Autor: Florin CHIRCA [615429]

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
060042 București, Splaiul Independenței, nr. 313, sector 6

PROIECT DE DIPLOMĂ

Reglarea automată a frecvenței și puterii active

Autor: Florin CHIRCA

Cadru didactic îndrumător:

Prof. Dr. Ing. Ioana FĂGĂRĂȘAN

Consultant științific,
Ș.l. Dr. Ing. Nicoleta ARGHIRA

București
Iulie 2018

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

1

Proiect de diplomă

Reglarea automată a frecvenței și puterii active

prezentat la

Universitatea POLITEHNICA din București
Facultate de Energetică

pentru obținerea titlului de
inginer

Specializarea : Informatică Industrială (II)

de către
Florin CHIRCA
(absolvent: [anonimizat])

sub îndrumarea

Prof. Dr. Ing. Ioana FĂGĂRĂȘAN
Ș.l. Dr. Ing. Nicoleta ARGHIRA

Susținut la data de 04.07.2018 în fața comisiei de examinare:

Conf. dr. ing. Radu PORUMB Președinte
Prof. dr. ing. Constantin BULAC Membru
Prof. dr. ing. Virgil DUMBRAV Ă Membru
Conf. dr. ing. Ion TRIȘTIU Membru
Conf. dr. ing. George Cristian LĂZĂROIU Membru
Ș.l. dr. ing. Nicoleta ARGHIRA Membru

Ș.l. dr. ing. Alexandru MANDIȘ Secretar

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

2

Această lucrare a fost pregătită în cadrul Facultății de Energetică a UPB

INTRODUCERE …………………………………………………………………………..Pag. 4

CAPITOLUL 1
NECESITATEA ȘI AVANTAJELE REGLĂRII AUTOMATE A
FRECVENȚEI ȘI PUTERII ACTIVE
1.1 Necesitatea Raf-P……………………………………………………………..Pag. 8
1.2 Avantajele Raf -P…………………………………………………….. ………..Pag. 8
1.2.1 Creșterea randamentului instalațiilor și implicit a randamentului sistemului
electroenergetic…………………………………………………………………………………………. …….Pag. 8

1.2.2 Evitarea apariției fenomenului de „avalanșă frecvență -tensiune……. …….Pag. 9

1.2.3 Eliminarea variației de productivitate la consumatorii de energie
electrică…………………………………………………………………………………………………….. …….Pag. 9

1.2.4 Reducerea fluctuatilor pierderilor in sistem…………………………… ………….Pag. 10

1.2.5 Asigurarea calității energiei electrice, produsă și livrată la
consumatori……………………………………………… ……………………………………………………..Pag. 11

1.2.6 Reducerea erorilor apărute la echipamentele de automatizare……………….Pag. 1 1

CAPITOLUL 2
REGLAREA AUTOMAT Ă FRECVENȚĂ – PUTERE ACTIVĂ
2.1 Principiul de funcționare …………………………………………………..Pag. 1 1
2.2 Caracteristicile reglajului pe trei nivele ……………………………..Pag. 1 3
2.1.1 Reglajul primar………………………………………………………………………….Pag. 14
2.1.2 Reglajul secundar………………………………………………………………………Pag. 1 8
2.1.3 Reglajul terțiar………………………………………………………………………….Pag. 2 4
2.3 Corecția timpului ………………………………………………………………Pag. 2 4

CAPITOLUL 3
REGLAREA A UTOMATĂ A FRECVENȚEI ÎN ENTSOE ȘI
ROMÂNIA
3.1 Tipuri de reglaj la nivel ENTSOE ………………………………………Pag. 24
3.1.1 Raf -P centralizat………………………………………………………………………Pag. 24
3.1.2 Raf -P pluralist………………………………………………………………………….Pa g. 24
3.1.3 Raf -P ierarhizat………………………………………………………………………..Pag. 2 5
3.2 Tipuri de reglaj la nivel României ………………………………………Pag. 2 6

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

3

3.2.1 Raf -P centralizat………………………………………………………………………Pag. 2 6

CAPITOLUL 4
STUDIU DE CAZ. SIMULARE
4.1 Sisteme de reglare. Regulatoare automate ……………………….. …………………Pag. 27
4.2 Performanțele sistemelor de reglare automată …………………………………….Pag. 30
4.3 Alegerea și acordarea regulatoarelor automate …………………………………….Pag. 31
4.4 Criterii care realizează o acordare optimă …………………………………………..Pag. 32
4.5 Modelarea elementelor din structura de reglare a frecvenței și puterii
active ……………………………………. ………………………………………………………………………..Pag. 37

CAPITOLUL 5
CONCLUZII……………………………………………………..….Pag. 52

CAPITOLUL 6
BIBLIOGRAFIE………………………………………..………….Pag. 54

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

4

INTRODUCERE:
În sistemul electroenergetic este necesară menținerea frecveței într -o bandă de reglaj, cu o
abatere mic ă de aproximativ ± 2Hz, întrucât această abatere are consecințe nefavorabile
asupra funcționării consumatorilor dar și asupra Sistemului Electroenergetic în ansamblul
său, prin modificări precum variații ale turațiilor mașinilor electrice și implicit ale tu rației
producând astfel un dezechilibru între puterea produsă (generată) și puterea consumată.
Necesitatea reglării automate a frecvenței și puterii active este dată de păstrarea
echilibrului putere generată – putere consumată .
Menținerea aces tui echilibru prezintă o serie de avantaje [1], cum ar fi:
a. creșterea randamentului instalațiilor și implicit creșterea randamentului sistemului
electroenergetic;
b. evitarea apariției fenomenului de “avalanșă frecvență -tensiune”;
c. eliminarea variației de productivitate la consumatorii de energie electrică;
d. reducerea fluctuației pierderilor în sistem;
e. asigurarea calității energiei electrice, produsă și livrată la consumatori;
f. reducerea erorilor apărute la echipamentele de automatizare ;
Reglajul frecvenței și puterii active se realizează în sistemele electroenergetice pe mai
multe niveluri. Aceste niveluri pot fi în funcție de timpul de răspuns al grupurilor generatoare
atunci când apare o abatere a frecvenței de la frecvența nominală sau în funcție de semnalel e
primite.
În momentul în care se produce o perturbație în sistemul electroenergetic, cum ar fi:
variația puterii consumate, se creează un dezechilibru între puterea consumată și cea produsă
sau generată și are ca urmare modificarea frecvenței, mai precis o scădere a sa. Scăderea
frecvenței este urmată instantaneu de o ajustare a puterii active genera te prin acțiunea așa
numitului regulator de viteză, al turbinei care are rolul de a realiza un reglaj fin al frecvenței.
Această acțiune este, în general, cunoscută sub numele de Reglaj Primar de Frecvență (eng:
governor regulation).
Atât în Ro mânia cât și în alte țări, capacitatea de reglaj primar al frecvenței constituie o
cerință de conectare a grupurilor generatoare la rețea și nu face obiectul unei plăți ca serviciu
de sistem.
Reglajul Secundar de Frecvență (cunoscut și sub numele de Controlul Automat al
Producției) este de tip centralizat și poate fi realizat numai de acele grupuri generatoare care
sunt conectate la regulatorul central și care au capa citatea de a răspunde la semnalul primit
într-un timp mai mic de 15 minute. Scopul a cestui reglaj este de a reface rezerva de reglaj
primar și de a readuce frecvența și soldul puterii de schimb cu celelalte sisteme la valoarea
programată.

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

5

Reglajul Terțiar de Frecvență se deosebește de reglajul primar și cel secundar prin
faptul că este activat manual , adică prin apel telefonic sau fax. Operatorul de Sistem
achiziționează rezerve de putere ca serviciu de sistem în mod competitiv, iar dispecerizarea
grupurilor generatoare care au câștigat licitația este făcută după ordinea de merit. Pe lângă
producători, la reglajul frecvenței ca serviciu de sistem pot participa și consumatorii de putere
mare pentru care există un sistem automat de deconectare a sarcinii pentru a răspunde unei
variații majore a frecvenței. De aceea, pentru a stimula c onsumatorii să participe la acest
reglaj, este necesară tarifarea energiei electrice la consumator în funcție de gradul de
continuitate în alimentare care este un factor de calitate al energiei electrice.
În acest context, lucrarea de față își propu ne să studieze modul de realizare a l reglajului
de frecvență și putere activă, în sistemul electroenergetic național (SEN) și să modeleze un
exemplu de schemă de reglare.
Pentru început, trebuie cunoscut ă valoarea de consemn, valoarea nominală a fre cvenței în
sistemul electroenergetic de 50Hz, pentru a putea pune problema r eglării acestui parametru ,
în limite le admisinile.
După cum s -a menționat mai sus, la apariția unei perturbații apar modificării (variații) ale
frecvenței. Mai jos sunt preze ntate limitele normate de variație a frecvenței în sistemul
electroenergetic național, astfel [2]:
(i). 47.00 – 52.00 Hz timp de 100 % din an;
(ii). 49.50 – 50.50 Hz timp de 99.5 % din an;
(iii). 49.75 – 50.25 Hz timp de 9 5% din săptămână;
(iv). 49.90 – 50.10 Hz timp de 90% din săptămână;
Frecvențele de consemn sunt 49.99; 50.00; 50.01 Hz. În mod excepțional pot fi 49.95 și
50.05 Hz.
Pentru a putea participa la reglajul frecvenței, grupurile genera toare trebuie să respecte
anumite cerințe, cum ar fi cele men ționate mai jos, extrase din Codul rețelei electrice de
transport [2] :
1. Fiecare grup generator trebuie să fie capabil să furnizeze puterea activă nominală la
frecvențe ale sistemului energetic național între 49.5 și 50.5 Hz.
2. Fiecare grup generator trebuie să fie capabil să producă simultan puterea activă și
puterea reactivă, în banda de frecvențe 49.5 – 50.5 Hz .
3. Fiecare grup generator trebuie să fie capabil să furnizeze puterea reactivă solici tată, în
conformitate cu diagrama sa de funcționare P -Q.
4. Grupurile generatoare trebuie să fie prevăzute cu echipamente care să asigure
declanșarea automată de la sistem în cazul pierderii stabilității.

