Copyright 2010 The Korean Society of Phycology 155 [612228]
Copyright © 2010 The Korean Society of Phycology 155
http://e-algae.kr pISSN: 1226-2617 eISSN: 2093-0860Algae 2010, 25(4): 155-171
DOI: 10.4490/algae.2010.25.4.155
Open AccessReview
Received 28 August 2010, Accepted 22 November 2010
*Corresponding Author
E-mail: [anonimizat]
Tel: +902-638-8880, Fax: +902-638-3055This is an Open Access article distributed under the terms of the
Creative Commons Attribution Non-Commercial License (http://cre –
ativecommons.org/licenses/by-nc/3.0/) which permits unrestricted
non-commercial use, distribution, and reproduction in any medium,
provided the original work is properly cited.Antioxidants from macroalgae: potential applications in human
health and nutrition
M. Lynn Cornish1,* and David J. Garbary2
1James S. Craigie Research Centre, Acadian Seaplants Limited, Cornwallis, NS B0S 1H0, Canada
2Department of Biology, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
The underlying physiology of algal antioxidant compounds is reviewed in the context of seaweed biology and utiliza –
tion. The application of seaweed antioxidants in foods, food supplements, nutraceuticals and medicine is considered
from the perspective of benefits to human health. We advocate that direct consumption of seaweed products for their
antioxidant composition alone provides a useful alternative to non-natural substances, while simultaneously providing
worthwhile nutritional benefits. Economic utilization of seaweeds for their antioxidant properties remains in its infancy.
This review provides examples ranging from laboratory studies through to clinical trials where antioxidants derived from
seaweeds may provide major health benefits that warrant subsequent investigative studies and possible utilization.
Key Words: antioxidants; homeostasis; human health; oxidative stress; ROS
Abbreviations: CVD, cardiovascular disease; ROM, reactive oxygen metabolism; ROS, reactive oxygen species; RS,
reactive species
INTRODUCTION
Responses of organisms to increased levels of oxi –
dants are diverse (Halliwell and Gutteridge 1984, Yan
et al. 1998). In a human context, the potential negative
impacts of such compounds are widely recognized, and
both modern science and ‘folk remedy’ utilization has
responded by providing functional products that involve
food, medicines and cosmetics. Consumption of prod –
ucts high in antioxidant compounds is thought to alle –
viate cellular stresses brought about by the influence of
reactive species (Schwartz 1996, Halliwell and Gutteridge
2007). While antioxidant benefits associated with con –
suming various terrestrial plants (e.g., green vegetables
and berries) have long been accepted, relatively little em -phasis has been placed on the merits of consuming ma –
rine macroalgae for the same benefits. Appendix A sum –
marizes the most relevant literature available to date in
relation to seaweed. It provides the reader with informa –
tion on a number and variety of species investigated and
the potential applications of the antioxidant components
detected. While research shows that many macroalgae
possess considerable antioxidant activity, the diversity
of assays used for detection and assessment make in –
terpretation of many results problematic (Schwarz et al.
2001, Ou et al. 2002, Decker et al. 2005, Kranl et al. 2005,
Dudonn é et al. 2009, Barahona et al. 2011). Significant an –
tioxidant capacity may be expected based on the ecology
DOI: 10.4490/algae.2010.25.4.155 156Algae 2010, 25(4): 155-171
of seaweeds and metabolism ( Table 1); however, there is
considerable work remaining between merely establish –
ing the occurrence of antioxidant activity and demon –
strating that a beneficial response may be obtained by
consumption or application of the putative compounds,
particularly by humans. The numerous potential human
health advantages associated with the utilization of ma –
rine macroalgae containing an assortment of antioxidant
compounds depends upon both the respective intake
of the plants, and the bioavailability of anticipated anti –
oxidant activities (Manach et al. 2004). See Table 2 for a
selection of perceived health benefits related to specific
chemical components.All energy-producing metabolic processes are intrinsi –
cally driven by an electron transport chain, maintenance
of which is essential to the health and integrity of an or –
ganism. The hazards of a prolonged imbalance include
formation of reactive species, unstable molecules or mo –
lecular fragments that, if not neutralized, can react with
non-target molecules, causing a variety of (negative)
cellular impacts (Dring 2005). These may include the
initiation of increased cell proliferation, mitochondrial
damage, excessive DNA strand breakage and deleterious
chemical chain reactions leading to lipid peroxidation,
enzyme inhibition and protein degradation (Halliwell
and Gutteridge 1984, Yan et al. 1998, He and H äder 2002,
Table 1. The major groups of antioxidant compounds in macroalgae with specific examples and potential algal sources for utilization
General category Example compounds Algal source Reference
Carotenoids β-carotene
Fucoxanthin
Antheraxanthin,
lutein,
violaxanthin,
xanthophylls,
zeaxanthinChondrus crispus
Mastocarpus stellatus
Brown algae
Red algaeLohrmann et al. 2004
Sachindra et al. 2007
Schubert et al. 2006
Phenolic compounds Stypodiol,
isoepitaondiol,
taondiol
TerpenoidsTaonia atomaria
Cystoseira sp.Nahas et al. 2007
Foti et al. 1994
Phycobilin pigments Phycoerythrin,
phycocyaninRed algae in general Romay et al. 2003,
Sekar and
Chandramohan 2008,
Soni et al. 2009,
Yabuta et al. 2010
Polyphenols Catechin,
epicatechin,
gallate
Flavonoids
PhlorotanninsHalimeda sp.
Palmaria palmata
Sargassum pallidum
Fucus vesiculosusDevi et al. 2008
Yuan et al. 2005 a
Ye et al. 2008
Díaz-Rubio et al. 2009
Sulphated polysaccharides Fucoidan,
alginic acid,
laminaran
Fucoidan
Sulphated galactans
(lambda carrageenan)
Galactans
Sulphated
glycosaminoglycan
PorphyranTurbinaria conoides
Laminaria japonica
Some marine red algae
Most red algae
Sargassum wightii
Porphyra sp.Chattopadhyay et al. 2010
Luo et al. 2009
Rocha de Souza et al. 2007,
Barahona et al. 2011
Costa et al. 2010
Josephine et al. 2008
Athukorala et al. 2006
Vitamins Ascorbate
Vitamin AChondrus crispus
Mastocarpus stellatus
Sargassum sp.
Kappaphycus alvareziiLohrmann et al. 2004
García-Casal et al. 2009
Kumar et al. 2008
See Appendix A for species authorities.
157Cornish & Garbary Antioxidants in Marine Macroalgae
http://e-algae.krValko et al. 2007). In healthy biological systems, reactive
oxygen species are continually produced (Alscher et al .
1997). Dring (2005) highlighted the role of reactive oxy –
gen metabolism (ROM) in seaweeds, the stress factors
that trigger it and details of the antioxidant response
mechanisms. He emphasized the potential importance
of ROM in seaweed ecophysiology and cautioned against
making generalizations about the occurrence and func –
tion of antioxidants amongst various species. With this
preface, this article reviews seaweed antioxidants in the
context of human health.
The functional complexities associated with antioxi –
dant defense mechanisms are diverse, and their rela –
tive importance against reactive species in vivo depends
upon how, where and which reactive species (RS) is gen -erated and what target of damage is measured. For exam –
ple, polyphenols are well-known potent antioxidants, but
their wide diversity and chemical complexity makes it
challenging to correlate antioxidant potency in vitro with
specific biological activity in vivo (Scalbert et al. 2005).
In simplest terms, an antioxidant may be considered
as an agent that delays, prevents, or removes oxidative
damage from a target molecule (Halliwell and Gutteridge
2007). Biological systems strive for an intricate balance
of electronically charged molecules necessary to main –
tain homeostasis, and selectivity in neutralizing specific
RS is secondary to the activation of cellular defenses. If
commercialization of seaweeds for their antioxidant ac –
tivity is to be considered, additional research is required
to establish bioavailability of specific compounds (Fran –
Table 2. Selected examples of perceived health benefits of specific antioxidant compounds from macroalgae
Antioxidant compound Perceived health benefit Reference
β-carotene, lutein Antimutagenic
Protective against breast cancerOkai et al. 1996
Maruyama et al. 1991,
Yang et al. 2010
Bromophenol α-Glucosidase inhibition Kim et al. 2010
Carrageenan, oligosaccharide Anti-tumor Haijin et al. 2003
Fucoidan Anti-HIV Béress et al. 1993,
Witvrouw and De Clercq 1997
Ameliorates hyperoxaluria Veena et al. 2007
Anticancer Aisa et al. 2005, You et al. 2010
Protection against
neurodegenerative disorderLuo et al. 2009
Fucophlorethols Chemopreventive Parys et al. 2010
Fucoxanthin Antiangiogenic
Protective effects against
retinol deficiencySugawara et al. 2006
Sangeetha et al. 2009
Galactan sulfate Anti-viral Talarico et al. 2004,
Yasuhara-Bell and Lu 2010
Phenolic functional groups and MAAs Antiproliferative Yuan et al. 2005 b
Phlorotannins Anti-inflammatory Shin et al. 2006
Bactericide Nagayama et al. 2002
Inhibits H2O2 mediated DNA damage Ahn et al. 2007
Hypertension Cha et al. 2006
Photochemopreventive Hwang et al. 2006
Phycoerythrin Amelioration of diabetic complications Yabuta et al. 2010
Polyphenols
Vascular chemoprotection
Antimicrobial
α-Glucosidase inhibitionKang et al. 2003
Jiménez et al. 2010
Apostolidis and Lee 2010
Porphyran, shinorine Delays aging process Zhang et al. 2003,
Rastogi et al. 2010
Note: compound categories are not mutually exclusive.
MAAs, Mycosporine-like Amino Acids.
DOI: 10.4490/algae.2010.25.4.155 158Algae 2010, 25(4): 155-171
kel and Finley 2008) and to then guarantee production
of standardized products containing them (Le Tutour et
al. 1998, Jormalainen and Honkanen 2004, D íaz-Rubio et
al. 2009). This review will focus primarily on the poten –
tial health benefits and therapeutic properties purported
to be associated with consuming seaweed and seaweed
based products (Table 2). Claims relating to other clini –
cal aspects of seaweed utilization deserve a detailed and
exclusive review beyond the scope of this paper.
