreciere a acestuia .

Cursul la momentul actual este puternic influențat de valoarea sa precedentă , cu alte cuvinte există o puternică corelație între ritmul de creștere actual și cel anterior fapt care sepoate observa si din grafic.

O creștere a ritmului exporturilor duce la o creștere a ofertei de dolari pe piața națională și implicit la scăderea cursului și prin urmare a ritmului de creștere a acestuia.

Creșterea indicelui prețuirlor de consum cocretizată prin creșterea inflației conduce inevitabil la deprecierea cursului de schimb și implicit la o creștere a ritmului de creștere al acestuia.

Urmărind însă evoluția politicii BNR din România constatăm că în anii 1990-1992 cursul de schimb a fost folosit drept ancoră inflaționistă , acesta menținîndu-se supraevaluat în raport cu cu puterea decumpărare a monedei naționale,afectându-se grav exporturile și și prin aceastas echilibrul balanței de plăți externe .Astfel a pare o relație de cauză efect curs-prețuri care ignoră efecțul inițial al inflației interne asupra puterii de cumpărare a monedei naționale care se reduce în raport cu cea a monedei străine.

Trebuie menționat că deprecierea monedei naționale contribuie la stimularea exporturilor numai dacă este susținută de o profundă reformă a sectorului real ; pe termen lung ea s-a dovedit a fi o sursă de inflație.

În această perioadă cooexistența unei aprecieri reale și o creștere a exporturilor este aparent paradoxală ; evoluția contului curent arată că deprecierea reală a leului pentru stimularea exporturilor a eșuat ca urmare a neefectuării reformelor în economie : inflația a crescut constant , iar exporturile au rămas inflexibile la rata de schimb.Totodată disfuncționalitățile pieței valutare și fragilitatea ei ( cu circa 60-70 milioane de dolari poate fi influențat cursul negativ sau pozitiv) arată stadiul de început al reformelor și economiei din țara noastră.

Având în vedere cele arătate previziunea ratei de schimb în România este deosebit de dificilă , practic imposibilă .

Annex7

=== ultim ===

Capitolul 6

Evoluția pieței valutare și a ratei de schimb în România

Introducerea sistemului bancar pe două niveluri 🙁 nivelul 1- banca centrală și nivelul 2 -bãncile comerciale ) a constituit începutul reformei bancare în România .Odată creată Banca Națională a României a avut ca drept prim obiectiv realizarea convertibilității interne limitate la operațiunile de cont curent a monedei naționale cu rol decisiv în sprijinirea restructurării .

Realizarea practică a acestei convertibilității s-a dovedit a fi greoaie datorită : disproporțiilor dintre prețurile interne și cele internaționale , deficitului balanței plăților curente , absenței rezervelor valutare curente care să garanteze stabilitatea cursului de schimb.În anul 1991 Banca Națională a României a trecut la schimbarea parității oficiale de la 35 la 60 lei/$ ; deschiderea pieței interbancare , ca instrument al pieței libere în februarie 1991 , iar apoi și a caselor de schimb valutar ; unificarea în noiembrie 1991 a cursului oficial cu cel al pieței interbancare care a permis depășirea crizei energetice care se profila în sezonul rece .

Strategia gradualistă adoptată de guvernul României pentru liberalizarea prețurilor a fost preferată de BNR în locul unei terapii șoc în domeniul valutar .Totodată în această perioadă (1992-1990) a existat tendința privind utilizarea ratei de schimb drept ancoră inflaționistă ; acesta menținându-se supraevaluat în comparație cu puterea de cumpărare externă a monedei naționale ,afectându-se echilibrul extern al balanței de plăți prin descurajarea exporturilor și încurajarea importurilor .Ca urmare rezervele valutare existente la începutul anului 1990 s-au epuizat imediat.

În anul 1992 BNR a introdus un nou regim valutar prin care agenții economici sunt autorizați să-și păstreze integral resursele valutare , corelat cu o depreciere controlată a monedei națională , care a permis atragerea fluxurilor de capital extern .Ca urmare a majorărilor de prețuri din ultimele luni ale anului 1992 cursul de schimb s-a depreciat ajungând în decembrie 1992 la 430 lei/$.