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

6

5. Grupurile dispecerizabile trebuie să fie capabile să participe la reglajul primar al
frecvenței prin variația continuă a puterii active furnizate. Se exceptează grupurile cu turbine
cu contrapresiune.
6. Fiecare grup generator trebuie să fie dotat cu regulator automat de vitez ă, capabil să
asigure în orice mo ment siguranța turbinei și să mobilizeze puterea în reglaj primar cu viteză
mare de răspuns (timp < 30s). În situația izolării de sistemul energetic național a unui grup
generator pe un consum local, regulatorul automat de vitez ă trebuie să fie capabil să asigure
reglajul frecvenței în gama 49 – 52 Hz.
7. Pentru grupurile dis pecerizabile, termoenergetice variația de putere comandată de
regulatorul automat de vitez ă trebuie susținută de către cazan prin funcționarea pe automat a
buclei de reglare în sarcină în regimul “turbina conduce cazanul”.
8. Regulatorul automat de vitez ă al grupurilor generatoare trebuie să permită o valoare
reglabilă a statismului între 2% ÷ 12%, zona de insensibilitate a întregului sistem de reglaj să
fie mai mică decât ±10 mHz, iar valoa rea de consemn a frecvenței să fie ajustabilă între 47,5
și 52 Hz.
9. Grupurile dispecerizabile trebuie să fie capabile să funcționeze stabil pe o durată
nelimitată la o putere cuprinsă cel puțin în intervalul 40 % – 100 % din puterea nominală. Se
exceptează cele cu cogenerare.
10. Pentru fiecare grup generator valorile de: statism, insensibilitate – pentru regulatoarele
numerice, rezerva de reglaj primar și valoarea de consemn a frecvenței se setează conform
dispozițiilor o peratorul de sistem.
11. Pentru grupurile generatoare prevăzute pentru a funcționa în reglaj secundar, valoarea
vitezei de încărcare/descărcare în reglaj secundar, valoarea benzii de reglare, în limitele
declarate și intrarea în r eglaj secundar sunt dispuse de o peratorul de sistem.
12. Grupurile generatoare care funcționează în reglaj secundar trebuie să fie capabile să
funcționeze simultan și în reglaj primar.
13. Fiecare grup generator va fi capabil să încarce/descarce în mai puțin de 30 secunde
rezerva de reglaj primar la o abatere cvasi staționară a frecvenței de ±200 mHz și să mențină
aceasta pentru cel puțin 15 minute.
14. Este o cerință esențială ca rețeaua electrică de transport să încorporeze grupuri
generatoare cu capabilitate de pornire fără sursă de tensiune din sistem. Operatorul de sistem
poate să impună această cerință în Avizul tehnic de racordare dacă grupul generator se află
într-un amplasament care necesită realizarea acestui serviciu.
Pentru menținerea acestui parametru în limitele admisibile, dispecerul energetic națio nal
(DEN) realizează următoarele acțiuni [2]:
a. Programarea frecvenței de funcționare în sistemul electroenergetic pentru respectarea
limitelor normate ;
b. Stabilirea zilnică, pentru fiecare interval a valo rii programate a frecvenței de
funcționare în sistemu l electroenergetic național, având în vedere și corelarea orei sincrone cu

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

7

ora astronomică. Valoarea programată a frecvenței devine valoare de consemn pentru reg lajul
secundar frecvență -putere.
c. Stabilirea valorii de consemn pentru regulatoarele automate d e viteză ale grupurilor
dispecerizabile.
La funcționarea interconectată cu alte sisteme electroenergetice, reglajul frecvenț ei se
realizează de către toți operatorii de s istem din interconexiune după principiul r eglării
soldului sistemului electroene rgetic național cu corecția abaterii de frecvență. Atunci când nu
se pune problema de interconectare, la funcționare independentă, frecvența de consemn este
de 50 Hz. Pentru a corecta timpul sincron , frecvența de consemn poate fi modificată cu o
abatere de ±0,01 Hz și în mod excepțional cu ±0,05 Hz. La funcționarea independentă
(separată/izolată) a sistemelor electroenergetice, frecvența, în cadrul reglajului secundar, se
reglează automat prin intermediul regulatorului central de frecvență -puter e activă care va
beneficia de o rezervă de putere folosită în scopul acestui reglaj conform reglementărilor în
vigoare. În cazul în care sistemul automat care asigură bucla de reglaj nu funcționează, atunci
frecvența se va regla manual în baza unor instruc țiuni și proceduri specifice efectuării acestui
proces. Responsabilitatea de reg lare a frecvenței, în cazul funcționării izolate a s istemelor,
revine Dispecerului Energetic C entral (DEC) , care stabilește totodată și numărul de centrale
participante la regl aj.
În cazul în care, o zonă se separă de sistemul electroenergetic național, se va desemna de
către autoritatea competentă (dispecerul energetic central), centrul de dispecer care va prelua
reglajul frecvenței în zona respectivă. Vor exista două caz uri atunci când se va pune
problema funcționării izolate, unul în care frecvența va crește și unul în care aceasta va
descrește . În cazul în care frecvența crește, puterea generată va crește și atunci se pune
problema existenței unei rezerve de reducere a producției (rezervă tur nantă sau grupuri hidro
în funcț iune) iar dispecerul va acționa oprirea unor grupuri. În cel de -al doilea caz, la
scăderea frecvenței, scade și puterea generată iar dacă sistemul energetic național nu dispune
de rezerve de putere sau dacă punerea lor în funcțiu ne necesită un timp îndelungat, dispecerul
ia măsuri pentru reducerea consumului prin deconectări manuale, conform normativelor în
vigoare. În cazul unor abateri importante și rapide ale frecvenței, centralele electrice trebuie
să intervină automat în conformitate cu cerințele de reglaj primar al frecvenței [2].
Operatorul de sistem stabilește volumul rezervei de reglaj primar necesar în sistemul
energetic na țional astfel [2]:
(a). în condiții de funcționare interconectată a sistemelor electroenergetice , rezerva de
reglaj primar este stabilită de comun acord cu operatorii de sistem ai sistemelor
interconectate, astfel încât să se respecte principiul echității între sisteme;
(b). în condiții de funcționare izolată a sistemelor electroenergetice , rezerva de reglaj
primar minimă se programează la cca. 5% din puterea totală produsă.

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

8

Operatorul de sistem stabilește rezerva “minut” necesară egală cu cea mai mare valoare
dintre [2]:
(a). puterea celui mai mare grup generator în funcțiune;
(b). cea mai mare putere în funcțiune conectată pe aceeași secție de bare;
(c). 5% din puterea totală produsă în sistem.
Operatorul de sistem este obligat să asigur e, în limita capacităților disponibile în sistem și
a contractelor încheiate, puterea de rezervă din fiecare categorie, în cantitate suficientă pentru
asigurarea parametrilor de calitate normați și respectarea celor convenite cu operatorii de
transport ai sistemelor electroenergetice interconectat e. Acesta trebuie să asigure în condiții
de funcționare sigură a sistemului energetic național, transportul atât al sarcinii maxime
prognozate, cât și al puterii de rezervă de reglaj primar, secundar și al rezervei minut.
CAP. 1 NECESITATEA ȘI AVANTAJELE REGLĂRII A UTOMATE A
FRECVENȚEI ȘI PUTERII ACTIVE
1.1 Necesitatea RAf -P
După cum s -a menționat mai sus, necesitatea reglării automate a frecvenței și puterii
active este dată de păstrarea echilibrului putere generată – putere consumată .
1.2 Avantajele RAf -P
Printre avantajel e reglării automate a frecvenței și puterii active , se numără cele
menționate anterior [1]:
1.2.1 Crește rea randamentului instalațiilor și implicit a randamentului sistemului
electroenergetic [1]
Cunoaștem faptul că, randamentul maxim al unei instalații se atinge atunci când turația
mașinii ajunge egală cu turația ei nominală și mai știm faptul că, turația depinde de frecvența
la care lucrează mașina, conform rel ației (1 .1):
f =
, relația (1.1)
unde:
– p = numărul de perechi de poli;
– n = turația [rot/min]
– f = frecvența [Hz]

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

9

Prin urmare, randamentul maxim al unei ma șini electrice rotative (de exemplu), se atinge
atunci când aceasta rulează la frecvența nominală iar acesta scade atunci când frecventa
mașinii este diferită de frecvența nominală ( = 50 [Hz]) [1].
1.2.2 Evitarea apari ției fenomenului de „avalan șă frecvență -tensiune” [1]
Pe măsură ce scade sau crește frecvența, se modifică și valoarea efectivă a tensiunii din
nodurile sistemului electroenergetic deoarece afectează excitatoarele generatoarelor sincrone
precum și compensatoarele si ncrone, ajungându -se astfel la o frecvență de 45 Hz numită
frecvență critică caz în care se produce întreruperea în alimentarea cu energie electrică a
consumatorilor.
Pe lângă aceasta, o limitare majoră a funcționării cu frecvenț ă redusă este impusă de
palele lungi ale ultimelor trepte ale corpului de joasă presiune al turbinei. Astfe că, la alte
viteze, diferite de cea nominală, turbina intră rapid în rezonanță, rezultând eventual
distrugerea palelor ca urmare a scăderii rezistenței la oboseală [1].
Dacă o scădere de durată a frecvenței de 1% nu are efecte negative, o scădere a frecvenței
cu 4% – deci cu 2 Hz – poate provoca aceste efecte negative chiar în primele minute. De
asemenea, creșterea raportului tensiune – frecvență, trebuie limitată . Se cunoaște faptul că
tensiunea la bornele generatorului este proporțională cu fluxul conform relației 1.2 [1]:
Ug = K' · Φ · n relația (1.2)
La creșterea raportului tensiune – frecvență cresc și fluxurile , astfel că asistă m la o
creștere a încălzirii î n bobinajele sta torice prin curenti turbionari și dispersie, urmată de uzura
prematură a izolației și reducerea duratei î n exploatare pentru agregatele generatoare [1].
1.2.3 Eliminarea variației de productivitate la consumatorii de energie electrică [1]
Fie , puterea activă consumată la frecvența și puterea consumată la frecvența
.
Vom avea următoarea relație :
= · (
)
qϵ Z relația (1.3)
În funcț ie de aceasta , consumatorii se împart în urmă toarele patru categorii:
a) q = 0, consumatori la care putere a consumată este constantă, independentă de
frecvență (de exemplu: cu ptoarele electrice cu arc sau rezistență , utiliză ri casnice prin
electrotermie, iluminat , etc).
b) q = 1, consumatori la care cuplul rezistent este constant: =const.