MARINE ALGAE AND HOMEOSTASIS
The stress-coping mechanisms of intertidal algae are
diverse and include antioxidant production, and free
radical scavenging activities (Centeno and Ballantine
1999, Aguirre-von-Wobeser et al. 2000, Lohrmann et
al. 2004, Mart ínez 2007, Nahas et al. 2007). Lohrmann
et al. (2004) found that the activity of three antioxidant
enzymes, superoxide dismutase (SOD), ascorbate per –
oxidase, and glutathione reductase in Chondrus crispus
and Mastocarpus stellatus was greater in winter than in
summer, suggesting that levels of reactive oxygen species
(ROS) were also higher in winter as a result of cold stress.
A gradual and continued accumulation of ROS in most
macroalgae occurs as a result of environmental condi –
tions such as dessication, freezing, low temperatures,
high irradiance, ultraviolet radiation, heavy metals and
salinity fluctuations (Harker et al. 1999, Coll én et al. 2003,
Dummermuth et al. 2003, Pinto et al. 2003, Lohrmann et
al. 2004, Dring 2005, Connan et al. 2007). These stresses
compromise photosynthesis, forming singlet oxygen
that can cause damage to the photosynthetic appara –
tus (Dring 2005). To cope with such stresses, seaweeds
deactivate the ROS by utilizing a high cellular content
of antioxidant compounds, or by increasing the activity
of antioxidant enzymes. This robust antioxidant poten –
tial of seaweeds helps minimize the hazardous effects of
ultraviolet light or oxidation by ROS (Karentz et al. 1991,
Garbary 2007, Yoshiki et al. 2009).
Marine macroalgae often experience exposure to high
levels of both UVB and UVA radiation. While irradiance is
required for the photosynthetic conversion of energy via
light harvesting, electron transport, and ATP / NADPH
synthesis, maintaining a metabolic oxidation / reduction
balance is essential to the health and productivity of the
system (Sinha et al. 1998). To quench the excess produc –
tion of harmful radical species, seaweeds have evolved
mechanisms such as photo-inhibition which leads to a
slowly reversible reduction in photosynthetic rate from the maximum saturation level. This is brought about by
either a reduction in the number of photosynthetic units,
or by an increase in the maximum turnover time (Gr öni-
ger et al. 1999, Falkowski and Raven 2007). The up-reg –
ulation of antioxidants and antioxidant enzymes, such
as carotenoids and SODs and methods of cellular repair
by photo-reactivation and nucleotide excision are also
strategies for maintaining homeostasis (Sinha et al. 1998,
Martínez 2007, Jiang et al. 2008).
In a comprehensive literature review Yoshiki et al .
(2009) identified a number of compounds in marine algae
to which antioxidant activity has been attributed. These
included polyphenols, phycocyanins, various enzymes,
carotenoids, catechins, and ascorbic acid (Table 1).
ANTIOXIDANTS IN HUMAN HEALTH
ROS, along with reactive nitrogen species (collectively
labelled RS) have been identified as agents in various
pathogenic diseases and deleterious clinical conditions
related to human health. These include cancer, cardio –
vascular disease, atherosclerosis, hypertension, ischemia
/ re-perfusion, diabetes mellitus, hyperoxaluria, neuro –
degenerative diseases such as Alzheimer’s and Parkin –
son’s diseases, rheumatoid arthritis and ageing (Cerutti
1985, Borek 1993, Hercberg et al. 1998, Cadenas and
Davies 2000, Kang et al . 2003, Park et al. 2005, Valko et
al. 2007, Veena et al. 2007, Halliwell 2009). RS have been
implicated in over 150 human disorders, ranging from
haemorrhagic shock, through cardio-myopathy, cystic
fibrosis, AIDS and even male-pattern baldness (Halliwell
and Gutteridge 2007). The defense response to excess
RS metabolism can involve preventative mechanisms,
repair mechanisms and up-regulation of endogenous
antioxidant defenses (Demmig-Adams and Adams 2002,
Valko et al . 2007).
Melanoma and non-melanoma skin cancers are among
the most prevalent cancers in the human population.
They are often caused by large, or prolonged doses of UV
radiation that overwhelm the natural protective antioxi –
dant capacity of the skin (Steenvoorden and van Hene –
gouwen 1997, Sander et al. 2004). Using whole tissue ex –
tracts in a naked mouse study, polyphenols derived from
certain brown algae (e.g., Ecklonia spp.; see Appendix A)
and applied either topically or administered through the
diet provided highly protective effects against UVB in –
duced skin carcinogenesis (Hwang et al . 2006). Fuchs and
Kern (1998) evaluated the dietary effects of non-seaweed
derived commercial supplements of D-alpha-tocopherol
159Cornish & Garbary Antioxidants in Marine Macroalgae
http://e-algae.krand L-ascorbic acid on the sunburn reaction in humans,
a potential elicitor for skin cancer. They determined that
large doses of the two antioxidants acted synergistically
to protect against sunburn damage. However, the effects
of long-term administration of megadoses of these anti –
oxidants requires more investigation.
In a study of female nurses and dietary intake of vita –
mins A, C, and E, folate and certain carotenoids, Fung et
al. (2002) could not conclusively demonstrate that these
antioxidants protected against basal cell carcinoma un –
der their experimental conditions. More recently, Her –
cberg et al . (2007) suggested that regular dietary anti –
oxidant supplementation may even be associated with
harmful effects, especially in women. However, results of
a two-year cohort study (Asgari et al. 2009) refuted this
conclusion and that group observed no increased mela –
noma risk with supplementation of comparable doses of
beta carotene and selenium. Although these trials relate
to non-seaweed sources of antioxidants, marine mac –
roalgae possess complements of such active compounds
in various amounts and ratios (Yoshiki et al. 2009). Ex –
periments showed human and monkey cancer cell lines
were inhibited by extracts of various seaweeds, especially
by the brown algae Hydroclathrus clathratus and Padina
arborescences (Wang et al. 2008). The extracts, either in
a crude state or after purification, demonstrated antioxi –
dant activity and tumor suppression in a mouse model.
Cardiovascular disease (CVD) encompasses a broad
range of primary and secondary conditions and its mani –
festation is a major cause of death − 30% worldwide (Hal –
liwell and Gutteridge 2007). Risk factors for CVD include
age, male gender, elevated low-density lipo-protein cho –
lesterol levels, low high-density lipo-protein cholesterol
levels, diabetes mellitus, smoking, chronic overeating
and obesity. The adverse complications of obesity and
unhealthy lifestyle factors are heightened by oxidative
stress (Oben et al . 2007, Bocanegra et al . 2009, Riccioni
2009).
Extensive studies in patho-physiologic research clearly
suggest that CVD represents a continuum of processes
which include oxidative stress, endothelial dysfunction,
inflammatory processes and vascular remodeling (Ric –
cioni 2009). Foods rich in antioxidants have long been
touted as aids in disease prevention. Shimazu et al .
(2007) assessed the association between the traditional
Japanese dietary patterns and CVD. They concluded that
a diet high in antioxidant foods, including seaweeds, de –
creased the risk of CVD mortality. Kang et al . (2003) un –
dertook an eight-week human clinical trial to assess the
effect of orally administered polyphenolic compounds from brown algae on erectile dysfunction. Compounds
from the five algae tested, Eisenia bicyclis , Ecklonia sto –
lonifera , Ecklonia cava , Ecklonia kurome , and Hizikia
fusiformis demonstrated positive effects against the
risk factors associated with CVD. Deterioration of erec –
tile function is a key in vivo indicator of cardiovascular
health. Results from this trial showed significant im –
provement in erectile function and associated vascular
health based on peripheral blood circulation.
Numerous studies into the synergistic effects of antiox –
idants and antioxidant enzymes and their interplay with
RS suggest that the ideal protective mechanisms against
clinical aspects of cellular damage should involve com –
binations, or whole suites of antioxidant compounds.
Cellular homeostasis is thus more readily assured, and
the possibility of profound imbalances brought about by
high doses of single compounds can be effectively avert –
ed (Steenvoorden and van Henegouwen 1997).
Considerable research demonstrates the human
health benefits of naturally occurring antioxidant com –
pounds. Claims of anti-viral, anti-inflammatory, anti-
cancer, anti-mutagenic, anti-tumour, and hepatoprotec –
tive properties have been substantiated, albeit mostly
from in vitro trials (Yan et al. 1998, Yan et al. 1999, Yuan
et al. 2005 a, Hwang et al . 2006, Lim and Murtijaya 2007,
Kumar et al. 2008, Yuan et al. 2009) (Table 2).
FOOD VALUE AND HEALTH POTENTIAL OF
MARINE ALGAE
Intensive marketing programs and the popular health
food press have raised the public profile of antioxidants
considerably. However, clinical trials must be under –
taken and publicized in order to educate and maintain
consumer confidence. Aside from the direct health ben –
efits, antioxidants from natural sources that combat lipid
oxidation of foods, especially during processing and stor –
age, are in high demand. The current use of synthetic
antioxidants such as butylated hydroxyanisole, butylated
hydroxytoluene, tert butylhydroxyquinone and propyl
gallate is strictly regulated in many countries because
they can in themselves pose potential health hazards, in –
cluding carcinogenic effects (Matanjun et al. 2008, Wang
et al. 2009).
Seaweeds are eaten as whole foods by a relatively
small percentage of the world population (Yuan and
Walsh 2006), in a relatively limited geography. Japanese
form the largest consumer group eating on average,
1.6 kg dry weight per person, per year (Chandini et al.
DOI: 10.4490/algae.2010.25.4.155 160Algae 2010, 25(4): 155-171
2008). Scientists in Asian countries have demonstrated
the health benefits derived from eating seaweeds (Ni –
sizawa 2002), and the official Japanese Food Guide (see
Rhatigan 2009 for discussion) promotes seaweed as a
nutritional foodstuff. Research is advancing into using
marine macroalgae for production of novel foods, such
as health beverages and processed meat products. The
objective is to take advantage of their naturally occurring
antioxidant compounds and other nutritive components
(Nagai and Yukimoto 2003, L ópez-López et al. 2009). This
is a more holistic approach, based upon the observation
that supplements of manufactured vitamins do not sig –
nificantly decrease levels of oxidative damage in well-
nourished individuals who already eat a balanced diet
(Halliwell and Gutteridge 2007, Halliwell 2008). Hwang
et al . (2006) demonstrated that extracted brown algal
polyphenols from Ecklonia sp. decreased UVB-induced
skin tumor development in mice regardless of whether
the polyphenols were administered topically, or ingested
as a dietary component, suggesting that the viability of
these seaweed based antioxidants is unaffected by diges –
tive processes. A growing awareness of the functionality
of seaweeds beyond basic nutritive value will enhance
the development of science and technology in this area
of study (Holdt and Kraan in press).