Politica valutară a BNR în anul 1992 s-a aflat într-o strânsă legătură cu celelate componente ale politicii economice :menținerea caracterului centralizat pentru importurile de produse primare contribuie la reducerea cererii în raport cu prețul și subminează politica de curs valutar .Consecința vizibilă a acestei inelasticități o constituie transmiterea integrală a deprecierii cursului în prețurile de import.

Astfel apare o relație de cauză efect curs-prețuri care ignoră efectul inițial al inflației interne asupra puterii de cumpărare a monedei naționale care se reduce cu cea a monedei străine .Reducerea puterii de cumpărare a leului este datorată și reducerii cererii pentru moneda națională datorită scăderii exporturilor .În decursul anului 1992 elasticitatea importurilor a fost extrem de scăzută în raport cu rata de schimb, în timp ce elasticitatea exporturilor a a reacționat la orice modificare a cursului de schimb.

Caracterul supraevaluat al monedei naționale în cursul anului 1993 a rezultat și din următoarele aspecte:

-menținerea dezechilibrului contului curent care în anul 1993 reprezenta 19,5% din încasările curente în codițiile unei finanțări externe limitate .

-decalajul permanent între cursul interbancar și cel determinat liber pe piață ;în timp ce la începutul anului 1993 cursul oficial era de 460lei/$ pe piețele paralele ( case de schimb valutar, “piața-gri”, piața neagră) el atingea 700-800 lei /$ , iar la sfârșitul lunii decembrie cursul oficial era de 1276lei/$ în timp ce pe piețele paralele era de 2000 lei/$.Putem afirma că nici piața neagră nu reflecta real nivelul indicatorilor economiei naționale din acea perioadă .Această concluzie se poate degaja și din calculul oricât de sumar bazat pe evoluția prețurilor interne comparativ cu cea a cursului valutar.Astfel în timp ce deflatorul PIB a înregistrat o valoare de 311.7 la sfârșitul anului 1993 ,indicele cursului valutar mediu s-a cifrat la 246.9 % care se poate concretiza în termeni reali la o apreciere a leului în raport cu dolarul de 26%.

Supraevaluarea monedei naționale devine așadar un lux costisitor care:

-menține dependența de finanțarea externă și limitează orientarea către export a industriilor românești ;

-contribuie la ieftinirea importurilor și prin acesta la distrugerea industriei naționale;

-limitarea procesului inflaționist în timp .

Politica valutară dusă de BNR în decursul anului 1993 a dus la :

-continuarea fluxului normal al plăților externe încondițiile unei finanțări externe limitate și a unor rezerve valutare reduse,

-menținerea dreptului exportatorilor de a dispune de valuta rezultată din contractele externe ducând la apariția unei piețe “gri” a deținătorilor de valută.

-stabilitatea reglementărilor valutare cu rol important în câștigarea încrederii operatorilor de pe piață

În tot cursul anului 1993 Banca Națională a Românieia decis să adopte acele măsuri care să permită stabilizarea cursului valutar și creșterea încrederii în moneda națională , bazate exclusiv pe mecanisme specifice pieței .

Mecanismul valutar nu a suferit schimbări de esență în cursul anului 1994.Banca națională a României a menținut dreptul rezidenților de a păstra încasările valutare și de a le utiliza pentru necesitățile cont curent , dreptul persoanelor fizice de a cumpă valuta înlimita unui plafon de 500$ anual .

În cursul anulului 1994 s-a realizat o stabilitate relativă a cursului de schimb în termeni nominali care s-a bazat pe evoluția fovorabilă a indicatorilor economici și în special a balanței de plăți externe și a rezervelor internaționale .În primele luni ale anului se remarcă o creștere a exporturilor datorată deprecierii monedei naționale și apoi funcționării corecte a pieței valutare care a fost net superioară importurilor .În toată această perioadă BNR a fost un participant activ pe piață mai ales în calitate de cumpărător de valută.