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

10

Deci :
Pc = · w = K’· f relația (1.4)
Exemplu: maș ini de ridicat
c) q = 3 => consumatori la care cuplul rezistent are două componente: un termen
constant și un altul propor țional cu pătratul turației, conform următoarelor relațiilor 1.5 :
= + K · (
)

= · w = K ” · relați ile (1.5)
n = · f
unde, = cuplu rezistent
Exemplu: instalații de tip centrifugal în regimuri de turație diferită
d) q > 3, sunt instalaț ii de tip centrifugal care au de î nvins presiuni statice, cum ar fi
pompele, compresoare, ventilatoare. De exemplu la pompele de alimentare a cazanelor q = 7.
Într-o serie de indus trii cum ar fi: țesătorii, fabrici de hâ rtie, fabrici de medicame nte, de
mase plastice, orice variație a turaț iei mecanismelo r de antrenare conduce la variații de
productivitate și de calitate a produselor, în sensul înrăutăț irii acestora.
1.2.4 Reduc erea fluctuațiilor pierderilor î n sistem [1]
În sistemul electroenergetic, valoarea medie a factorului q este cu aproximaț ie 2. Se pot
scrie următoarele relații :
Pc* = K’· f2
* relația (1.6)
Qc* = K’’· f-1
* relația (1.7)
unde: w = 2·p·f
În sistemul electroenergetic sunt pierderi î n fier (ΔP Fe) și pierderi î n cupru (ΔP Cu), date de
următoarele relații :
= K’·Bmax·f relația (1.8)
ΔPCu= R·I2 relația (1.9)

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

11

Întrucât raportul ,
> 5…6 => se pot neglija ΔPFe. În acest fel, pierderile totale
ΔPSEE sunt:
ΔPSEE ≈ ΔPCu = RI2 = R·( I2
a+I2
r ) relația (1.10)
care, ținând seama de relaț iile de mai sus ș i pentru un cos θ ≥ 0,8 , sunt proporționale cu
frecvenț a la puterea a patra:
ΔPSEE = k 1 · Δf 4 relația (1.11)
Deci, pierderile în sistemul electroenergetic se pot reduce dacă reducem frecvența, soluție
inacceptabilă însă pentru funcț ionar ea interconectată a acestora.
1.2.5 Asigurarea calității energiei electrice, produsă și livrată la consumatori
Asigurarea calității energiei electrice se referă de fapt la menținerea în li mite admisibile a
doi parametrii de care depinde sistemul electroenergetic, și anume tensiunea și curentul.
Calitatea tensiunii se consideră ideală atunci când în toate nodurile rețelei și în orice
moment de timp, tensiu nile pe cele trei faze sunt sinusoidale în timp, fiecare având valoare
efectivă constantă și egală cu valoarea nominală. Calitatea curentului se referă mai mult la o
abatere a curentului dată de o curbă sinusoidală de frecventă și amplitudine constantă și in
fază cu tensiunea de alimentare.
În consecință, prin reglarea automată a frecvenței și totodată a puterii active, se pune
permanent la dispoziția consumatorilor o tensiune alternativă sinusoidală, de frecvență și
valoare efectivă menți nută între a numite limite admisibile , egală pe cele trei faze .
1.2.6 Reducerea erorilor apărute la echipamentele de automatizare
Acest ultim avantaj al utilizării reglajului de frecvență și putere activă este foarte
important , deoarece se reduce erori le de măsură în special apărute la echipamentele pe bază
de inducție, cum ar fi contoarele de en ergie electrică și nu numai, ducând astfel la buna
funcționare a sistemului electroenergetic.
CAP. 2 REGLĂREA AUTOMATĂ FRECVENȚĂ – PUTERE ACTIVĂ
2.1 Principiul de funcționare
Pentru a înțelege pe deplin principiul metodelor RAf -P, considerăm următoarea schemă
cu două grupuri generatoare [1]:

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

12

Fig. 2.1 Caracteristicile celor dou ă grupuri reglante [3]
Vom considera caracteristicile statice , adică caracteristicile turație – putere și o să
consideră m două grupuri reglante, care la un m oment dat funcționează la o turaț ie , deci la
o frecven ță nominal ă de 50 Hz, presupunând că avem p entru primul grup, puterea P 11 și
pentru al doilea grup puterea P21.
Se pune problema de ce se va întâ mpla, dacă dorim să creș tem puterea generată . Conform
caracteristici lor statice pe care le avem , pentru a crește puterea, ar însemna că , ar trebui să
deplasăm punctul de funcționare undeva mai jos , la ambele grupuri. Mutându -l mai jos, va
crește puterea în raport cu turaț ia.
În orice caz, chiar dacă se crește puterea ș i scade turația , aceste grupuri trebuie să rămână
în sincronism, trebuie să aibă aceeași frecvență . Deci vom avea, după cum se poate obse rva
pe schemă, un P 2 > P 1 cu turația ’, cu proprietatea că ’ < .
Practic, iniț ial avem ce le două grupuri reglante, cu turbinele care funcționează la turația
. Atunci câ nd se ce re o putere mai mare, trebuie să intervină regulatorul de putere, care să
ne ofere o putere mai mare.
În faza inițială , turbina încearcă să aibă o turație mai mar e, dar cum acest lucru nu este
posibil practic , scade turaț ia, până la o turație care e ste acceptabilă (o turați e la care sistemul
funcționează ) dar nu este frecvenț a nomina lă pe care ar trebui să o aibă turbine le sau
generatorul .
Și atunci, noi trebuie să ajungem î napoi la această frecvență nominal ă, lucrul acesta se
poate întâmpla, d ecât dacă mărim debitul de agent motor. A cest lucru ar însemna că, trebuie
să translată m cele două caracteristici , paralel mai sus, păstrând ac eeași alură, deoarece,

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

13

acestea reprezintă legile sau legea după care funcționează cele două grupuri astfel încât
punctele A’ și B’ să se regăsească mai sus.
Ar însemna c ă, ar trebui ca acele puncte să devină A” si B” prin translatare, lucru care se
întâmplă, crescâ nd debitul de agent motor. (Z creș te).
Din punct de vedere al regulatoarelo r, când avem această creș tere de putere, când dorim
să creș tem puterea, intervine RAV (regulatorul automat de viteză), care are o funcț ionare
statică și conduce la o frecvență diferită de cea nominală. Adică , observăm că se modifică
punctul de funcționare, se obțin e puterea dorită, însă apare o eroare î ntre și ’. Deci,
avem o funcț ionare statică stabilă .
După ce se dă această comandă de creș tere a debitului de agent motor, rapid intervine
RAf-P (Regulatorul a utomat de frecvență – Putere activă ), care are o comportare astatică și
care restabilește frecvenț a. Această funcționare a regulatorului automat de viteză , face parte
din reglajul primar iar regulatorul automat de frecvență – putere activă se regăsește î n reglajul
secundar, cel care readuce frecvenț a la valoarea nominală .
2.2 Caracteristicile reglajului pe trei nivele [2]
O schemă mai sugestivă este dată în următoarea diagramă, în care se poate observa cum
variază frecvența în funcț ie de tipul de reglaj . Adică inițial, când avem o abatere mai mare,
într-un timp foarte scurt intervine reglajul primar, care restabilește frecvența la o valoare cât
mai apropiată de valoarea nominală, după care apare reglajul secundar , care restabilește
frecvența la valoarea n ominală .
Din punct de v edere al puterilor, evident, trebuie să asigurăm echilibrul: p utere genera tă –
putere consumată , dar pentru a scade acea putere generată sau pentru a o crește, trebuie să
existe și o rezervă. E xistă rez ervă primară, rezervă sec undară și rezervă terțiară. Iniț ial, când
scade puterea ( valoarea sarcinii ), intervine rezerva primară ș i ca valori de ti mp.
În cea de -a doua schem ă, de mai jos, mai apare pe lângă cele trei tipuri de reglaj și o
noțiune numită corecția timpului. Funcționând în sistem sincronizat, toți trebuie să aibă
aceeași oră, tot timpul, când vorbim de sistemul energetic. Ca o consecință a acestei abateri
de frecv ență, vorbim de timp. Acest timp (ora exactă), este dată în Elveția, și totul trebuie sa
fie sincronizat. Ceasurile electronice, sunt dependente de frecvență, și se pare că datorită
faptului că s -ar funcționa la o frecvență mai mică de 50 Hz, s -a demonstra t (fapt real) timp de
o lună jumătate, în Kosovo, Serbia că dacă frecvența este mai mică, ceasul înaintează mai
rapid, iar cu cât frecvența este mai mare cu atât va înainta mai lent.