FINAL PERSPECTIVES
The publication of Gerschman et al.’s (1954) free radi –
cal theory of metabolic oxygen toxicity instigated signifi –
cant interest in ROS and the various mechanisms associ –
ated with redox homeostasis within biological systems.
Since then, volumes have been written and commer –
cialization of antioxidants has evolved to include func –
tional foods, beverages, cosmeceuticals, nutraceuticals
and health supplements. However, much work remains
before we are able to establish and target site-specific re –
actions within biological systems, much less determine
what, if any, synergistic effects may occur in the process
(Le Tutour et al. 1998). Indeed, it could be challenging to
aim for a targeted antioxidant response, considering the
potential complexities of in vivo associations and inter –
actions of the numerous compounds and metabolites
that contribute to the biological efficacy of cells.
The potential for commercialization of seaweed based,
antioxidant compounds as food supplements or nutra –
ceuticals ensures continued dedicated efforts to eventu –
ally develop functional, condition-specific, antioxidant
products. Seaweeds are indeed suitable natural agents for producing and delivering these products based on
the multi-functional aspects of secondary seaweed me –
tabolites and the presence of a wide variety of associ –
ated non-toxic antioxidants (Smit 2004, Bocanegra et
al. 2009). Such relatively non-toxic associations can en –
hance the synergistic effects of multiple antioxidants and
provide buffering capacity if necessary for those com –
pounds which may have been intentionally increased.
Algae are efficient harvesters and proficient managers of
electromagnetic energy and as highly nutritional food –
stuffs, can be regularly consumed without fear of meta –
bolic toxicities. As part of a balanced diet, seaweeds can
provide fibre, protein, minerals, vitamins and low fat car –
bohydrate content (Yuan and Walsh 2006). The versatil –
ity of algae as food allows consumption in fresh, dried,
pickled or cooked forms and as a component in a wide
assortment of other products. We advocate the regular
consumption of a variety of marine algae, primarily for
their anticipated in vivo antioxidant capacities and as –
sociated synergistic effects. Rather than striving for tar –
geted cause and effect mechanisms, which are developed
in isolation and are generally fraught with the complexi –
ties of endogenous cellular activities, a diet rich in a di –
versity of seaweeds would provide healthy, whole food
sustenance and competent antioxidant balance. Ideally,
algae destined for human use would be derived from
managed, sustainable sources, thus ensuring traceability
and a high level of food safety and security. Core research
avenues should include investigations into the bioavail –
ability of seaweed based antioxidants (Frankel and Finley
2008). Organisms do not normally function in isolation
at any metabolic level, and oxidation-reduction reactions
and subsequent cellular exposures to RS are fundamen –
tal to all living things. It is the imbalance of RS that can
compromise homeostasis, and it is a legion of relevant
seaweed antioxidants that may mitigate, and even help
reduce the impacts of cellular impairment.
ACKNOWLEDGEMENTS
We thank Alan Critchley for his encouragement and
valuable comments on the manuscript, as well as ref –
erees for their excellent suggestions and recommenda –
tions. This work was supported by grants from the Natu –
ral Sciences and Engineering Research Council to DG.
REFERENCES
161Cornish & Garbary Antioxidants in Marine Macroalgae
http://e-algae.krAguirre-von-Wobeser, E., Figueroa, F . L. & Cabello-Pasini, A.
2000. Effect of UV radiation on photoinhibition of ma –
rine macrophytes in culture systems. J. Appl. Phycol.
12:159-168.
Ahn, G. -N., Kim, K. -N., Cha, S. -H., Song, C. -B., Lee, J., Heo,
M. -S., Yeo, I. -K., Lee, N. -H., Jee, Y. -H., Kim, J. -S., Heu,
M. -S. & Jeon, Y. -J. 2007. Antioxidant activities of phlo –
rotannins purified from Ecklonia cava on free radical
scavenging using ESR and H2O2- mediated DNA dam –
age. Eur. Food Res. Technol. 226:71-79.
Aisa, Y., Miyakawa, Y., Nakazato, T., Shibata, H., Saito, K.,
Ikeda, Y. & Kizaki, M. 2005. Fucoidan induces apoptosis
of human HS-Sultan cells accompanied by activation of
caspase-3 and down-regulation of ERK pathways. Am. J.
Hematol. 78:7-14.
Alscher, R. G., Donahue, J. L. & Cramer, C. L. 1997. Reactive
oxygen species and antioxidants: relationships in green
cells. Physiol. Plant. 100:224-233.
Apostolidis, E. & Lee, C. M. 2010. In vitro potential of Asco-
phyllum nodosum phenolic antioxidant-mediated al –
pha-glucosidase and alpha-amylase inhibition. J. Food
Sci. 75:H97-H102.
Asgari, M. M., Maruti, S. S., Kushi, L. H. & White, E. 2009.
Antioxidant supplementation and risk of incident mela –
nomas: results of a large prospective cohort study. Arch.
Dermatol. 145:879-882.
Athukorala, Y., Kim, K. -N. & Jeon, Y. -J. 2006. Antiprolifera –
tive and antioxidant properties of an enzymatic hydro –
lysate from brown alga, Ecklonia cava . Food Chem.
Toxicol. 44:1065-1074.
Barahona, T., Chand ía, N. P ., Encinas, M. V ., Matsuhiro, B. &
Zúñiga, E. A. 2011. Antioxidant capacity of sulfated poly –
saccharides from seaweed: a kinetic approach. Food
Hydrocoll. 25:529-535.
Béress, A., Wassermann, O., Bruhn, T., B éress, L., Kraiselburd,
E. N., Gonzalez, L. V ., de Motta, G. E. & Chavez, P . I. 1993.
A new procedure for the isolation of anti-HIV com –
pounds (polysaccharides and polyphenols) from the
marine alga Fucus vesiculosus . J. Nat. Prod. 56:478-488.
Bocanegra, A., Bastida, S., Bened í, J., Ródenas, S. & S ánchez-
Muniz, F . J. 2009. Characteristics and nutritional and
cardiovascular-health properties of seaweeds. J. Med.
Food 12:236-258.
Borek, C. 1993. Molecular mechanisms in cancer induction
and prevention. Environ. Health Perspect. 101 Suppl.
3:237-245.
Cadenas, E. & Davies, K. J. A. 2000. Mitochondrial free radical
generation, oxidative stress, and aging. Free Radic. Biol.
Med. 29:222-230.
Centeno, P . O. R. & Ballantine, D. L. 1999. Effects of culture conditions on production of antibiotically active metab –
olites by the marine alga Spyridia filamentosa (Ceramia –
ceae, Rhodophyta): I. Light. J. Appl. Phycol. 11:217-224.
Cerutti, P . A. 1985. Prooxidant states and tumor promotion.
Science 227:375-381.
Cha, S. -H., Lee, K. -W. & Jeon, Y. -J. 2006. Screening of ex –
tracts from red algae in Jeju for potential marine angio –
tensin-I converting enzyme (ACE) inhibitory activity.
Algae 21:343-348.
Chandini, S. K., Ganesan, P . & Bhaskar, N. 2008. In vitro an-
tioxidant activities of three selected brown seaweeds of
India. Food Chem. 107:707-713.
Chattopadhyay, N., Ghosh, T., Sinha, S., Chattopadhyay, K.,
Karmakar, P . & Ray, B. 2010. Polysaccharides from Tur-
binaria conoides : structural features and antioxidant
capacity. Food Chem. 118:823-829.
Chew, Y. L., Lim, Y. Y., Omar, M. & Khoo, K. S. 2008. Antioxi –
dant activity of three edible seaweeds from two areas in
South East Asia. LWT-Food Sci. Technol. 41:1067-1072.
Collén, J., Pinto, E., Peders én, M. & Colepicolo, P . 2003. Induc –
tion of oxidative stress in the red macroalga Gracilaria
tenuistipitata by pollutant metals. Arch. Environ. Con –
tam. Toxicol. 45:337-342.
Connan, S., Deslandes, E. & Ar Gall, E. 2007. Influence of
day-night and tidal cycles on phenol content and an –
tioxidant capacity in three temperate intertidal brown
seaweeds. J. Exp. Mar. Biol. Ecol. 349:359-369.
Costa, L. S., Fidelis, G. P ., Cordeiro, S. L., Oliveira, R. M., Sabry,
D. A., Câmara, R. B. G., Nobre, L. T. D. B., Costa, M. S. S. P .,
Almeida-Lima, J., Farias, E. H. C., Leite, E. L. & Rocha, H.
A. O. 2010. Biological activities of sulfated polysaccha –
rides from tropical seaweeds. Biomed. Pharm. 64:21-28.
Dang, H. T., Lee, H. J., Yoo, E. S., Shinde, P . B., Lee, Y. M., Hong,
J., Kim, D. K. & Jung, J. H. 2008. Anti-inflammatory con –
stituents of the red alga Gracilaria verrucosa and their
synthetic analogues. J. Nat. Prod. 71:232-240.
Decker, E. A., Warner, K., Richards, M. P . & Shahidi, F . 2005.
Measuring antioxidant effectiveness in food. J. Agric.
Food Chem. 53:4303-4310.
Demmig-Adams, B. & Adams, W. W. 2002. Antioxidants in
photosynthesis and human nutrition. Science 298:2149-
2153.
Devi, K. P ., Suganthy, N., Kesika, P . & Pandian, S. K. 2008. Bio –
protective properties of seaweeds: in vitro evaluation of
antioxidant activity and antimicrobial activity against
food borne bacteria in relation to polyphenolic content.
BMC Complement. Altern. Med. 8:38.
Díaz-Rubio, M. E., P érez-Jiménez, J. & Saura-Calixto, F . 2009.
Dietary fiber and antioxidant capacity in Fucus vesicu –
losus products. Int. J. Food Sci. Nutr. 60 Suppl. 2:23-34.
DOI: 10.4490/algae.2010.25.4.155 162Algae 2010, 25(4): 155-171
Dring, M. J. 2005. Stress resistance and disease resistance in
seaweeds: the role of reactive oxygen metabolism. Adv.
Bot. Res. 43:175-207.
Duan, X. -J., Zhang, W. -W., Li, X. -M. & Wang, B. -G. 2006.
Evaluation of antioxidant property of extract and frac –
tions obtained from a red alga, Polysiphonia urceolata .
Food Chem. 95:37-43.
Dudonn é, S., Vitrac, X., Couti ère, P ., Woillez, M. & M érillon, J.
-M. 2009. Comparative study of antioxidant properties
and total phenolic content of 30 plant extracts of indus –
trial interest using DPPH, ABTS, FRAP , SOD, and ORAC
assays. J. Agric. Food Chem. 57:1768-1774.