Funcționarea bună a licitației valutare începând cu luna aprilie a permis la trecerea la o nouă etapă în funcționarea pieței valutare.Începând cu luna august 1994 a fost introdus mecanismul unei piețe valutare interbancare , integrate și continue .Cursul de schimb este stabilit pentru prima dată prin raportul; dintre cerere și ofertă , ca urmare el poate fluctua în cursul zilei de la o bancă la alta în anumite limite stabilite de mecanismul pieței.BNR determină un curs zilnic de referință , ca medie ponderată a a cursurilor de vânzare și cumpărare practicate de – a lungul zilei pe piața interbancară și poate interveni ca orice alt operator pentrua cumpăra sau vinde valută.

Astfel mecanismul valutar a devenit mult mai viabil sporind încrederea publicului în acesta .În ultima lună a anului 1994 , piața valutară a înregistrat unele tensiuni cu caracter sezonier determinate de creșterea cererii de importuri care a determinat intervenția Băncii Naționale pentru susținerea cursului de schimb prin vânzarea de valută.

Spre deosebire de anii trecuți în anul 1995 BNR nu și-a mai propus utilizarea cursului de schimb ca ancoră antiinflaționistă și a încercat o depreciere nominală în același ritm cu inflația , respectiv menținerea în termeni reali a stabilității cursului.Începând cu cel de-al doilea trimestrual anului 1995 BNr și-a întrerupt intervenția pe piața valutară pentru a lăsa ca rata de schimb să se determine liber pe baza cererii și ofertei .Ca urmare acestui fapt cursul nominal s-a depreciat de la o lună la alta fără ca în tremeni reali să se producă o mișcare semnificativă .Astfel în perioada ianuarie- octombrie 1995 cursul nominals-a depreciat cu 22.1% , în timp ce inflația măsurată prin prețuri la consumator a fost de 18.4% , iar cea exprimată prin prețuri de producător în industrie a fost de 25.3%.

Ca urmare a unui dezechilibru al contului curent , în special pe seama balanței comerciale Banca Natională a renunțat la această politică către sfârșitul anului, producându-se o depreciere a cursului de 10% în termen de trei zile.Prin această mișcare BNR a urmărit limitarea dezechilibrului extern ,îmbunătățirea funcționării pieței și reducerea semnificativă a decalajului între cursul interbancar și cel al caselor de schimb.

Pe ansamblul anului 1995 deprecierea nominală a leului a fost de 44,2% în timp ce rata inflației a fost de 27.8% măsurată prin prețuri la consumator și de 32% măsurată prin prețuri la producător în industrie.Ca urmare a faptului că deprecierea leului s-aprodus în ultimele luni ale anului , nivelul mediu al cursului în 1995 indică o întărire a leului în termeni reali :prețurile aucrescut cu35.8% în timp ce rata medie de depreciere a leului a fost de 22.8%.

Tendința de apreciere a leului manifestată în 1994 a condus la proliferarea creditului în valută acordat de băncile comerciale clienților lor în 1995 care a avut un impact negativ din mai multe puncte de vedere:

a dus la limitarea impactului politicii monetare restrictive practicate de BNR

scăderea rezervelor valutare ale băncilor comerciale care s-au diminuat de la 1494 milioane de dolari (decembrie 1994) la1245 miloane de dolari în decembrie 1995

au distorsionat funcționarea pieței valutare prin reducerea tranzacțiilor și prin alterarea semnalului privind cererea de valută

a contribuit la stimularea importului și descurajarea producției interne

Banca Națională a României a intervenit prin creșterea rezervevelor minime obligatorii care au dus la reducerea creditului în valută acordat de băncile comerciale.

Funționarea pieței valutare a pus în evidență o serie de disfuncționalități :

-nivelul redus al lichiditătii în sectorul bancar ca urmare a deficitului curent , intrărilor modeste de capital și proliferării creditelor în valută.

-nivelul insuficient al rezervelor valutare

-rigiditățiii structurii sistemlui bancar preponderent de stat.

-rigidității generate de structura comerțului exterior , piața nereușuind să satisfacă cererea de valută.

-sensibilitatea politică față de deprecierea leului ; anul 1995 fiind și un an electoral.

Aceste disfuncționalități au dus la tensionarea relațiilor cu Fondul Monetar Internațional , intrerupându-se acordul stand-by pe perioada decembrie 1994-decembrie 1995.