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

14

Fig. 2.2 Tipurile de reglaj cu rezervele aferente [3]

Fig. 2.3 Restabilirea frecven ței sitemului [3]
2.2.1 Reglajul primar
Funcționează pe principiul solidarității: adic ă cuprinde o multitudine de participa nți, tot
sistemul energetic treb uie să realizeze reglaj primar de frecvență. Chiar și turbinele eoliene
când se conectează prin invertor chiar și la panouri le fotovoltaice, treb uie să se asigure o

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

15

frecvență de 50 Hz sau o valoare cât mai apropiată . Deci, toate grupurile generatoare din
sistemul energetic național, particip ă.
a. Echilibrul p uterii

În sistemul electroenergetic, pe măsur ă ce se produce putere activă aceasta trebuie să se
și consume . Puterea care se produce sau se generează trebuie să fie în balanță cu puterea
consumată sau cerută, fiindcă dacă nu se respectă acest lucru se poate pune problema unei
abateri de frecvență. Dacă nu se respectă acest echilibru (putere generată – putere consumată)
apar perturbații care conduc la fenomenul menționat anterior, și anume abaterea de
frecvență. Aceste perturbații sunt eliminate, în timp de către energia cinetică produsă sau
dezvoltată de mașinile rotative din sistem (generatoare sincrone).
Posibilit ățile de stocare a energiei electrice, ca atare sunt foarte puține . Pentru sistemele
electroenerg etice m ari, aceasta trebuie să fie stocată ca sursă (cărbune, apă, ulei ) iar pentru
sistemele electroenergetice mici se stochează ca energie chimică (baterii electrice).
b. Frecvenț a sistemului

Frecvenț a sistemului este o consecință a vitezei de rotaț ie a ge neratoarelor sincrone. Prin
creșterea sarcinii, adică a cererii totale , frecvența sistemului ( turația generatoarelor) va
descrește iar prin scăderea sarcinii, aceasta va crește. În zonele în care se realizează reglajul
de frecvență se va efectua o a cțiune automată a reglajului primar și se va restaura frecvența la
valoarea de consemn, valoarea nominală. În condiț ii neperturbate, frecvența sistemului
trebuie sa fie menținută în limite stricte astfel încât să asigure activarea completă ș i rapidă a
instalațiilor de reglaj ca răspuns la o perturbaț ie.
c. Statismul unui g enerator

Statismul unui generator se notează cu sG și este dat de un raport ( adimensional), fiind î n
general exprimat ca un procent:

⁄ [%] relația (2.1)
Variația frecvenței sistemului este definită după cum urmează, î n care fn este frecvența
nominală :
relația (2.2 )
Variația relativă a puterii generate este definită ca, câtul între variaț ia puterii generate
ΔPG a unui generator și puterea lui activă nominală generată PGn.
Contributia unui generator la înlăturarea efectului unei perturbații în rețea depinde î n
principal de statismul generatorului și de rezerva de reglaj a generatorului în cauză . În cazul
unei perturbații minore , contribuț ia generatorului cu statismul m ai mic , la înlăturarea

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

16

efectului perturbației va fi mai mare decât a generatorului cu statismul mai mare. Abaterea de
frecvență care trebuie corectată, la care rezerva de reglaj primar a generatorului cu statismul
mai mic va fi epuizată (adică atunci când puterea generată atinge valoarea maximă P max) va fi
mai mică decât ce a a generatorului cu statismul mai mare, chiar dacă ambele generatoare au
rezerve de reglaj identice.
În cazul un ei perturbaț ii majore, contribuț iile ambelor generatoare la reglajul primar în
condiț ii quasistationare vor fie egale.
d. Principiile de bază ale reglajului p rimar

Diferitele perturbaț ii sau aba terile aleatoare care afectează echilibrul dintre producție ș i
consum, vor provoca o abatere de frecvență, la care vor trebui să reacționeze î n orice moment
regulatoarele primare ale gr upurilor generatoare implicate î n reglajul primar .
Participarea proporțională a reglajului primar și implicarea colectivă a tuturor partenerilor
din interconxiun e este de așa natură încâ t echilibrul dintre puterea generată și cea consumată
va fi imediat restaurat, prin acesta asigurându -se ca frecvența sistemului să fie menținută în
anumite limitele admisibile. În cazul în care frecvența depășeș te limitele admisibile , apar
măsuri suplimentare care nu ț in de reglajul primar, cum ar fi deconecatarea de sarcină
(automată), este cerută și efectuată pentru a menține funcț ionarea sistemului .

Fig. 2.4 Reglajul primar al frecvenței [3]
Regulatoarele modifică puterea livrată de generatoare până când se restabileș te echilibrul
între puterea generată ș i puterea consum ată. De îndată ce acest echilibru este restabilit,
frecvența sistemului se stab ilizează și rămâne la o valoare quasistaționară dar care este

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

17

diferită de valoarea frecvenței de consemn datorită statismului generatoarelor care asigură o
acțiune de tip proporț ional.
e. Principiul acțiunii c omune

Fiecare operator de transport și de sistem – OTS , trebuie să contrib uie la înlăturarea
efectului perturbației în concordanță cu coeficientul să u de contrib uție la reglajul primar .
Acești coeficienți de contribuț ie Ci sunt calculați î n mod regulat pentru fiecare arie/bloc de
reglaj sau partener de interconexiune/OST folosind următoarea relație :

relația (2.3)
în care E i fiind energia electrică generată î n aria/blocul de reglaj ș i Eu, fiind totalul (suma)
producț iei de ene rgie electrică în toate ariile/blocurile de reglaj ale ariei sincrone.
Pentru a se asigura că principiul acț iunii comune este respectat, caracteristicile putere –
frecvență ale rețelei ale diferitelor arii de reglaj trebuie să rămână pe cât posibil constante.

[MW/Hz] relația (2.4)
f. Rezerva de reglaj p rimar
Reverva de reglaj primar total ă pentru î ntreaga arie sin cronă este determinată de către
UCTE pe ba za celor stabilite anterior, luâ nd în considerare măsurările dar și considerațiile
teroretice .
Părțile P pi ce revin ariilor/blocurilor de reglaj sunt definite prin multiplicarea rezervei
calculate pentru aria sincronă cu coeficienții de contribuț ie Ci ale diferitelor arii/bloc de
reglaj.
relația (2.5)
Pentru a restricț iona activarea revervei de reglaj primar la un dezechilibru de putere care
nu a f ost planificat , frecvența sistemului nu trebuie să depașească sau să scadă sub banda de
±20 mHz pentru perioade lungi de timp în condiții de funcț ionare neperturb ată.
g. Timpul de activare a rezervei de reglaj p rimar

Timpul de activare a l revervelor de reglaj primar ale diferitelor arii/blocuri de reglaj ar
trebui să fie pe câ t posibil redus, pentru a minimiza interacțiunea dinamică dintre
ariile/blocurile de reglaj.

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

18

2.2.2 Reglajul secundar
Reglajul primar permite restabilirea balanței la o altă frecvență a sistemului decâ t
valoarea de consemn sub formă de răspuns la un dezechilibru care s -a produs brusc între
generare de putere ș i consum.
Funcț ia reglaju lui secundar este d e a menține sau de a reface echilibrul de putere î n
fiecare arie/bloc de reglaj și în consecință să păstreze sau să readucă frecventa sistemului la
valoarea ei de consemn de 50 Hz. Î n plus, reglajul secundar nu trebuie să stânjenescă acț iunea
reglajului pr imar. Aceste acț iuni ale reglajului secundar vor avea loc simultan ș i continuu atâ t
ca ră spuns la abateri minore (care vor avea loc inevitabil în cursul unei funcționări normale)
cât și ca răspuns la un dezechilibru major între producție ș i consum . Pentru a îndeplini aceste
cerințe î n paralel , reglajul secundar trebuie să fie operat după metoda caracteristicii de rețea .

Fig. 2.5 Reglajul secundar al frecvenței [3]
Conform celor menționate anterior, numai regulatorul ariei/blocului de reglaj î n car e a
avut loc dezechilibrul între generare ș i consum va activa rezerv a de reglaj secundar
corespunzătoare î n propria arie/bloc de reglaj . Parametrii regulatoarelor secundare ale tuturor
ariilor de reglaj trebuie să fie setați astfel încât numai regulatorul d in zona afectată de
perturbație să răspundă și să inițieze activarea puterii de reglaj secundar cerute.

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

19

Pentru a menține acest echilibru, o capacitate din puterea generată, folosită ca rezerva de
reglaj secundar trebuie să fie disponibilă pentru a a coperi ieșirile din funcțiune din centralele
electrice și orice perturbaț ii care afecteaza generarea, consumul ș i transpor tul. Reglajul
secundar se aplică unor unităț i generatoare selectate din centralele electrice , formând astfel o
buclă de reglaj.
Reglajul secundar funcționează pentru perioade de ordinul câtorva minute și de aceea este
disociată î n timp de reglajul primar. Acestă comportare în timp este asociată cu caracteristica
PI (proporț ional -integral) a regulatorului secundar . Reglajul secundar folosește măsurări ale
frecvenței sistemului și ale circulațiilor de putere activă pe liniie de interconexiune ale
ariei/blocului de reglaj.
a. Principiul m etodei caracteristicii de reț ea

Conform acestei metode, fiecare arie/bloc de reglaj este echipată cu un regulator secundar
pentru minimizarea erorii de reglaj a ariei (ACE), G în timp real:
relația (2.6)
în care :
Pmeas fiind suma ci rculaț iilor (transferurilor) de putere activ ă pe liniile de
interconexiune mă surate instantaneu,
Pprog fiind programul de schimb rezultant cu toate ariile de reglaj vecine/adiacente,
Kri fiind factorul K al ariei de reglaj, o constantă setată în regula torul secundar,
fmeas – f0 fiind diferența î ntre frecvența sistemului și frecvența de consemn măsurate
instantaneu.
b. Regulatorul s ecundar

Comportarea dorită a regulatorului secundar în decursul timpului va fi obținută prin
atribu irea unei caracteristici proporț ional – integrale (PI) circuitelor de reglaj . Acțiunea
reglajului secundar se întamplă decât în zona sau în aria de reglaj în care a apărut perturbația,
decât în cazuri exceptionale se cere ajutor din exterior.
Reglajul secundar este foarte important, deoarece el ține tot sistemul, faptul că aici,
frecvența ajunge la valoarea nominală. Fiind vorba de un control centralizat, apar multe
provocări. Având în vedere că este de dorit să obținem abatere nulă, adică eroare staționară
nulă, trebuie să avem un sistem de reglare astatic. R egulatorul secundar va fi de forma PI [1].
Δ = – · –
∫ dt relația (2.7)

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

20

Această formulă a regulatorului secundar (regulatorul central), care se găsește la dispecerul
energetic național din România, este dată în situația unui sistem interconectat, unde :
=eroarea de reglaj( abaterea de putere care apare)
= constanta de timp a regulatorului
= factorul proporț ional.
În momentul în care se intră în acest reglaj, practic se pune centrala pe modul automat și
referința vine direct de la dispecer, adică șeful de centrală nu mai inter vine deloc, puterea
centralei va varia .
Deoarece frecvența sistemului și abaterile de putere trebuie să revină la valorile lor de
consemn în timpul cerut , trebuie să se aplice un termen int egral adecvat. Un termen
proporț ional excesi v de mare poate avea un efect dăunător asupra stabilităț ii funcționării
interconectate. Î n particular, acolo unde se folosesc pentru reglajul secundar centrale
hidroelectrice, există riscul ca o creștere a termenului proporțional să inițieze oscilații în
rețea. Perioada n aturală a oscilației poate varia între 3 ș i 5 secunde și se poate schimba î n
cazul extinderii ariei sincrone .
Setările parametrilor pentru regulatoarele secundare ale tuturor ariilor /blocurilor de reglaj
trebuie să se facă conform unei linii direct oare comune care să asigure o acțiune cooperantă a
reglajului secundar în aria sincronă.
c. Banda și rezerva de reglaj s ecundar