Dummermuth, A. L., Karsten, U., Fisch, K. M., K önig, G.
M. & Wiencke, C. 2003. Responses of marine macroal –
gae to hydrogen-peroxide stress. J. Exp. Mar. Biol. Ecol.
289:103-121.
Falkowski, P . G. & Raven, J. A. 2007. Aquatic photosynthesis.
2nd ed. Princeton University Press, Princeton, NJ, 484
pp.
Fayaz, M., Namitha, K. K., Murthy, K. N. C., Swamy, M. M.,
Sarada, R., Khanam, S., Subbarao, P . V . & Ravishankar, G.
A. 2005. Chemical composition, iron bioavailability, and
antioxidant activity of Kappaphycus alvarezzi (Doty). J.
Agric. Food Chem. 53:792-797.
Foti, M., Piattelli, M., Amico, V . & Ruberto, G. 1994. Antioxi –
dant activity of phenolic meroditerpenoids from marine
algae. J. Photochem. Photobiol. B Biol. 26:159-164.
Frankel, E. N. & Finley, J. W. 2008. How to standardize the
multiplicity of methods to evaluate natural antioxi –
dants. J. Agric. Food Chem. 56:4901-4908.
Fuchs, J. & Kern, H. 1998. Modulation of UV-light-induced
skin inflammation by D-alpha-tocopherol and L-ascor –
bic acid: a clinical study using solar simulated radiation.
Free Radic. Biol. Med. 25:1006-1012.
Fung, T. T., Hunter, D. J., Spiegelman, D., Colditz, G. A., Speiz –
er, F . E. & Willett, W. C. 2002. Vitamins and carotenoids
intake and the risk of basal cell carcinoma of the skin in
women (United States). Cancer Causes Control 13:221-
230.
Garbary, D. J. 2007. The margin of the sea: survival at the top
of the tides. In Seckbach, J. (Ed.) Algae and Cyanobacte –
ria of Extreme Environments . Springer, Berlin, pp. 173-
191.
García-Casal, M. N., Ram írez, J., Leets, I., Pereira, A. C. &
Quiroga, M. F . 2009. Antioxidant capacity, polyphenol
content and iron bioavailability from algae ( Ulva sp.,
Sargassum sp. and Porphyra sp.) in human subjects. Br.
J. Nutr. 101:79-85.
Gerschman, R., Gilbert, D. L., Nye, S. W., Dwyer, P . & Fenn, W.
O. 1954. Oxygen poisoning and x-irradiation: a mecha -nism in common. Science 119:623-626.
Gröniger, A., Hallier, C. & H äder, D. P . 1999. Influence of UV
radiation and visible light on Porphyra umbilicalis : pho –
toinhibition and MAA concentration. J. Appl. Phycol.
11:437-445.
Gunji, S., Santoso, J., Yoshie-Stark, Y. & Suzuki, T. 2007. Ef –
fects of extracts from tropical seaweeds on DPPH radi –
cals and Caco-2 cells treated with hydrogen peroxide.
Food Sci. Technol. Res. 13:275-279.
Haijin, M., Xiaolu, J. & Huashi, G. 2003. A k-carrageenan
derived oligosaccharide prepared by enzymatic degra –
dation containing anti-tumor activity. J. Appl. Phycol.
15:297-303.
Halliwell, B. 2008. Are polyphenols antioxidants or pro-ox –
idants? What do we learn from cell culture and in vivo
studies? Arch. Biochem. Biophys. 476:107-112.
Halliwell, B. 2009. The wanderings of a free radical. Free Rad –
ic. Biol. Med. 46:531-542.
Halliwell, B. & Gutteridge, J. M. C. 1984. Oxygen toxicity, oxy –
gen radicals, transition metals and disease. Biochem. J.
219:1-14.
Halliwell, B. & Gutteridge, J. M. C. 2007. Free radicals in bi –
ology and medicine . Oxford University Press, New York,
851 pp.
Harker, M., Berkaloff, C., Lemoine, Y., Britton, G., Young, A.,
Duval, J. -C., Rmiki, N. -E. & Rousseau, B. 1999. Effects of
high light and dessication on the operation of the xan –
thophyll cycle in two marine brown algae. Eur. J. Phycol.
34:35-42.
He, Y. -Y. & H äder, D. -P . 2002. UV-B-induced formation of
reactive oxygen species and oxidative damage of the
cyanobacterium Anabaena sp.: protective effects of
ascorbic acid and N-acetyl-L-cysteine. J. Photochem.
Photobiol. B Biol. 66:115-124.
Heo, S. -J., Park, E. -J., Lee, K. -W. & Jeon, Y. -J. 2005. Anti –
oxidant activities of enzymatic extracts from brown sea –
weeds. Bioresour. Technol. 96:1613-1623.
Hercberg, S., Ezzedine, K., Guinot, C., Preziosi, P ., Galan,
P ., Bertrais, S., Estaquio, C., Brian çon, S., Favier, A., La –
treille, J. & Malvy, D. 2007. Antioxidant supplementation
increases the risk of skin cancers in women but not in
men. J. Nutr. 137:2098-2105.
Hercberg, S., Galan, P ., Preziosi, P ., Alfarez, M. -J. & Vazquez,
C. 1998. The potential role of antioxidant vitamins in
preventing cardiovascular diseases and cancers. Nutri –
tion 14:513-520.
Holdt, S. & Kraan, S. Bioactive compounds in seaweed: func –
tional food applications and legislation. J. Appl. Phycol.
(in press).
Hwang, H., Chen, T., Nines, R. G., Shin, H. -C. & Stoner, G. D.
163Cornish & Garbary Antioxidants in Marine Macroalgae
http://e-algae.kr2006. Photochemoprevention of UVB-induced skin car –
cinogenesis in SKH-1 mice by brown algae polyphenols.
Int. J. Cancer 119:2742-2749.
Jiang, H., Gao, K. & Helbling, E. W. 2008. UV-absorbing com –
pounds in Porphyra haitanensis (Rhodophyta) with spe –
cial reference to effects of dessication. J. Appl. Phycol.
20:387-395.
Jiménez, J. T., O’Connell, S., Lyons, H., Bradley, B. & Hall, M.
2010. Antioxidant, antimicrobial, and tyrosinase inhibi –
tion activities of acetone extract of Ascophyllum nodo –
sum. Chem. Pap. 64:434-442.
Jiménez-Escrig, A., Jim énez-Jiménez, I., Pulido, R. & Saura-
Calixto, F . 2001. Antioxidant activity of fresh and pro –
cessed edible seaweeds. J. Sci. Food Agric. 81:530-534.
Jormalainen, V ., & Honkanen, T. 2004. Variation in natural se –
lection for growth and phlorotannins in the brown alga
Fucus vesiculosus . J. Evol. Biol. 17:807-820.
Josephine, A., Nithya, K., Amudha, G., Veena, C. K., Preetha,
S. P . & Varalakshmi, P . 2008. Role of sulphated polysac –
charides from Sargassum Wightii in Cyclosporine A-in –
duced oxidative liver injury in rats. BMC Pharmacol. 8:4.
Kamenarska, Z., Serkedjieva, J., Najdenski, H., Stefanov, K.,
Tsvetkova, I., Dimitrova-Konaklieva, S. & Popov, S. 2009.
Antibacterial, antiviral, and cytotoxic activities of some
red and brown seaweeds from the Black Sea. Bot. Mar.
52:80-86.
Kang, K., Park, Y., Hwang, H. J., Kim, S. H., Lee, J. G. & Shin, H.
-C. 2003. Antioxidative properties of brown algae poly –
phenolics and their perspectives as chemopreventative
agents against vascular risk factors. Arch. Pharm. Res.
26:286-293.
Kang, K. A., Bu, H. D., Park, D. S., Go, G. M., Jee, Y., Shin, T. &
Hyun, J. W. 2005. Antioxidant activity of ethanol extract
of Callophyllis japonica . Phytother. Res. 19:506-510.
Karentz, D., McEuen, F . S., Land, M. C. & Dunlap, W. C. 1991.
Survey of mycosporine-like amino acid compounds in
Antarctic marine organisms: potential protection from
ultraviolet exposure. Mar. Biol. 108:157-166.
Kim, K. Y., Nguyen, T. H., Kurihara, H. & Kim, S. M. 2010.
α-Glucosidase inhibitory activity of bromophenol pu –
rified from the red alga Polyopes lancifolia . J. Food Sci.
75:H145-H150.
Kranl, K., Schlesier, K., Bitsch, R., Hermann, H., Rohe, M. &
Böhm, V . 2005. Comparing antioxidative food additives
and secondary plant products: use of different assays.
Food Chem. 93:171-175.
Kuda, T., Hishi, T. & Maekawa, S. 2006. Antioxidant proper –
ties of dried product of ‘haba-nori’, an edible brown
alga, Petalonia binghamiae (J. Agardh) Vinogradova.
Food Chem. 98:545-550.Kumar, K. S., Ganesan, K. & Subba Rao, P . V . 2008. Antioxidant
potential of solvent extracts of Kappaphycus alvarezii
(Doty) Doty: an edible seaweed. Food Chem. 107:289-
295.
Lee, H. J., Kim, Y. A., Park, K. E., Jung, H. A., Yoo, J. S., Woong,
A. J., Lee, B. -J. & Seo, Y. 2004. Studies on screening of
seaweed extracts for peroxynitrite and DPPH radical
scavenging activities. Ocean Polar Res. 26:59-64.
Lee, S. -H., Athukorala, Y., Lee, J. -S. & Jeon, Y. -J. 2008. Simple
separation of anticoagulant sulfated galactan from ma –
rine red algae. J. Appl. Phycol. 20:1053-1059.
Le Tutour, B., Benslimane, F ., Gouleau, M. P ., Gouygou, J. P .,
Saadan, B., Quemeneur, F . 1998. Antioxidant and pro-
oxidant activities of the brown algae, Laminaria digi –
tata, Himanthalia elongat a, Fucus vesiculosus , Fucus
serratus and Ascophyllum nodosum . J. Appl. Phycol.
10:121-129.
Lim, Y. Y. & Murtijaya, J. 2007. Antioxidant properties of Phyl-
lanthus amarus extracts as affected by different drying
methods. LWT-Food Sci. Technol. 40:1664-1669.
Lohrmann, N. L., Logan, B. A. & Johnson, A. S. 2004. Seasonal
acclimatization of antioxidants and photosynthesis in
Chondrus crispus and Mastocarpus stellatus , two co-
occurring red algae with differing stress tolerances. Biol.