În anul 1996 Banca Națională a României și-a îndreptat măsurile pentru:

-creșterea transparenței pieței valutare ; prin publicarea unor rapoarte lunare privind activitatea acesteia

-includerea caselor de schimb valutar în cadrul pieței valutare

-înlăturarea unor difernțe de curs mai mari de5% în cursul de schimb al caselor de schimb și cel al pieței interbancare.

Disfuncționalitățile pieței valutare din anul 1995 au continuat și în cea mai mare parte a anului 1996 , exceptând o scurtă perioadă a trimestrului 3 .Încordările de piața valutară au crescut și au condus la concluzia că funcționarea pieței de schimb s-a deteriorat mult.

Volumul mediu al tranzacțiilor a scăzut cu circa 20% ,cumpărările de la agenți au scăzut cu 450 milioane , iar vânzările au crescut cu 70 milioane.Această diferență a fost acoperită prinscăderea poziției valutare externe a sistemului bancar , inclusiv a băncii centrale.Intermedierea pe piața de schimb a scăzut foarte mult : exporturile au crescut cu2% în timp ce cumpărările băncilor comerciale de la clienți au scăzut cu 13.5%; importurile au crescut cu 11.3% , iar vânzările de valută ale băncilor către clienți au crescut cu 2%.

Cererea de credite în valută a crescut mai puțin decât în 1995 reprezentând un sfert din deficitul balanței comerciale .Cererea și oferta de credite au crescut: pe de o parte cererea a fost stimulată de costurile reduse ( dobânzi mici) în special în sectorul energiei în care prețurile se ajustau mai încet și dobânzile și lei erau foarte mari ; iar pe de altă parte oferta a fost susținută de bâncile comerciale care doreau să-și mențină poziția pe termen lung în valutã și astfel să limiteze pierderile datorate inflației.

În cel de-al patrulea trimestru al anului 1996 a avut loc o depreciere de 45% în noiembrie ca urmare a rigidităților pieței valutare și a segmentării acesteia .Pentru a stabiliza piața valutară BNR a efectuat următoarele măsuri :

-reautorizarea băncilor ca dealeri (4 bănci)

-autorizarea altor bănci ca brokeri

Anul 1996 s-a caracterizat prin o creștere puternică a deficitului de cont curent, o rată de schimb care nu este determinată liber pe baza cererii și ofertei .În ciuda acestor dificultăți guvernul a încercat să mărescă rezervele valutare externe pentru a suporta costul energiei importate prin includerea acestuia în deficitul bugetar.Ca urmare a acestor evoluții Fondul Monetar Internațional a suspendat tranșele de credit .Anul 1997 s-a caracterizat printr-o liberalizare deplină a ratei de schimb și a pieței valutare, conducând la funcționarea fără sincope a acesteia din urmă și la creșterea credibilității politicii valutare a bãncii centrale.

Leul a urmat în această perioadă o apreciere reală lentă ca urmare a fluxurilor externe de capital .Liberalizarea pieței valutare și a cursului de schimb a condus la creșterea volumului tranzacțiilor , realizarea unui curs deechilibru și satisfacerea imediată a cererii clienților .Politica monetară coordonată cu cea valutară a permis o restabilire a încrederii populației în moneda națională .Astfel după o depreciere în primele trei luni ale anului s-a ajuns la o stabilizare a cusului în jur de 7000 lei/$ și o depreciere până la sfârșitul anului până la 8023 lei/$.În această perioadă BNR a procedat la creșterea rezervelor valutare ajungând la sfârșitul anului de 3.1 miliarde de dolari (inclusiv aurul).

Totodată anul 1997 a fost primul an în care piața valutară nu s-a mai confruntat la sfârșitul anului cu obișnuitele crize valutare care s-au datorat mai puțin creșterii importurilor și mai ales unor cauze ca:

-anunțarea introducerii noului regulament valutar ,

-stabilirea angajamentului de înfăptui reforma și apariția unor elemente de criză politică

-excesul de lichiditate de pe piața monetară

-reducerea prea puternică a ratelor dobânziilor în economie .

În ceea ce privește impactul politicii valutare asupra celorlalte politici economice :

-corecțiile de prețuri și liberalizarea ratei de schimb din prima parte a anului au sprijinit procesul de desinflație , în sensul diminuării contribuției lunare a deprecierii leului în indicele prețurilor de consum;

-moneda națională s-a apreciat în termeni reali și în 1997 de la 15.7% calculată pe baza IPC la 20.2% calculată pe baza indicelui producției industriale.