Banda de reglaj secundar este banda de reglare a puterii de reglaj secundar, în interirul
căreia regulatorul secundar poate funcționa automat, în ambele directii (pozitiv sau negativ)
în momentul respectiv, de la punctul de lucru al puterii de reglaj secundar .
Rezerva de reglaj secundar este partea pozitivă a benzii de reglaj secundar între punctul
de lucru și valoarea ma ximă. Partea din banda de reglaj secundar deja activată până la punctul
de lucru este puterea de reglaj secundar.
Dacă, consumul depășeste generația î n mod continuu, indiferent de d isponibilitatea
acestei capacități de rezervă , o acțiune imediată tre buie întreprinsă pentru restabilir ea
echilibrului dintre cele două. Trebuie să fie menținută în permanență o capacitate de transport
suficientă pentru a permite circulația capacităților de rezervă de reglaj și alimentă rilor de
rezervă.
d. Calitatea reglajului î n timpul unor abateri m ari

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

21

Calitatea reglajului secundar trebuie să fie monitorizată prin măsurarea și analiza
reglajului în arii/blocuri de reglaj individuale după pierderi de capacitate de generare sau
sarcină care depășesc 1000 MW.
Datele necesare vor fi transmise de că tre OTS -urile/intreprinderile interconecta te.
Măsurările comportă rii frecvenței sistemului și a schimburilor reciproce în timpul unui
incident permite o analiză statistică a modului în care a funcționat reglajul primar ș i secundar.
Reacția sau ră spunsul ariei sincrone la o perturbație majoră în aria/blocul de reglaj și
revenirea frecvenței sistemului f la valoarea ei inițială (calitatea reglajului secundar) sunt
monitorizate prin folosirea metodei trompetei descrisă mai jos .
Pentru evaluarea calităț ii reglajului secundar în ari/blocuri de reglaj, curbe în formă de
trompetă de tipul ⁄, au fost definite pe baza valorilor obținute din
experiența și din monitorizarea frecvenței sistemului pe perioade de ordinul anilor. Câ nd
frecvența sistemului este menț inută în interiorul trompetei , în timpul procesului de reglaj
secundar terminarea acestuia este socotită a fi satisfăcătoare din punct de vedere al reglajului
tehnic.
Curba trompetă pentru un incident dat va fi trasată folosindu -se urmă toarele valori
 frecvenț a de consemn f0 (în figura de mai jos f 0 = 50,01 Hz)
 frecvența reală f1 înainte de incident (î n figura de mai jos, f1 este diferită de f 0)
 abaterea maximă a frecvenț ei Δ f 2 după incident, față de frecvenț a de consemn f 0
 pierderea capacităț ii de genera re Δ P a care a cauzat incident ul
Între parametrii mentionaț i anterior, se aplică următoarea relație:
relația (2.8)

Valoarea de 1000 MW se aplică numai pentru prima zonă sincronă, în timp ce pentru
zona a doua sincronă, valorea este de 250 MW. Se va aplica curbei trompetă următoarea
relație:
⁄ relația (2.9)
Valoarea A este stabilită pe baza monitorizării frecvenței pe perioade de ordinul anilor.
Frecvența sistemului trebuie restabilită într -o limită de  20 mHz față de frecvența de
consemn, 900 de secunde (15 minte) după momentul producerii unui incident.

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

22

Fig. 2.6 Curba trompetă [3]
Seria de curbe descrie și arată î n figura de mai jos , răspunsul cerut frecvenței sistemului
după o scădere a sarcinii .

Fig. 2.7 Răspunsu l în timp al curbei trompetă pe ntru o variație a sarcinii [3]

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

23

2.2.3 Reglajul terțiar
Este mai mult o rezervă economică , este dispus de dispecer, din cap acitățile programate,
adică ș tim dinainte grupurile care intră în mentenanță de exemplu, și atunci intervine reglajul
terțiar care , trebuie să acopere respectiva pierdere pe partea de generare.
Reglajul terțiar constă în orice schimbare automată sau manuală a punctelor de lucru a
generatoarelor sau sarcinilor participante, pentru:
 a garan ta asigurarea unei rezerve de reglaj secundar adecvate la momentul potrivit
 a distribui rezerva de reglaj secundar la diferite generatoare î n modul cel mai bun posibil,
din punct de vedere economic.
Schimbările pot fi obț inute prin:
 conectarea ș i deconectarea de putere (turbine pe gaze, centrale hidroelectrice cu lac și de
acumulare prin pompaj, creș terea sau reducerea puterii generatoarelor aflate în funcț iune);
 redistribuirea puterii generate de generatoarele participante la reglajul secundar;
 schimbarea programelo r de schimb reciproc de putere î ntre intreprinderile interconectate;
 reglajul sarcinii
Puterea care poate fi conectată automat sau manual î n reglaj terțiar , pentru a se
asigura/reface o rezervă de reglaj secundar, este cunoscută sub denumirea de rezervă de reglaj
terțiar/rezervă de 15 minute. Această rezervă de reglaj terțiar trebuie să fie folosită în așa fel
încât ea să contribuie la reface rea benzii de reglaj secundar atunci când se cere .
Refacerea unei benzi de reglaj secundar adecvate poate necesita de exemplu, un timp de
până la 15 minute, în timp ce reglajul terțiar pentru optimizarea rețelei și a sistemului de
generare nu se va termina în mod necesar în acest timp. Desfășurarea î n timp a diferitelor
acțiuni înlănț uite ale reglajui primar, secundar și terțiar sunt menționate în următoarea figur ă:

Banda de reglaj primar

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

24

Fig. 2. 8 Reglajul terțiar al frecvenței [3]
Rolul esenț ial al reglajului terțiar este acela de a reface rezervele secundare, ș i în cadrul
acestuia se poate realiza și partea de optimizare, a distribuț iei optime a rezervei de reglaj
secundar.
2.2.4 Corecția timpului

Dacă media frecvenței sistemului în zona sincronă deviază de la frecvența nominală de 50
Hz, atunci rezultă o diferență între timpul sincron și timpul coordonat universal (utc). Această
diferență de timp este folosită ca un indicator de performanță pentru reglajul pr imar, secundar
și terțiar (echilibrul de putere) și nu trebuie să depășească 30 de secunde. Centrul de reglaj
Laufenburg din Elveția este responsabil pentru calcularea timpului sincron și organizarea
corectării lui. Corecția implică setarea frecvenței de c onsemn pentru reglajul secundar în
fiecare arie/bloc de reglaj la 49,99 Hz sau 50,01 Hz, în funcție de direcția corecției, pentru
perioade întregi de o zi (de la 0 la 24 de ore).
CAP. 3 REGLAREA AUTOMATĂ A FRECVENȚEI ÎN ENTSOE ȘI
ROMÂNIA
3.1 La nivelul ENTSOE sunt prezente trei tipuri :
3.1.1 RAf – P centralizat

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

25

Fig. 3.1 RAf – P centralizat
În Fig. 3.1 este prezentat un singur regulator cen tral care se regăseș te la ope ratorul de
transport de sistem și comandă î n mod direct toate grupurile reglante.
3.1.2 RAf – P pluralist

Fig. 3.2 RAf – P pluralist
Se aplică în cazul în care, în cadrul aceluiași bloc de reglaj, avem mai mulț i operatori de
transport. De ex emplu : Germania care are 4 ope ratori, ș i fiecare cu re gulatorul lui central,
fiecare își controlează grupurile reglante de la nivelul să u. După cum se poate observa în Fig.
3.2, sunt prezentate mai multe regulatoare centrale, acestea coordonează grupurile reglante
participante la reglaj, alcătuind astfel ariile de reglaj a ferente acestora.
3.1.3 RAf – P ierarhizat
La nivelul acestuia, avem un coordonator al blocului de reglaj, care gestionează
regulatorul secundar, de la nivelul oricărui operator de transport precum și arhitectura
sistemului.

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

26

Fig. 3.3 RAf – P ierarh izat
3.2 La nivelul României avem:
3.2.1 RAf – P centralizat
La nivelul dispe cerului energetic national, se întâmplă reglajului secundar, reglajul de
frecvență, care depinde de frecvenț a nominală , puterea de schimb cu țările vecine și
caracteristica frecvență – putere dată de interconexiuni.

Fig. 3.4 Diagrama bloc a modelului complex de control al frecvenței
La nivelul Ro mâniei , din anul 2004, câ nd s-a intrat î n UCTE , erau 50 de grupuri reglante,
atât hidro electrice cât ș i termo electrice . Mai apoi, s -au realizat teste pentru a vedea ce grupuri
intră în reglajul secundar. S -a dat o treaptă ca mărime de intrare , de 10 MW spre exemplu
pentru a observa cum reacționează grupul la o creștere de la 35 la 40 MW, și se fac
aprecierile : durata regim ului tranzitoriu ( în cât timp ră spunde sistemul la perturbații), dacă
ajunge la o valoare a erorii staționare acceptabile, să nu aibă suprareglaj , etc.

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

27

Dându -se semnalul acesta treaptă, se observă valoarea mă surată. S -au fă cut teste de
aproximare, astfel încâ t să putem observa comportarea grupului. S -au făcut identificări și s -a
constatat că, î n general pentru grupurile hidro electrice, este folosit un sistem de î ntârziere de
ordinul 2, o aproximare foarte bună, cu o anumită întâ rziere, iar pentru grupurile
termo electrice, funcționarea este de tip integral, cu o creș tere în rampă .
CAP. 4 STUDIU DE CAZ. SIMULARE A SCHEMELOR DE REGLARE
4.1 Sisteme de reglare. Regulatoare automate [5]
Sistemele de reglare automat ă sunt sisteme cu circuit închis care își decid
comportamentul față de mărimile externe pe baza mărimii de eroare generate în mod automat,
cu scopul anulării acesteia. Prin intermediul reacției negative este posibilă îmbunătățirea
performanțelor sistemului în circuit închis și rejecția perturbațiilor din cauze externe .