Bull. 207:225-232.
López-López, I., Bastida, S., Ruiz-Capillas, C., Bravo, L., Lar –
rea, M. T., S ánchez-Muniz, F ., Cofrades, S. & Jim énez-
Colmenero, F . 2009. Composition and antioxidant
capacity of low-salt meat emulsion model systems con –
taining edible seaweeds. Meat Sci. 83:492-498.
Luo, D., Zhang, Q., Wang, H., Cui, Y., Sun, Z., Yang, J., Zheng,
Y., Jia, J., Yu, F ., Wang, X. & Wang, X. 2009. Fucoidan pro –
tects against dopaminergic neuron death in vivo and in
vitro . Eur. J. Pharmacol. 617:33-40.
Manach, C., Scalbert, A., Morand, C., R émésy, C. & Jim énez,
L. 2004. Polyphenols: food sources and bioavailability.
Am. J. Clin. Nutr. 79:727-747.
Martínez, R. 2007. Effects of ultraviolet radiation on protein
content, respiratory electron transport system (ETS) ac –
tivity and superoxide dismutase (SOD) activity of Ant –
arctic plankton. Polar Biol. 30:1159-1172.
Maruyama, H., Watanabe, K. & Yamamoto, I. 1991. Effect of
dietary kelp on lipid peroxidation and glutathione per –
oxidase activity in livers of rats given breast carcinogen
DMBA. Nutr. Cancer 15:221-228.
Matanjun, P ., Mohamed, S., Mustapha, N. M., Muhammad,
K. & Ming, C. H. 2008. Antioxidant activities and phe –
nolics content of eight species of seaweeds from north
Borneo. J. Appl. Phycol. 20:367-373.
Nagai, T. & Yukimoto, T. 2003. Preparation and functional
DOI: 10.4490/algae.2010.25.4.155 164Algae 2010, 25(4): 155-171
properties of beverages made from sea algae. Food
Chem. 81:327-332.
Nagayama, K., Iwamura, Y., Shibata, T., Hirayama, I. & Na –
kamura, T. 2002. Bactericidal activity of phlorotannins
from the brown alga Ecklonia kurome . J. Antimicrob.
Chemother. 50:889-893.
Nahas, R., Abatis, D., Anagnostopoulou, M. A., Kefalas, P ., Va –
gias, C. & Roussis, V . 2007. Radical-scavenging activity of
Aegean Sea marine algae. Food Chem. 102:577-581.
Nisizawa, K. 2002. Seaweeds Kaiso : bountiful harvest from
the seas . Japan Seaweed Association, Kochi, 106 pp.
Oben, J., Enonchong, E., Kuate, D., Mbanya, D., Thomas, T.
C., Hildreth, D. J., Ingolia, T. D. & Tempesta, M. S. 2007.
The effects of ProAlgaZyme novel algae infusion on met –
abolic syndrome and markers of cardiovascular health.
Lipids Health Dis. 6:20.
Okai, Y., Higashi-Okai, K., Yano, Y. & Otani, S. 1996. Identi –
fication of antimutagenic substances in an extract of
edible red alga, Porphyra tenera (Asakusa-nori). Cancer
Lett. 100:235-240.
Ou, B., Huang, D., Hampsch-Woodill, M., Flanagan, J. A. &
Deemer, E. K. 2002. Analysis of antioxidant activities of
common vegetables employing oxygen radical absor –
bance capacity (ORAC) and ferric reducing antioxidant
power (FRAP) assays: a comparative study. J. Agric. Food
Chem. 50:3122-3128.
Park, D. -S., Lee, K. -H., Kim, H. -C., Ahn, M. -J., Moon, C.
-J., Ko, M. -S., Lee, K. -K., Go, G. -M. & Shin, T. -K. 2005.
Effects of Callophyllis japonica powder on carbon tet –
rachloride-induced liver injury in rats. Orient. Pharm.
Exp. Med. 5:231-235.
Parys, S., Kehraus, S., Krick, A., Glombitza, K. -W., Carmeli,
S., Klimo, K., Gerh äuser, C. & K önig, G. M. 2010. In vitro
chemopreventive potential of fucophlorethols from the
brown alga Fucus vesiculosus L. by antioxidant activity
and inhibition of selected cytochrome P450 enzymes.
Phytochemistry 71:221-229.
Pinto, E., Sigaud-Kutner, T. C. S., Leit ão, M. A. S., Okamoto,
O. K., Morse, D. & Colepicolo, P . 2003. Heavy metal-in –
duced oxidative stress in algae. J. Phycol. 39:1008-1018.
Plaza, M., Santoyo, S., Jaime, L., Reina, G. G. -B., Herrero, M.,
Señoráns, F . J. & Ib áñez, E. 2010. Screening for bioactive
compounds from algae. J. Pharm. Biomed. Anal. 51:450-
455.
Rastogi, R. P ., Richa, Sinha, R. P ., Singh, S. P . & H äder, D. -P .
2010. Photoprotective compounds from marine organ –
isms. J. Ind. Microbiol. Biotechnol. 37:537-558.
Rhatigan, P . 2009. Irish seaweed kitchen: the comprehensive
guide to healthy everyday cooking with seaweeds . Book –
link, Holywood, 288 pp.Riccioni, G. 2009. Carotenoids and cardiovascular disease.
Curr. Atheroscler. Rep. 11:434-439.
Rocha de Souza, M. C., Marques, C. T., Dore, C. M. G., Fer –
reira da Silva, F . R., Rocha, H. A. O. & Leite, E. L. 2007.
Antioxidant activities of sulfated polysaccharides from
brown and red seaweeds. J. Appl. Phycol. 19:153-160.
Romay, C., Gonz ález, R., Led ón, N., Remirez, D. & Rimbau,
V . 2003. C-phycocyanin: a biliprotein with antioxidant,
anti-inflammatory and neuroprotective effects. Curr.
Protein Pept. Sci. 4:207-216.
Rupérez, P ., Ahrazem, O. & Leal, J. A. 2002. Potential antioxi –
dant capacity of sulfated polysaccharides from the ed –
ible marine brown seaweed Fucus vesiculosus . J. Agric.
Food Chem. 50:840-845.
Sachindra, N. M., Sato, E., Maeda, H., Hosokawa, M., Ni –
wano, Y., Kohno, M. & Miyashita, K. 2007. Radical scav –
enging and singlet oxygen quenching activity of marine
carotenoid fucoxanthin and its metabolites. J. Agric.
Food Chem. 55:8516-8522.
Sander, C. S., Chang, H., Hamm, F ., Elsner, P . & Thiele, J. J.
2004. Role of oxidative stress and the antioxidant net –
work in cutaneous carcinogenesis. Int. J. Dermatol.
43:326-335.
Sangeetha, R. K., Bhaskar, N. & Baskaran, V . 2009. Compara –
tive effects of β-carotene and fucoxanthin on retinol de –
ficiency induced oxidative stress in rats. Mol. Cell Bio –
chem. 331:59-67.
Scalbert, A., Manach, C., Morand, C., R émésy, C. & Jim énez,
L. 2005. Dietary polyphenols and the prevention of dis –
eases. Crit. Rev. Food Sci. Nutr. 45:287-306.
Schubert, N., Garc ía-Mendoza, E. & Pacheco-Ruiz, I. 2006.
Carotenoid composition of marine red algae. J. Phycol.
42:1208-1216.
Schwartz, J. L. 1996. The dual roles of nutrients as anti –
oxidants and prooxidants: their effects on tumor cell
growth. J. Nutr. 126(4 Suppl):1221S-1227S.
Schwarz, K., Bertelsen, G., Nissen, L. R., Gardner, P . T., Hei –
nonen, M. I., Hopia, A., Huynh-Ba, T., Lambelet, P .,
McPhail, D., Skibsted, L. H. & Tijburg, L. 2001. Investi –
gation of plant extracts for the protection of processed
foods against lipid oxidation: comparison of antioxidant
assays based on radical scavenging, lipid oxidation and
analysis of the principal antioxidant compounds. Eur.
Food Res. Technol. 212:319-328.
Sekar, S. & Chandramohan, M. 2008. Phycobiliproteins as
a commodity: trends in applied research, patents and
commercialization. J. Appl. Phycol. 20:113-136.
Shimazu, T., Kuriyama, S., Hozawa, A., Ohmori, K., Sato,
Y., Nakaya, N., Nishino, Y., Tsubono, Y. & Tsuji, I. 2007.
Dietary patterns and cardiovascular disease mortality
165Cornish & Garbary Antioxidants in Marine Macroalgae
http://e-algae.krin Japan: a prospective cohort study. Int. J. Epidemiol.
36:600-609.
Shin, H. -C., Hwang, H. J., Kang, K. J. & Lee, B. H. 2006. An
antioxidative and anti-inflammatory agent for potential
treatment of osteoarthritis from Ecklonia cava . Arch.
Pharm. Res. 29:165-171.
Sinha, R. P ., Klisch, M., Gr öniger, A. & H äder, D. -P . 1998. Ul –
traviolet-absorbing/screening substances in cyanobac –
teria, phytoplankton, and macroalgae. J. Photochem.
Photobiol. B Biol. 47:83-94.
Smit, A. J. 2004. Medicinal and pharmaceutical uses of sea –
weed natural products: a review. J. Appl. Phycol. 16:245-
262.
Soni, B., Visavadiya, N. P . & Madamwar, D. 2009. Attenua –
tion of diabetic complications by C-phycoerythrin in
rats: antioxidant activity of C-phycoerythrin including
copper-induced lipoprotein and serum oxidation. Br. J.
Nutr. 102:102-109.
Steenvoorden, D. P . T. & van Henegouwen, G. M. J. B. 1997.
The use of endogenous antioxidants to improve photo –
protection. J. Photochem. Photobiol. B Biol. 41:1-10.
Sugawara, T., Matsubara, K., Akagi, R., Mori, M. & Hirata, T.
2006. Antiangiogenic activity of brown algae fucoxan –
thin and its deacetylated product, fucoxanthinol. J. Ag –
ric. Food Chem. 54:9805-9810.
Talarico, L. B., Zibetti, R. G. M., Faria, P . C. S., Scolaro, L. A.,
Duarte, M. E. R., Noseda, M. D., Pujol, C. A. & Damonte,
E. B. 2004. Anti-herpes simplex virus activity of sul –
fated galactans from the red seaweeds Gymnogongrus
griffithsiae and Cryptonemia crenulata . Int. J. Biol. Mac –
romol. 34:63-71.