-deprecierea monedei naționale contribuie la stimularea exporturilor numai dacă este susținută de o profundă reformă a sectorului real ; pe termen lung ea s-a dovedit a fi o sursă de inflație.

Cadrul de acțiune al politicii valutare a fost lărgit prin noi reglementări cu privire la :

-eliminarea restricțiilor de cont curent impuse caselor de schimb valutar cu privire la plafoanele de casă în lei și în valută introduse în 1996;

-liberalizarea investițiilor directe ale nerezidenților

-accesul liber al nerezidenților pe piața valutară interbancară;

-liberalizarea repatrierii investițiilor străine și a veniturilor ce decurg din acestea .

În anul 1998 intervenția BNR pe piața valutară a avut drept prim obiectiv contracarea presiunilor asupra leului .Cooexistența unei aprecieri reale și o creștere a exporturilor este aparent paradoxală ; evoluția contului curent în anii trecuți arată că deprecierea reală a leului pentru stimularea exporturilor a eșuat ca urmare a neefectuării reformelor în economie : inflația a crescut constant , iar exporturile au rămas inflexibile la rata de schimb.Liberalizarea pieței valutare a constat în liberalizarea tranzacțiilor de cont curent și a accesului populației la piața valutară , iar în 26 martie 1998 țara noastră și-a asumat obligațiile ce decurg din articolul VIII

din statutul FMI.BNR a urmărit aceleași obiective : contracararea acțiunilor speculative , reglarea cererii și ofertei.În primultrimestru rata de schimb leu/$ s-a depreciat cu 247 lei/$ față de decembrie 1997 .

Începând cu trimesrul al doilea al anului 1998 politica BNR s-a caracterizat printr-un management discret al cursului de schimb , moneda națională s- a depreciat cu 362 lei / $ mai puțin decât în trimestrul anterior .Performanțele pozitive din planul inflației au continuat să micșoreze semnificativ riscul de distorsionare a mecanismului de funcționare a pieței valutare , echiluibrul principalilor săi indicatori asigurând transmisia eficientă a deciziilor de politică valutară .Intervențiile BNR au un caracter reglator cât șiunul monetar .Totuși piața valutară a continuat să rămână îngustă la o serie de fenomene economice : volatilitatea fluxurilor provenite din investițiile de portofoliu., fluctuația dobânzilor de piata monetară , creșterea cererii de importuri , diferiți factori sezonieri.

În trimestrul al treilea funcționarea pieței valutare a fost marcată de apariția unor perturbații semnificativeBanca centrală a utilizat intervențiile de pe piața valutară pentru a reduce efectul a acestor și mai puțin ca instrument complementar de politică monetară .

Criza piețelor financiare din Rusia a modificat comportamentul operatorilor de piața valutară .Cererea de valută este excedentară datorită precipitării clienților nebancari de a-și spori importurile ieftine de pe piața internațională .Propagarea efectelor crizei rusești pe piața valutară romãnescă , începând cu 21 august a declanșat creșterea cererii cu mult peste zilele anterioare , în special din partea investitorilor nerezidenți , grăbiți să-și repatrieze investițiile de portofoliu.Cu toate aceste deprecierea nominală aratei de schimb în cursul trimestrului 3 a fost de 481 lei/$.

În trimestrul 4 al anului trecut evoluția pieței valutare a fosst marcată în continuare de amplificarea tensiunilor apărute în luna august, o dată cu declanșarea crizei din Rusia.BNR și-a intensificat intervențiile pe piața valutară pentru a diminua variațiile zilnice ale monedei naționale datorate în mare măsură comportamentului speculativ al unor bănci .Deprecierea medielunară a leului a fost de 492 lei/$ ).

În perioada imediat următoare cursul de schimb leu/$ a contiunat să se deprecieze ajungând la 15786 lei/$ în 14 iunie 1999 cu o puternică criză valutară în 15-18 martie 1999 când cursul s-a depreciat cu peste 10% în trei zile.

Similar Posts