Fig. 4.1 Structura unui sistem de reglare automată [5]
Datorit ă faptului că mă rimea m, de ieșire a elementului de execuție precum și mărimea z,
mărime de intrare pentru traductor, sunt variabile care nu sunt specifice oricărui proces,
acestea pot intra în alcătuirea unei părți fixate conducând astfel la schema funcțională,
compactă a sistemului de reglare automat prezentat în Fig. 4.2

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

28

Fig. 4.2 Schema de funcționare compactă a unui sistem de reglare automat [5]
Regulatorul automat prelucrează mărimea de intrare (referin ța yr), mărimea de ieșire y și/
sau eroarea de reglare ε. Eroarea ε(t) se generează automat în cadrul regulatorului. Se poate
spune că atunci cănd un sistem realizează o sarcină de reglaj trebuie îndeplinită cu exactitate
condiția:
= 0 pentru ∀t ϵ R relația (4.1)

Sistemele de reglare automată se pot clasifica după obiectivul final al funcției de reglare
în două mari categorii:

a. Sisteme de reglare automată convenționale:
– sisteme de rejecție a perturbațiilor (cu referință fixă): în acest caz, sitemul de reglare
automat asigură funcționarea procesului într -un regim staționar fixat prin referință constantă ,
indiferent de acțiunea perturbațiilor ;
– sisteme de urm ărire (cu referință variabilă): funcția de reglare are ca efect final
urmărirea cât mai exactă de către mărimea măsurată amărimii de referință;

b. Sisteme de reglare automată specializate:
– acestea pot fi adaptive, optimale sau extremale.

Sistemele de reglare a utomată se pot clasifica și în funcție de:

a) viteza de variație a mărimii de la ieșire (viteza de răspuns a obiectului condus):

– sisteme de reglare automată pentru procese lente: sunt cele mai răspândite , datorită
faptului că instala țiile tehnologice industriale sunt caracterizate de o anumită inerție;
– sisteme de reglare automată pentru procese rapide: sunt cele destinate, de exemplu,
mașinilor și acționărilor electrice ( reglarea tensiunii generatoarelor, reglarea turației
motoarelor, etc.).

b) numărul de intrări și de ieșiri :

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

29

– sisteme de reglare automată cu o singură mărime de intrare și o singură mărime de ieșire
(mărimea comandată sau mărimea reglată);

– sisteme de reglare automată cu mai multe intrări și ieșiri (cazul sistemelor de reglare
multivariabile),

c) natura comenzii :

– sisteme de reglare automată cu comandă continuă, la care mărimea de ieșire a fiecarui
element component este o funcție continuă de mărimea sa de intrare;

– sisteme de reglare automată cu acțiune discontinuă (discretă), la care mărimea de ieșire
a regulatorului este reprezentată de o succesiune de impulsuri de comandă, fie modulate în
amplitudine sau durată (sistemele cu impulsuri), fie codific ate (cazul siste melor numerice).

d) gradul de complexitate al schemei bloc :

– sisteme de reglare automată cu o singură buclă de reglare;

– sistem de reglare automată cu mai multe bucle de reglare (de exemplu sistemele de
reglare în cascadă )

În cazul în care mărimile perturbatoare sunt accesibile măsurării, funcția de reglare se
poate realiza prin elaborarea unor comenzi în funcție de perturbație, rezultând un sistem de
reglare automată cu acțiune directă .

Dacă se urmărește atât compensarea acțiunii perturbației cât și realizarea funcției de
reglare în raport cu referința yr(t), se poate alcătui o structură de sistem de reglare
combinată .

Fig. 4.3 Schema de funcționare cu sistem de reglare automată combin at
(reglare după referință și perturbație) [5]
O asemenea structură permite realizarea funcției de reglare pe baza unor decizii elaborate
atât în funcție de eroarea ε(t) – regulatorul RA 1, cât și în funcție de perturbația v(t)
accesibilă măsurării – regulatorul RA 2.

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

30

Structura sistemului de reglare în cascadă este o structură de sistem de reglare automată
cu largă aplicabilitate :

Fig. 4.4 Schema de funcționare cu sistem de reglare automată în cascadă
a două variabile z 1 și z 2 [5]
Admițând că procesul condus poate fi descompus în subprocese interconectate cauzal, cu
variabile intermediare accesibile măsurării, se poate alcătui o structură de reglare în cascadă
folosind un număr de regulatoare egal cu numărul variabilelor măsurate di n proces.

Cele două subprocese sunt conectate cauzal, mărimea de execuție (unică) determinând
cauzal evoluția variabilei intermediare z 1, care, la rândul ei, determină cauzal evoluția
variabilei de ieșire din proces.

Regulatorul RA 1 este dest inat reglării variabilei z 1 și compensării acțiunii perturbației v 1,
iar regulatorul principal RA 2 are rolul de a asigura realizarea funcț iei de reglare în raport cu
referința y r, furnizând în acest scop referința pentru regulatorul secundar RA 1. Cele două
regulatoare din cadrul acestei structuri funcționează în regim de urmărire.

4.2 Performanțele sistemelor de reglare automată [5]

În regim dinamic :

a. Suprareglajul : σ =
relația (4.2)
b.
c. Indicele de oscilație: reprezintă variația relativă a amplitudinilor a două depășiri
succesive de același se mn a valorii de regim staționar:

ψ =

relația (4.3)

d. timpul primului maxim sau de atingere a abate rii maxime a mărimii de ieșire în regim
tranzitoriu ;

e. durata regimului tranzitoriu t t definită prin timpul ce se scurge din momentul aplicării
perturbației și până răspunsul sistemului intră într -o bandă de reglaj de ± (2 ÷ 5)% y st;

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

31

f. perioada oscilațiilor T pentru regimul oscilant amortizat

T =
relația (4.4)

g. numărul de oscilații N dacă răspunsul traversează de un număr finit de ori
componenta staționară;

Pe lângă acești indici de performanță princ ipali, se mai pot defini și alții cum ar fi:

– timpul de stabilire: momentul în care se atinge pentru prima dată valoarea staționară a
iesirii;
– timpul de creștere: valoarea subtangentei dusă de la y(t) la 0,5· yst, tangenta fiind limitată
de axa t și de axa y s.

În regim static:

– eroarea staționară = valoarea erorii de reglare în regim staționar (neperturbat,
stabilizat)
relația (4.5)

4.3 Alegerea și acordarea regulat oarelor automate [5]

Elementele care caracterizează un regulator automat și pe baza cărora se pot compara
între ele diferite regulatoare, în scopul alegerii celui mai adecvat tip, sunt următoarele:
– natura fizică a mărimii de intrare și ieșire;
– mediul în care vor lucra regulatoarele;
– gradul de complexitate al procesului și performanțele ce se impun mărimii reglate.
În general, pentru majoritatea proceselor, legile de reglare P, PI, PD sau PID sunt
satisfăcătoare, dar există procese la
care se impun, datorită strategiilor
complexe de conducere, regulatoare
cu structuri speciale, cum ar fi cele
de tip extremal, adaptiv etc. Astfel
de structuri se realizează, însă, de
cele mai multe ori, cu structuri
numerice .

Pentru proiectarea
regulatoarelor automate specializate,
calculul funcției de reglare este
analitic. În cadrul proiectării trebuie
verificate și condiții suplimentare
privind stabilitatea, controlabilitatea
și observabilitatea sistemului sau

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

32

sensibilitatea acestuia.

Proiectarea regulatorului automat se face atât pe baza datelor inițiale, furnizate de
caracteristicile elementului de execuție și ale instalației tehnologice, ce alcătuiesc partea
fixată (procesul) dintr -un sistem de reglare automată, cât și pe baza perfor manțelor de regim
staționar și tranzitoriu ce se urmăresc a fi realizate în cadrul sistemului.

Pentru regimul staționar, se impune, de obicei, valoarea erorii staționare , pentru un
anumit tip de mărime de intrare y ref (treaptă, rampă) și/sau de perturbație.

Referitor la regimul tranzitoriu, se impun, prin datele inițiale de proiectare, valorile
maxime pentru: suprareglaj σși la perturbație μ, durata regimului tranzitoriu t t, în special la
procesele rapide, gradul de amortizare pentru răspunsul la intrare δ și/sau la perturbație v și
timpul de crestere t.

Deoarece parametrii regulatorului automat se pot afla în intervale mult mai largi de valori
decât cele necesare la reglarea procesului respectiv, este necesară operația de acordare a
regulatorului ales. Aceasta constă în ajustarea parametrilor regulatorului Kr, TI, TD. Dacă
aceasta ajustare are ca scop optimizarea procesului reglat conform unui anumit criteriu, de
exemplu minimizarea erorii, ea devine o acordare optimă a regulatoarelor automate.

Pentru alegerea, proiectarea sau acorda rea regulatoarelor este necesară cunoa șterea câ t
mai e xactă a caracteristicilor procesului ce urmează a fi reglat.

În practică, de multe ori, aceste caracteristici sunt ridicate experimental. În acest scop se
consideră elementul de execuție, instalația tehnologi că și traductorul de reacție ca formând
partea fixată (PF) a sistemului de reglare automată (Fig. 4.6 ) și i se aplică un semnal de
comandă de tip treaptă, urmărindu-se evoluția în timp a mărimii de ieșire . Prin această
metodă de identificare experimentală se apreciază parametrii de bază ai părții fixate: factorul
de amplificare KPF, constanta de timp TPF și timpul mort η .