Taskin, E., Caki, Z., Ozturk, M. & Taskin, E. 2010. Assessment
of in vitro antitumoral and antimicrobial activities of
marine algae harvested from the eastern Mediterranean
sea. Afr. J. Biotechnol. 9:4272-4277.
Trinchero, J., Ponce, N. M. A., C órdoba, O. L., Flores, M. L.,
Pampuro, S., Stortz, C. A., Salom ón, H. & Turk, G. 2009.
Antiretroviral activity of fucoidans extracted from the
brown seaweed Adenocystis utricularis . Phytother. Res.
23:707-712.
Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur,
M. & Telser, J. 2007. Free radicals and antioxidants in
normal physiological functions and human disease. Int.
J. Biochem. Cell Biol. 39:44-84.
Veena, C. K., Josephine, A., Preetha, S. P . & Varalakshmi, P .
2007. Beneficial role of sulfated polysaccharides from
edible seaweed Fucus vesicuolosus in experimental hy –
peroxaluria. Food Chem. 100:1552-1559.
Wang, H., Chiu, L. C. M., Ooi, V . E. C. & Ang, P . O. 2008. Sea –
weed polysaccharides with anticancer potential. Bot. Mar. 51:313-319.
Wang, T., J ónsdóttir, R. & Ólafsdóttir, G. 2009. Total phenolic
compounds, radical scavenging and metal chelation of
extracts from Icelandic seaweeds. Food Chem. 116:240-
248.
Witvrouw, M. & De Clercq, E. 1997. Sulfated polysaccharides
extracted from sea algae as potential antiviral drugs.
Gen. Pharmacol. 29:497-511.
Wong, C. K., Ooi, V . E. C. & Ang, P . O. 2000. Protective effects
of seaweeds against liver injury caused by carbon tetra –
chloride in rats. Chemosphere 41:173-176.
Yabuta, Y., Fujimura, H., Kwak, C. S., Enomoto, T. & Wata –
nabe, F . 2010. Antioxidant activity of the phycoeryth –
robilin compound formed from a dried Korean purple
laver ( Porphyra sp.) during in vitro digestion. Food Sci.
Technol. Res. 16:347-351.
Yan, X., Chuda, Y., Suzuki, M. & Nagata, T. 1999. Fucoxan –
thin as the major antioxidant in Hijikia fusiformis , a
common edible seaweed. Biosci. Biotechnol. Biochem.
63:605-607.
Yan, X., Nagata, T. & Fan, X. 1998. Antioxidative activities
in some common seaweeds. Plant Foods Hum. Nutr.
52:253-262.
Yang, Y. J., Nam, S. -J., Kong, G. & Kim, M. K. 2010. A case-
control study on seaweed consumption and the risk of
breast cancer. Br. J. Nutr. 103:1345-1353.
Yangthong, M., Hutadilok-Towatana, N. & Phromkunthong,
W. 2009. Antioxidant activities of four edible seaweeds
from the southern coast of Thailand. Plant Foods Hum.
Nutr. 64:218-223.
Yasuhara-Bell, J. & Lu, Y. 2010. Marine compounds and their
antiviral activities. Antivir. Res. 86:231-240.
Ye, H., Wang, K., Zhou, C., Liu, J. & Zeng, X. 2008. Purification,
antitumor and antioxidant activities in vitro of polysac –
charides from the brown seaweed Sargassum pallidum .
Food Chem. 111:428-432.
Yoshiki, M., Tsuge, Y., Tsuruta, Y., Yoshimura, T., Koganemaru,
K., Sumi, T., Matsui, T. & Matsumoto, K. 2009. Produc –
tion of new antioxidant compound from mycosporine-
like amino acid, Porphyra -334 by heat treatment. Food
Chem. 113:1127-1132.
You, S. G., Yang, C., Lee, H. Y. & Lee, B. -Y. 2010. Molecular
characteristics of partially hydrolyzed fucoidans from
sporophyll of Undaria pinnatifida and their in vitro an-
ticancer activity. Food Chem. 119:554-559.
Yuan, Y. V ., Bone, D. E. & Carrington, M. F . 2005 a. Antioxidant
activity of dulse ( Palmaria palmata ) extract evaluated
in vitro . Food Chem. 91:485-494.
Yuan, Y. V ., Carrington, M. F . & Walsh, N. A. 2005 b. Extracts
from dulse ( Palmaria palmata ) are effective antioxi –
DOI: 10.4490/algae.2010.25.4.155 166Algae 2010, 25(4): 155-171
dants and inhibitors of cell proliferation in vitro . Food
Chem. Toxicol. 43:1073-1081.
Yuan, Y. V . & Walsh, N. A. 2006. Antioxidative and antiprolif –
erative activities of extracts from a variety of edible sea –
weeds. Food Chem. Toxicol. 44:1144-1150.
Yuan, Y. V ., Westcott, N. D., Hu, C. & Kitts, D. D. 2009. Myco –
sporine-like amino acid composition of the edible red
alga, Palmaria palmata (Dulse) harvested from the west
and east coasts of Grand Manan Island, New Brunswick.
Food Chem. 112:321-328.
Zhang, J., Tiller, C., Shen, J., Wang, C., Girouard, G. S., Dennis,
D., Barrow, C. J., Miao, M. & Ewart, H. S. 2007 a. Antidia –
betic properties of polysaccharide- and polyphenolic-
enriched fractions from the brown seaweed Ascophyl –
lum nodosum . Can. J. Physiol. Pharmacol. 85:1116-1123.
Zhang, Q., Li, N., Zhou, G., Lu, X., Xu, Z. & Li, Z. 2003. In vivo
antioxidant activity of polysaccharide fraction from Por-
phyra haitanesis (Rhodophyta) in aging mice. Pharma -col. Res. 48:151-155.
Zhang, W. -W., Duan, X. -J., Huang, H. -L., Zhang, Y. & Wang,
B. -G. 2007 b. Evaluation of 28 marine algae from the Qin –
gdao coast for antioxidative capacity and determination
of antioxidant efficiency and total phenolic content of
fractions and subfractions derived from Symphyocladia
latiuscula (Rhodomelaceae). J. Appl. Phycol. 19:97-108.
Zhao, X., Xue, C. -H. & Li, B. -F . 2008. Study of antioxidant
activities of sulfated polysaccharides from Laminaria
japonica . J. Appl. Phycol. 20:431-436.
Zubia, M., Fabre, M. S., Kerjean, V ., Le Lann, K., Stiger-Pou –
vreau, V ., Fauchon, M. & Deslandes, E. 2009. Antioxidant
and antitumoural activities of some Phaeophyta from
Brittany coasts. Food Chem. 116:693-701.
Zubia, M., Robledo, D. & Freile-Pelegrin, Y. 2007. Antioxidant
activities in tropical marine macroalgae from the Yucat –
an Peninsula, Mexico. J. Appl. Phycol. 19:449-458.
167Cornish & Garbary Antioxidants in Marine Macroalgae
http://e-algae.krAppendix A. Algal species evaluated for antioxidant activity and potential applications of detected compounds. With each application cat –
egory R indicates Rhodophyta, P indicates Phaeophyta and C indicates Chlorophyta
Application
(Phylum) speciesReference
Antiangiogenic activity
(P) Undaria pinnatifida (Harvey) SuringarSugawara et al. 2006
Antiaging
(R) Porphyra haitanensis Chang & Zheng Zhang et al. 2003
Antibacterial
(P) Colpomenia peregrina Sauvageau; Cystoseira crinita Duby; Punctaria latifolia Greville; P . plantag –
inea (Roth) Greville; Scytosiphon lomentaria (Lyngbye) Link; Stilophora tenella (Esper) Silva; Zanar –
dinia prototypus (Nardo) Nardo
(R) Bangia fuscopurpurea (Dillwyn) Lyngbye; Callithamnion granulatum (Ducluzeau); Ceramium
diaphanum var. elegans (Roth) Roth; Chondrophycus papillosus (C. Agardh) Garbary & Harper; Cor-
allina elongata Ellis & Solander; Gelidium spinosum (Gmelin) Silva; Haliptilon virgatum (Zanardini)
Garbary & Johansen; Laurencia coronopus J. Agardh; Polysiphonia denudata (Dillwyn) Greville ex
Harvey; P . denudata f. fragilis (Sperk) VoronikhKamenarska et al. 2009
Anticancer
(P) U. pinnatifida ; Fucus vesiculosus LinnaeusAisa et al. 2005,
You et al. 2010
Anticoagulant
(R) Acrosorium flabellatum Yamada; Ahnfeltiopsis flabelliformis (Harvey) Masuda; Carpopeltis affinis
(Harvey) Okamura; Chondria cassicaulis Harvey; Chondrophycus undulatus (Yamada) Garbary &
Harper; Chondrus crispus Stackhouse; Gelidium amansii (Lamouroux) Lamouroux; Gloiopeltis fur –
cata (Postels & Ruprecht) J. Agardh; Gracilaria textorii (Suringar) De Toni; G. verrucosa ; Grateloupia
elliptica Holmes; G. lanceolata (Okamura) Kawaguchi; Halymenia dilatata Zanardini; Laurencia oka –
murae Yamada; Lithophyllum okamurai Foslie; Lomentaria catenata Harvey; Martensia denticulata
Harvey; Prionitis cornea (Okamura) Dawson; Pterocladiella capillacea (Gmelin) Santelices & Hom –
mersand; Schizymenia dubyi (Chauvin ex Duby) J. Agardh; Scinaia okamurae (Setchell) Huisman;
Sinkoraena lancifolia (Harvey) Lee, Lewis, Kraft & Lee Lee et al. 2008
Antidiabetic
(P) Ascophyllum nodosum (Linnaeus) Le JolisZhang et al. 2007 a
Anti inflammatory (osteoarthritis)
(P) Ecklonia cava KjellmanShin et al. 2006
Anti inflammatory
(R) Gracilaria verrucosa (Hudson) PapenfussDang et al. 2008
Antimicrobial
(P) Cystoseira mediterranea Sauvageau; Padina pavonica (Linnaeus) Thivy; Scytosiphon lomentaria
(Lyngbye) Link
(R) Hypnea musciformis (Wulfen) Lamouroux; Spyridia filamentosa (Wulfen) HarveyTaskin et al. 2010
Antiproliferative
(P) E. cava; Laminaria setchellii Silva; Macrocystis integrifolia Bory; Nereocystis luetkeana (Mertens)
Postels & Ruprecht
(R) Palmaria palmata (Linneaus) Weber & MohrYuan et al. 2005 b,
Athukorala et al. 2006,
Yuan and Walsh 2006
Antiretroviral (HIV-1)
(P) Adenocystis utricularis (Bory) Skottsberg; Fucus vesiculosus LinnaeusBéress et al. 1993,
Trinchero et al. 2009
Antitumoural
(P) Alaria esculenta (Linnaeus) Greville; Asperococcus bullosus Lamouroux; Bifurcaria bifurcata Ross; Ye et al. 2008,
Zubia et al. 2009,
DOI: 10.4490/algae.2010.25.4.155 168Algae 2010, 25(4): 155-171
Cystoseira mediterranea Sauvageau; C. tamariscifolia (Hudson) Papenfuss; Desmarestia ligulata
(Stackhouse) Lamouroux; Dictyota dichotoma (Hudson) Lamouroux; Fucus ceranoides Linnaeus; F .