Fig. 4.6 Schema bloc a sistemului de reglare automată

4.4 Criterii care realizează o acordare optimă [5]
1. Sinteza sistemelor de reglare automat ă pornind de la funcția de transfer în
circuit închis dorită

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

33

Criteriul permite acordarea optimă a regulatoarelor pe baza impunerii unei funcții de
transfer în circuit închis , astfel încât să fie satisfăcute performanțele de regim
tranzitoriu și staționar dorite:

relația (4.6)
Astfel, cunoscându -se funcția de transfer a părții fixate a sistemului, rezultă funcția de
transfer a regulatorului:

relația (4.7)
În practică, orice sistem, complex sau nu, poate fi aproximat cu un sistem de ordinul II.

relația (4.8)
Pentru un sistem de ordinul II, valoarea parametrilor și determină performanțele de
regim tranzitoriu ale sistemului iar , factorul de amortizare al sistemului determină
perfo rmanțele de regim staționar.
În condițiile în care cerințele de performanță impuse nu pot fi satisfăcute cu ajutorul unui
model de ordinul doi, se vor adăuga acestui model poli și zerouri astfel încât performanțele
sistemului să fie satisfăcute cât mai bi ne. Se obține astfel un model al sistemului sub forma:



relația (4.9)
unde și reprezintă poli și zerouri suplimentari introduși în model pentru satisfacerea
performanțelor dorite.
2. Criteriul modului. Varianta Kessler
Este un criteriu ce permite acordarea optimă a regulatoarelor destinate proceselor rapide
(fără timp mort Criteriul asigură o bună comportare a sistemelor de reglare automată
la anumite clase de referințe și perturbații.
Dacă funcția de transfer a părții fixate (procesul) nu conține poli în origine, atunci se
poate scrie sub următoarea formă:

∏ ∏( ) relația (4.10)
unde sunt constantele principale și constantele de timp parazite ( .
Dacă se notează cu = ∑ se poate rescrie

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

34

∏ relația (4.11)
Pentru o astfel de funție de transfer este necesar un regulator a cărui funcție de transfer să
fie de forma:
∏( )
relația (4.12)
cu și .
Dacă funcția de transfer a părții fixate (procesul) are un pol în origine:

∏ ∏( ) relația (4.13)
Rezult ă:
∏ relația (4.14)
se adoptă pentru regulator o funcție de transfer:
∏( )
relația (4.15)
cu și
Criteriul asigură precizia sistemului la intrare treaptă, = 4.5% și o durată a procesului
tranzitoriu de = 6.73
Criteriul este destinat acordării optime a sistemelor de reglare automată destinate
proceselor rapide ( reglajului de tensiune la generator, acționării electrice, etc.).
3. Criteriul suprafeței minime a erorii (Ziegler -Nichols) de acordare experimentală
optimă a regulatoarelor automate liniare și continue
Criteriul fa ce p arte din categoria metodelor experimentale de acordare, bazate pe
atingerea limitei de stabilitate. Aceste metode nu necesită identificarea prealabilă a modelului
părții fixate, ele aplicându -se cu bucla de reglare în funcțiune, cu referința și perturb ațiile
menținute constante și cu modificarea parametrilor regulatorului, până ce sistemul de reglare
automată atinge limita de stabilitate. Este un criteriu de minimizare a erorii dintre răspunsul
real și ideal.
Ținând seama de o serie de particulari tăți (sisteme cu regim oscilant sau sisteme cu eroare
staționară nenulă , Ziegler și Nichols au propus următoarea metodologie de acordare
a regulatorului automat:
 se trece regulatorul pe legea de comandă proporțională P

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

35

 se mărește factorul de amp lificare al acestuia (se micșorează banda de
proporționalitate BP) până când se ajunge la limita de stabilitate, sistemul fiind deci sediul
unor oscilații întreținute și se notează perioada oscilațiilor cu și amplificarea la limita de
stabilitate (
Criteriul este aplicabil în forma clasică pe o structură simplă de sistem de reglare
automată cu o singură mărime de intrare și o singură mărime de ieșire.

Fig. 4.7 Schema bloc a sistemului de reglare automată
reprezintă partea fixată a sistemului de reglare automată
reprezintă funcția de transfer a sistemului compensator/regulator.
În acest caz sistemul compensator este un regulator PID pentru care dependența dinamică
între mărimea de comandă u(t ) și mărimea de eroare este de forma:

relația (4.16)
unde:
u(t) reprezintă mărimea de comandă (ieșirea regulatorului);
este eroare a;
este constanta de proporționalitate;
este constanta de integrare;
este constanta de derivare.
Expresia este valabilă pentru sisteme cu acțiune inversă.
relația (4.17)
Relația anterior definită este folosită pentru alegerile de tip paralel sau cu amplificare
independentă. O altă formă de prezentare pentru interdependența intrare – ieșire a unu i
regulator PID este:

relația (4.18)

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

36

Constantele reprezintă:
= amplificare de comandă
= constanta de timp de integrare
= constanta de timp de derivare
Se pune în evidență interdependența celor două familii de parametrii:
relația (4.19)

relația (4.20)
relația (4.21)
Stabilirea parametrilor regulatorului PID cu ajutorul criteriului Ziegler -Nichols este de o
complexitate scăzută și se bazează exclusiv pe limita de stabilitate a sistemului funcționând în
circuit închis. Este necesar să se stabilească factorul de amplificare limită, deci factorul de
amplificare care asigură funcționarea auto -oscilantă a sistemului în circuit închis . De
asemenea este necesară stabilirea perioadei de oscilație pentru un astfel de regim.
Dacă vom nota valoarea amplificării care asigură funcționarea la limita de stabilitate
și perioada de auto -oscilație a sistemului, parametrii regula torului se determină pe baza
următoarelor relații:
Tabelul 4.1 Stabilirea parametrilor regulatoarelor automate liniare forma I
Regulator
P 0.5 – –
PI 0.45

PID 0.6

Valorile acestor parametrii caracterizează structura regulatorului din relația 4.16.
Conversia valorilor parametrilor pentru forma de prezentare a relației 4.18, se regăsește în
tabelul următor:

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

37

Tabelul 4.2 Stabilirea parametrilor regulatoarelor automate liniare forma II
Regulator
P 0.5 – –
PI 0.45 0.54 –
PID 0.6 1.2 0.075

Metoda este extrem de simplă și ușor de aplicat, însă nu furnizează informații referitore la
performanțele sistemului. Se recomandă evaluarea comportării sistemului în buclă închisă cu
regulatorul prin simulare, după realizarea operației de sinteză.
4.5 Modelarea element elor din structura de reglare a frecvenței și puterii active
Pentru a realiza un model de simulare pentru o schem ă de reglare a turației unei turbine
dintr-un grup turbogenerator ce participă la reglajul de frecvență din sistem au fost
considerate mo delele subsistemelor componente sub forma unor funcții de transfer.
4.5.1 Modelul regulatorului de viteză
Vom considera următoarea schemă:

Fig. 4.7 Sistem de turbină cu regulator automat al vitezei [6]
În Fig. 4.7 este prezentat un sistem de reglare automat ă a turației unei turbine cu abur.
Sistemul este alcătuit din următoarele componente:

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

38

1. Regulatorul de viteză centrifugal : Acesta este inima sistemului care simte
schimbarea de turație (de frecvență). Pe măsură ce crește viteza, componentele dinamice ale
regulatorului se mișcă spre exterior și punctul B de pe mecanismul de legare se mișcă în jos.
Reversul se întâmplă atunci când turația scade.
2. Amplificator hidraulic: cuprinde o supapă pilot și un piston principal. Prin
acționarea supapei pilot se poate crește puterea. Acest lucru este necesar pentru a deschide
sau închide supapa de abur împotriva aburului cu presiune ridicată.
3. Mecanismul de legare: ABC este o legătură rigidă pivotată ; B și CDE este o altă
legătură rigidă pivota tă la acest mecanism, care asigură o mișcare a supapei de control
proporțional ă cu schimbarea turației . De asemenea, oferă o reacție din partea mișcării supapei
de abur (legătura 4).
4. Modul de schimbare a vitezei (Schimbător de viteză) : asigură o setare a puterii la
starea de echilibru pentru turbină. Mișcarea descendentă deschide supapa pilot superioară,
astfel încât mai mult abur să fie admis la turbină în condiții stabile (prin urmare, puterea de
producție devine constantă). Reversul se întâm plă pentru mișcarea în sus a schimbătorului de
viteză.
Să presupunem că sistemul funcționează inițial în condiții stabile – mecanismul de legare
este fixat , supapa pilotă închisă, supapa de abur deschisă cu o magnitudine definită, turbina
funcțion ează la turație constantă, realizând un echilibru al sarcinii generatorului dat de
puterea electrică produsă la ieșire . Condițiile de funcționare sunt caracterizate de:
= frecvența sistemului (frecvența nominală)
putere genreată de turbină/generator
valvă de reglare abur (mărime de reglare)
Vom obține un model cu o creștere liniar ă în jurul acestor condiții de funcționare. Vom
lăsa punctul A de pe mecanismul de legare să fie deplasat în jos cu o mică valoare .
Aceasta este o comandă care determină schimbarea puterii de ieșire a turbinei și poate fi, prin
urmare, scrisă ca:
= k C · ΔP C relația (4.22)
unde ΔP C este semnalul care comandă creșterea puterii.
Semnalul de comandă ΔP C (adică Δy E) pune în mișcare o serie de evenimente – supapa
pilot se deplasează în sus, uleiul sub înaltă presiune curg e pe partea superioară a pistonului
principal, deplasându -l în jos; deschiderea supapei de abur crește în consecință, turația
generatorului turbinei crește, adică frecvența va crește. Vom modela aceste evenimente
matematic.
Doi factori contribuie la deplasarea punctului C:

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

39

1. contribuie astfel: (
) sau adică, cu alte cuvinte
2. Creșterea în frecvență Δf impune componetelor dinamice să se deplaseze spre exterior
astfel încât punctul B să se deplaseze în jos cu o anumită valoare . Consecin ța deplasării
punctului C astfel încât punctul A să rămână fix at în valoarea este (
)
, adică în jos.
Deplasarea totală a punctului C este dată de:

relația (4.23 )

Deplasarea puncului D, cu valoarea reprezentând valoarea cu care se va deschide
supapa pilot. La aceasta contribuie și iar relația poate fi scrisă astfel:

= (
) (
) = relația (4.24 )

Deplasarea , în funcție de semnul său, deschide unul dintre orificiile su papei pilot
care admite ulei sub presiune înaltă în cilindru, deplasând astfel pistonul principal și
deschizând supapa de abur cu . Anumite ipoteze justificabile de simplificare, care pot fi
făcute în acest stadiu, sunt:

1. Forțele de reacțiune inerțiale ale pistonului principal și ale supapei de abur sunt
neglijabile în comparație cu forțele exercitate asupra pistonului cu ulei de înaltă presiune.
2. Ca o consecință a ipotezei de mai sus , rata de ulei admisă în cilindru este
proporțională cu deschiderea portului .