serratus Linnaeus; Halidrys siliquosa (Linnaeus) Lyngbye; Padina pavonica (Linnaeus) Thivy; Sac-
corhiza polyschides (Lightfoot) Batters; Sargassum pallidum (Turner) C. Agardh; Scytosiphon lomen –
taria (Lyngbye) Link
(R) Hypnea musciformis (Wulfen) Lamouroux; Spyridia filamentosa (Wulfen) HarveyTaskin et al. 2010
Antiviral
(P) Colpomenia peregrine Sauvageau; Cystoseira crinita Duby; Punctaria latifolia Greville; P . plantag –
inea (Roth) Greville; Scytosiphon lomentaria (Lyngbye) Link; Stilophora tenella (Esper) Silva; Zanar –
dinia prototypus (Nardo) Nardo
(R) Bangia fuscopurpurea (Dillwyn) Lyngbye; Callithamnion granulata
Ducluzeau; Ceramium diaphanum var. elegans (Roth) Roth; Chondrophycus papillosus (C. Agardh)
Garbary & Harper; Corallina elongata Ellis & Solander; Gelidium spinosum (Gmelin) Silva; Haliptilon
virgatum (Zanardini) Garbary & Johansen; Laurencia coronopus J. Agardh; Polysiphonia denudata
(Dillwyn) Greville ex Harvey; P . denudata f. fragilis (Sperk) VoronikhKamenarska et al. 2009
Chemopreventive
(P) Fucus vesiculosus LinnaeusParys et al. 2010
Cytotoxic activity
(P) Colpomenia peregrina Sauvageau; Cystoseira crinita Duby; Punctaria latifolia Greville; P . plantag –
inea (Roth) Greville; Scytosiphon lomentaria (Lyngbye) Link; Stilophora tenella (Esper) Silva; Zanar –
dinia prototypus (Nardo) Nardo
(R) Bangia fuscopurpurea (Dillwyn) Lyngbye; Callithamnion granulata
Ducluzeau; Ceramium diaphanum var. elegans (Roth) Roth; Chondrophycus papillosus (C. Agardh)
Garbary & Harper; Corallina elongata Ellis & Solander; Gelidium spinosum (Gmelin) Silva; Haliptilon
virgatum (Zanardini) Garbary & Johansen; Laurencia coronopus J. Agardh; Polysiphonia denudata
(Dillwyn) Greville ex Harvey; P . denudata f. fragilis (Sperk) VoronikhKamenarska et al. 2009
Dietary antioxidants
(P) Chorda filum (Linnaeus) Stackhouse; Colpomenia sinuosa (Mertens ex Roth) Derb ès & Solier;
Desmarestia viridis (Müller) Lamouroux; Dictyopteris divaricata (Okamura) Okamura; Dictyota cer –
vicornis Kützing; D. dichotoma (Hudson) Lamouroux; D. ciliolate Sonder ex K ützing; D. crenulata
J. Agardh; Ecklonia cava ; F . vesiculosus ; Laminaria japonica Areschoug; L. ochroleuca Linneaus;
Leathesia difformis Areschoug; Lobophora variegata (Lamouroux) Womersley ex Oliveira; Myelo –
phycus simplex (Harvey) Papenfuss; Padina gymnospora (Kützing) Sonder; Padina spp.; Petalonia
binghamiae (J. Agardh) Vinogradova; Punctaria plantaginea (Roth) Greville; Sargassum kjellmania –
num Yendo; S. polycystum C. Agardh; S. pteropleuron Grunow; S. ramifolium Kützing; S. thunbergii
(Mertens ex Roth) Kuntz; Sargassum sp.; Scytosiphon lomentaria (Lyngbye) Link; Turbinaria trico –
stata Barton; Undaria pinnatifida
(R) Acanthophora spicifera (Vahl) B ørgesen; Bryothamnion triquetrum (Gmelin) Howe; Ceramium
boydenii Gepp; C. nitens (C. Agardh) J. Agardh; C. kondoi Yendo; Champia salicornioides Harvey;
Chondria atropurpurea Harvey; C. baileyana (Montagne) Harvey; Chondrophycus papillosus (C.
Agardh) Garbary & Harper; C. poiteaui (Lamouroux) Nam; Chondrus crispus Stackhouse; Corallina
pilulifera Postels & Ruprecht; Digenea simplex (Wulfen) C. Agardh; Eucheuma cottonii Weber-van
Bosse; E. isiforme (C. Agardh) J. Agardh; Gelidium amansii (Lamouroux) Lamouroux; Gloiosiphonia
capillaries (Farlow) J. Agardh; Gracilaria bursa-pastoris (Gmelin) Silva; G. caudata J. Agardh; G. cor –
nea J. Agardh; G. cylindrica Børgesen; G. tenuistipitata var. tenuistipitata Chang & Xia G. tikvahiae
McLachlan; Gracilaria verrucosa ; Gracilariopsis tenuifrons (Bird & Oliveira) Fredericq & Hommer –
sand; Halymenia durvillaei Bory; H. floresii (Clemente & Rubio) C. Agardh; Heterosiphonia gibbesii
(Harvey) Falkenberg; Hyalosiphonia caespitosa Okamura; Hypnea spinella (C. Agardh) K ützing; Lau-
rencia intricata Lamouroux; L. obtusa (Hudson) Lamouroux; Laurencia surculigera Tseng; Liagora
ceranoides Lamouroux; Nemalion helminthoides (Velley) Batters; Polysiphonia urceolata (Lightfoot
ex Dillwyn) Greville; Porphyra umbilicalus (Linnaeus) J. Agardh; Rhodomela confervoides ; R. teres
(Perestenko) MasudaYan et al. 1998,
Jiménez-Escrig et al. 2001,
Rupérez et al. 2002,
Kuda et al. 2006,
Zubia et al. 2007,
Matanjun et al. 2008,
Yangthong et al. 2009
169Cornish & Garbary Antioxidants in Marine Macroalgae
http://e-algae.kr(C) Acetabularia schenckii Möbius; Avrainvillea longicaulis (Kützing) Murray & Boodle; Caulerpa
ashmeadii Harvey; C. cupressoides (West in Vahl) C. Agardh; Caulerpa lentillifera J. Agardh; C. pas –
paloides (Bory) Greville; C. prolifera (Forsskål) Lamouroux; C. racemosa (Forsskål) J. Agardh; Caulerpa
racemosa var. macrophysa (Sonder ex K ützing) Murray; C. sertularioides (Gmelin) Howe; C. taxifolia
(West in Vahl) C. Agardh; Cladophora prolifera (Roth) K ützing; C. vagabunda (Linnaeus) Hoek; Co-
dium decorticatum (Woodward) Howe; Halimeda monile (Ellis & Solander) Lamouroux; H. tuna (Ellis
& Solander) Lamouroux; Penicillus dumetosus (Lamouroux) Blainville; P . pyriformis Gepp & Gepp;
Udotea conglutinate (Ellis & Solander) Lamouroux; Ulva intestinalis Linnaeus [as Enteromorpha
intestinalis (Linnaeus) Nees]; U. lactuca Linnaeus; U. pertusa Kjellman; U. prolifera O. F . Müller [as
Enteromorpha prolifera (O. F . Müller) J. Agardh]
Food preservatives
(P) F . vesiculosus ; Padina antillarum (Kützing) Piccone; P . gymnospora ; Turbinaria conoides (J.
Agardh) K ützing
(R) Eucheuma cottonii Weber-van Bosse; Euchema spinosum J. Agardh; Gigartina acicularis (Roth)
Lamouroux; Gigartina pistillata (Gmelin) Stackhouse; Kappaphycus alvarezzi (Doty) Doty ex Silva;
Palmaria palmata ; Polysiphonia urceolata Lightfoot ex Dillwyn
(C) Caulerpa racemosa (Forsskål) J. AgardhYuan et al. 2005 a, 2005 b,
Duan et al. 2006,
Rocha de Souza et al. 2007,
Chew et al. 2008,
Chattopadhyay et al. 2010
Functional foods
(P) Desmarestia viridis (Müller) Lamouroux; Dictyopteris divaricata (Okamura) Okamura; D. mem –
branacea (Stackhouse) Batters; Dictyota cervicornis (Kützing); D. delicatula (Lamouroux); D. men –
strualis ; D. mertensii (Martius) K ützing); Ecklonia cava ; Ectocarpus siliculosus (Dillwyn) Lyngbye;
F . vesiculosus ; Halopteris scoparia (Linnaeus) Sauvageau; Himanthalia elongata (Linnaeus) Gray;
Hizikia fusiformis (Harvey) Okamura; Ishige okamurae Yendo; Laminaria japonica Areschoug; Pa-
dina antillarum (Kützing) Piccone; P . tetrastromatica Hauck; Sargassum coreanum J. Agardh; S. fili –
pendula C. Agardh; S. fullvelum (Turner) C. Agardh; S. horneri (Turner) C. Agardh; S. marginatum (C.
Agardh) J. Agardh; S. thunbergii (Mertens ex Roth) Kuntz; S. vulgare C. Agardh; Sargassum sp.; Scyto –
siphon lomentaria (Lyngbye) Link; Spatoglossom schroederi (C. Agardh) K ützing; Taonia atomaria
(Woodward) J. Agardh; Turbinaria conoides ; Undaria pinnatifida
(R) Ahnfeltiopsis flabelliformis (Harvey) Masuda; Amphiroa cryptarthrodia var. verruculosa (Kützing)
Hauck; Amphiroa sp.; Ceramium kondoi Yendo; Chondria crassicaulis Harvey; C. tenuissima (With –
ering) C. Agardh; Corallina elongata Ellis & Solander; Gelidium amansii (Lamouroux) Lamouroux;
Gloiopeltis tenax (Turner) Decaisne; Gracilaria caudata J. Agardh; Grateloupia elliptica Holmes; Kap-
paphycus alvarezzi ; Laurencia obtusa ; Laurencia papillosa (C. Agardh) Greville; Liagora sp.; Peysson –
nelia harveyana Crouan & Crouan ex J. Agardh; Porphyra sp.; Rhodothamniella floridula
(C) Caulerpa cupressoides (West) C. Agardh; C. prolifera (Forsskäl) Lamouroux; C. racemosa (Forsskål)
J. Agardh; C. sertularioides (Gmelin) Howe; Cladophora vagabunda (Linnaeus) Hoek; Codium fragile
(Suringar) Hariot; C. isthmocladum Vickers; Ulva pertusa Kjellman; Ulva fasciata Delile; Ulva sp.Yan et al. 1999,
Rupérez et al. 2002,
Nagai and Yukimoto 2003,
Fayaz et al. 2005,
Heo et al. 2005,
Ahn et al. 2007,
Nahas et al. 2007,
Zhang et al. 2007 b,
Chandini et al. 2008,
Chew et al. 2008,
Kumar et al. 2008,
García-Casal et al. 2009,
Chattopadhyay et al. 2010,
Costa et al. 2010,
Plaza et al. 2010
Health related functions
(P) Padina australis Hauck; Sargassum polycystum C. Agardh; Turbinaria conoides
(C) Caulerpa sertularoides (Gmelin) Howe; Halimeda macroloba Decaisne; Ulva reticulata ForsskålGunji et al. 2007
Hepatoprotective properties
(P) Myagropsis myagroides (Mertens ex Turner) Fensholt; Sargassum henslowianum
(R) Callophyllis japonica Okamura C. Agardh; S. siliquastrum (Turner) C. AgardhWong et al. 2000,
Park et al. 2005
Hyperoxaluria inhibition
(P) F . vesiculosusVeena et al. 2007
Hypertension and vascular health
(R) Ahnfeltiopsis flabelliformis (Harvey) Masuda; Bonnemaisonia hamifera Hariot; Carpopeltis affinis
(Harvey) Okamura; Chondria crassicaulis Harvey; Chondrophycus undulatus (Yamada) Garbary &
Harper; Chondrus crispus Stackhouse; Gelidium amansii ; Gloiopeltis furcata (Postels & Ruprecht) J.
Agardh; Gracilaria textorii (Suringar) De Toni; G. verrucosa ; Grateloupia elliptica Holmes; G. filicina
(Lamouroux) C. Agardh; G. lanceolata (Okamura) Kawaguchi; Halymenia dilatata Zanardini; Cha et al. 2006
DOI: 10.4490/algae.2010.25.4.155 170Algae 2010, 25(4): 155-171
Laurencia okamurae Yamada; Lithophyllum okamurai Foslie; Lomentaria catenata Harvey; Marten –
sia denticulata Harvey; Phacelocarpus sp.; Polysiphonia japonica Harvey; Porphyra tenera Kjellman;
Prionitis cornea (Okamura) Dawson; Pterocladiella capillacea (Gmelin) Santelices & Hommersand;
Schizymenia dubyi (Chauvin ex Duby) J. Agardh; Scinaia okamurae (Setchell) Huisman; Sinkoraena
lancifolia (Harvey) Lee, Lewis, Kraft & Lee
Inhibition of H2O2 mediated DNA damage
(P) Ecklonia cava Ahn et al. 2007
Medical effects
(P) Dictyota cervicornis Kützing; D. ciliolate Sonder ex K ützing; D. crenulata J. Agardh; Lobophora var –
iegata (Lamouroux) Womersley ex Oliveira; Padina gymnospora (Kützing); Sargassum pteropleuron
Grunow; S. ramifolium Kützing; Turbinaria tricostata
(R) Acanthophora spicifera (Vahl) B ørgesen; Bryothamnion triquetrum (Gmelin) Howe; Ceramium
nitens (C. Agardh) J. Agardh; Champia salicornioides Harvey; Chondria atropurpurea Harvey; C.
baileyana (Montagne) Harvey; Chondrophycus papillosus (C. Agardh) Garbary & Harper; C. poiteaui
(Lamouroux) Nam; Digenea simplex (Wulfen) C. Agardh; Eucheuma isiforme (C. Agardh) J. Agardh;
Gracilaria bursa-pastoris (Gmelin) Silva; G. caudata J. Agardh; G. cornea J. Agardh; G. cylindrica
Børgesen; G. tikvahiae McLachlan; Gracilariopsis tenuifrons (Bird & Oliveira) Fredericq & Hommer –
sand; Halymenia floresii (Clemente & Rubio) C. Agardh; Heterosiphonia gibbesii (Harvey) Falkenberg;
Hypnea spinella (C. Agardh) K ützing; Laurencia intricata Lamouroux; L. obtusa (Hudson) Lamour –
oux; Liagora ceranoides Lamouroux; Nemalion helminthoides (Velley) Batters
(C) Acetabularia schenckii Möbius; Avrainvillea longicaulis (Kützing) Murray & Boodle; Caulerpa
ashmeadii Harvey; C. cupressoides (West in Vahl) C. Agardh; C. paspaloides (Bory) Greville; C. pro –
lifera (Forsskål) Lamouroux; C. sertularioides (Gmelin) Howe; C. taxifolia (West in Vahl) C. Agardh;
Cladophora prolifera (Roth) K ützing; C. vagabunda (Linnaeus) Hoek; Codium decorticatum (Wood –
ward) Howe; Enteromorpha intestinalis (Linnaeus) Nees; Halimeda monile (Ellis & Solander)
Lamouroux; H. tuna (Ellis & Solander) Lamouroux; Penicillus dumetosus (Lamouroux) Blainville; P .
pyriformis Gepp & Gepp; Udotea conglutinate (Ellis & Solander) Lamouroux; Ulva intestinalis Lin-
naeus [as Enteromorpha intestinalis (Linnaeus) Nees]Zubia et al. 2007
Nutraceuticals
(R) Kappaphycus alvarezii ; Fucus vesiculosus Linnaeus Fayaz et al. 2005,
Kumar et al. 2008,
Díaz-Rubio et al. 2009
Parkinson ’s disease (protective effects)
(P) Laminaria japonica AreschougLuo et al. 2009
Peroxynitrite inhibition (pharmaceutical)
(P) Colpomenia bullosa (De A. Saunders) Yamada; C. sinuosa (Mertens ex Roth) Derb ès & Solier; Der-
besia marina (Lyngbye) Solier; Dictyota dichotoma (Hudson) Lamouroux; Hizikia fusiformis (Harvey)
Okamura; Ishige okamurai Yendo; Myelophycus simplex (Harvey) Papenfuss; Sargassum confusum C.
Agardh; S. hemiphyllum (Turner) C. Agardh; S. horneri (Turner) C. Agardh; S. thunbergii (Mertens ex
Roth) Kuntz; Sargassum sp.; Scytosiphon lomentaria (Lyngbye) Link
(R) Carpopeltis affinis (Harvey) Okamura; C. cornea (Okamura) Okamura; Chondria crassicaulis Har-
vey; Chondrus ocellatus Holmes; Corallina pilulifera Postels & Ruprecht; Corallina spp.; Gelidium
amansii (Lamouroux) Lamouroux; Gigartina intermedia Suringar; Gigartina tenella Harvey; Gloio –
peltis furcata (Postels & Ruprecht) J. Agardh; Grateloupia turutura Yamada; Gymnogongrus flabel –
liformis (Harvey) Masuda; Halymenia acuminata (Holmes) J. Agardh; Lomentaria catenata Harvey;
L. hakodatensis Yendo; Pachymeniopsis lanceolata (Okamura) Yamada ex Kawabata; Plocamium
telfairiae (Hooker & Harvey) Harvey ex K ützing; Porphyra suborbiculata Kjellman; Symphyocladia
latiuscula (Harvey) Yamada
(C) Codium adhaerens C. Agardh; Enteromorpha linza (Linnaeus) J. Agardh; Ulva pertusa KjellmanLee et al. 2004
Pharmaceuticals
(P) Dictyopteris membranacea (Stackhouse) Batters; Dictyota cervicornis Kützing; D. delicatula
Lamouroux; Heo et al. 2005,
Nahas et al. 2007,
Chandini et al. 2008,
171Cornish & Garbary Antioxidants in Marine Macroalgae
http://e-algae.krD. menstrualis (Hoyt) Schnetter; D. mertensii (Martius) K ützing; Ecklonia cava ; Halopteris scoparia
(Linnaeus) Sauvageau; Ishige okamurae Yendo; Laminaria japonica Areschoug; Padina tetrastromat –
ica Hauck; Sargassum coreanum J. Agardh; S. filipendula (C. Agardh); Sargassum fullvelum (Turner)
C. Agardh; S. horneri (Turner) C. Agardh; S. marginatum (C. Agardh) J. Agardh; S. thunbergii (Mertens
ex Roth) Kuntz; S. vulgare C . Agardh; Spatoglossom schroederi (C. Agardh) K ützing; Taonia atomaria
(Woodward) J. Agardh; Scytosiphon lomentaria (Lyngbye) Link; Turbinaria conoides
(R) Amphiroa cryptarthrodia var. verruculosa (Kützing) Hauck; Amphiroa sp.; Corallina elongata Ellis
& Solander; Gracilaria caudata J. Agardh; Laurencia obtusa ; L. papillosa (C. Agardh) Greville; Liagora
sp.; Peyssonnelia harveyana Crouan & Crouan ex J. Agardh; Rhodothamniella floridula
(C) Caulerpa cupressoides (West) C. Agardh; C. prolifera (Forsskäl); C. sertularioides (Gmelin) Howe;
Codium isthmocladum VickersZhao et al. 2008,
Costa et al. 2010
Promotes cellular homeostasis
(R) Callophyllis japonica OkamuraKang et al. 2005
Vascular chemoprotection; Improved peripheral blood circulation
(P) Eisenia bicyclis (Kjellman) Setchell; Ecklonia cava ; E. kurome Okamura; E. stolonifera Okamura;
Hizikia fusiformis (Harvey) OkamuraKang et al. 2003
Copyright Notice
© Licențiada.org respectă drepturile de proprietate intelectuală și așteaptă ca toți utilizatorii să facă același lucru. Dacă consideri că un conținut de pe site încalcă drepturile tale de autor, te rugăm să trimiți o notificare DMCA.
Acest articol: Copyright 2010 The Korean Society of Phycology 155 [612228] (ID: 612228)
Dacă considerați că acest conținut vă încalcă drepturile de autor, vă rugăm să depuneți o cerere pe pagina noastră Copyright Takedown.