Deplasarea este obținută prin împărțirea volumului de ulei la suprafața secțiunii
transversale a pistonului. Prin urmare :

· ∫
relația (4.25 )
Aplicând transformata Laplace pe ecuațiile (4.10), (4.11) și (4.12 ) obținem următoarele
relații:
relația (4.26)
relația (4.27)

relația (4.28 )
Eliminând și putem scrie:

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

40

=
(
) = *
+ (
) relația (4.29 )
unde:
R =
= constanta regulatorului de reglare a vitezei relația (4.30 )

= amplificarea regulatorului de viteză relația (4.31 )
=
= constanta de timp a regulatorului relația (4.32 )
Ecuațiile de mai sus se pot reprezenta sub formă de diagram ă block ca în figur a 5.8

Fig. 4.8 Diagrama bloc a regulatorului automat de viteză

Se poate observa, modelul de generator este aproximat cu un sistem de ordinul I având
funcția de transfer :

relația (4.33)
4.5.2 Modelul de turbin ă a fost realizat după urmă toarele considerente :
Am analizat răspunsul dinamic al unei turbine cu abur în ceea ce privește modificarea
puterii la ieșire (putere generată) o dată cu deschiderea valvei de admisie a debitului de agent
motor ΔyE.
Fig. 4 .9 prezintă o turbină cu abur în două trepte prevăzută cu un preîncălzitor (o unitate
de preîncălzire a aburului).
Răspunsul dina mic este influențat de doi factori, și anume:
a). aburul antrenat între supapa de admisie și prima treaptă a turbinei
b). acțiunea preîncălzitorului care preia din căldura produsă în corpul de înaltă presiune și
o transmite corpului de joasă presiune

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

41

Fig. 4.9 Turbin ă cu abur în două trepte
Astfel, funcția de transfer a turbinei este caracterizată de două constante de timp. Pentru a
simplifica analiza, se va presupune, că turbina poate fi modelată pentru a avea o singură
constantă de timp echivalentă.

Fig. 4.10 Modelul de turbin ă
unde : ΔY E (s) = debitul de agent motor (mărime de intrare)
ΔPt (s) = Puterea produsă de turbină (mărime de ieșire)
Fig. 4.10 prezintă modelul funcției de transfer al unei turbine cu abur. În mod obișnuit,
constanta de timp T t, se află în intervalul 0,2 până la 2,5 secunde. Se poate observa, că funcția
de transfer a modelului de turbină este un sistem de ordinul I cu funcția de transfer dată de
următoarea relație:

relația (4.34 )
Se menționează că, timpul de lansare Tt al turbinei, reprezintă timpul de accelerare a
turbinei de la turația de mers în gol n 0 la turația nominală n nom cu clapeta de admisie a
agentului motor deschisă la maxim.
4.5.3 Modelul generatorului
Creșterea puterii la intrare a în sistemul generatorului este:
ΔPG – ΔPD relația (4.35)
unde ΔP G = ΔP t, este puterea generată de turbină, la ieșire (presupunând că pierderile care vin
o dată cu această creștere sunt neglijabile) și ΔP D este creșterea de sarcină.

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

42

Această creștere a puterii la intrarea în sistem este calculată (reprezentată) în două
moduri:
1. Rata de creștere a energiei cinetice stocate în rotorul generatorului. La frecvența
nominală energia stocată este dată de :

= H · [kWs], [ KJ ] relația (4.36)
unde P r este puterea în kW a turbogeneratorului și H este definită ca fiind constanta de
inerției sale, măsurată în secunde.
Energia cinetică este proporțional ă cu pătratul vitezei (frecvenței ). La o frecvență de ( f 0 +
Δf) aceasta este dat ă de următoarea relație :
= (
)
(
) relația (4.37)
Variația energiei cinetice este prin urmare :

relația (4.38)
2. Odată cu modificarea frecvenței, schimbare a încărcării în raport cu frecvența, adic ă
⁄ poate fi considerată aproape constantă pentru mici modificări în frecvență și poate fi
exprimată ca :
⁄ relația (4.39 )
unde B este o constantă ce poate fi determinată empiric.
Se scrie apoi ecuația de bilanț de puteri și vom obține:
ΔPG – ΔPD =

relația (4.40)
Raportând ambii membrii la puterea turbogeneratorului (P r) și re ordonând termenii, vom
obține valori în unități relative :
ΔPG – ΔPD =

relația (4.41)
Folosind transformata Laplace, putem scrie ΔF(s) astfel:
ΔF(s) =

= (
) relația (4.42 )
unde, Tg =
= constanta de timp a sistemului relația (4.43)

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

43

Kg =
= amplificarea sistemului relația (4.44)
Ecua ția (4.42) poate fi reprezentată sub formă de diagramă block conform Fig. 4.11:

Fig. 4.11 Reprezentarea diagramei bloc a modelului de generator
Se poate observa, că modelul de generator, ca și în cazul modelului de turbină este un
sistem de ordinul I având funcția de transfer:

relația (4.45)
O reprezentare completă în bloc a unui sistem energetic izolat cuprinzând turbină,
generator, regulator și sar cină este ușor obținută prin alăturarea diagramelor bloc a
componentelor individuale, adică prin combinarea Fig. 4.8 , 4.10 și 4.11. Schema bloc
completă cu buclă de reacț ie este prezentată în Fig. 4 .12.

Fig. 4.12 Diagrama bloc a modelului complex de control al frecvenței
Modelul din Fig. 4.12 arată că există două intrări incrementale importante ale sistemului
de control al frecvenței sarcinii – ΔPC, schimbarea setării schimbătorului de viteză; și ΔP D,
modificarea cererii de sarcină. Să considerăm o situație simplă în care schimbătorul de viteză
are o setare fixă (adică ΔP C = 0) și sarcina se modifică. Aceasta este cunoscută sub denumirea
de funcționare liberă a regulatorului . Pentru o astfel de operațiune, schimbarea constantă a
frecvenț ei sistemului pentru o variație bruscă a sarcinii cu o valoare ΔPD adică ΔP D(s) = ΔP D /
s se obțin următoarele :

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

44

ΔF(s) –
( ) ⁄
( )
cu relația
(4.46)
Δf = s ΔF(s) = – (
⁄) relația (4.47)
În timp ce factorul de amplificare K t este fix pentru turbină și K g este fix pentru sistemul
de putere, K RAV = factorul de amplificare al regulatorului de viteză este ușor reglabil prin
schimbarea lungimilor diferitelor leg ături. Se presupune pentru simpli ficarea calculelor că:
relația (4.48)
De asemenea, putem spune că, Kg =
unde B =
⁄ în unități relative. Acum
(
⁄) relația (4.49)
Scăderea cererii în sistem = B· (
) relația (4.50)
Desigur, condiția de scădere a sarcinii sistemului este mult mai mică decât creșterea în
generare. Pentru valorile lui B și R citate anterior se menționează:
Δ relația (4.51)
Scăderea cererii în sistem = 0.029 Δ relația (4.52)
Ținând cont că
, adică obținem :
ΔF(s)
( ) ⁄
cu relația (4.53)
Δf = s ΔF(s) = (
⁄) relația (4.54)
relația (4.55)
(
⁄) relația (4.56)
Dacă setarea schimbătorului de viteză este modificată cu ΔP C în timp ce cererea de
sarcină se modifică cu ΔP D, schimbarea frecvenței de echilibru se obține prin suprapunere,
adică:
(
⁄) relația (4.57)

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

45

Potrivit relației (4.41), modificarea frecvenței este cauzată de cererea de sarcină și poate fi
compensată prin schimbarea setării schimbătorului de viteză, adică:
pentru relația (4.58)
4.5.4 Funcționarea Raf -P în reglaj primar ș i secundar – exemplu de calcul
Exemplul 1 : Un generator sincron cu o pu tere de 100 MVA funcționează la maxim în
sarcină, la o frecvență de 50 Hz. Sarcina este brusc redusă la 50 MW. Datorită decalajului de
timp în sistemul de reglare, supapa de abur începe să se închidă după 0,4 s. Determinați
schimbarea frecvenței care apare în acest moment. Având în vedere c ă: H = 5 kWs / kVA din
capacitatea generatorului.
Energie cinetică stocată în părțile rotative ale generatorului și turbinei
= 5 x 100 x 1000 5 x kWs
Energia introdus ă în piesele rotative în 0.4 s
= 50 MW = 50 x 1000 x 0.4 = 20.000 kWs
Energia cine tică stocată (frecvență): Frecvenț a dup ă durata de 0.4 s
= 50 x (
)
= 51 Hz
Exemplul 2: Două generatoare de 200 MW și 400 MW funcționează în paral el cu
statismele de 4% și 5%.
*Presupunând că genera toarele funcționează la 50 Hz fără sarcină, cum ar fi împărțită
între ele o putere de 600 MW?
*Care va fi frecvența sistemului la această încărcare?
Soluție : Deoarece generatoarele funcționează în paralel, acestea vor funcționa la
aceeași frecvență, la sarcină constantă și
– sarcina la generator 1 (200 Mw) = x MW
– sarcina la generatorul 2 (400 MW) = (600 -x) MW
– Reducerea frecvenței = ∆f
Acum ,

Echival ând ∆f în (i) și (ii), obținem :

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

46

x = 231 MW (încărcarea pe generatorul 1)
600 – x = 369 MW ( încărcar ea pe generatorul 2)
Frecvența sistemului = 50 –

Se observă aici că, datorită diferenței caracteristicilor de declanșare ale regulatoarelor de
presiune, generatorul 1 devine supraîncărcat în timp ce generatorul 2 este descărcat. Rezultă
ușor că, dacă ambele regulatoare de presiune au o scădere de 4%, aceștia vor împărți
încărcarea de 200 MW și, respectiv, de 400 MW, adică sunt încărcați corespunzător cu
randamentelor lor. Este într -adevăr de dorit din considerente opera ționale.
4.5.5 Răspunsul sistemului în regim dinamic
Pentru a obține răspunsul dinamic care dă comanda de modificare a frecvenței ca funcție
de timp pentru o schimbare de pas în sarcină, trebuie să obținem inversul transformatei
Laplace a ecuației 4.30. Ecuația caracteristică a răspunsului dinamic este de ordinul al treilea
dar poate fi obținută numai pentru un caz numeric specific. Cu toate acestea, ecuația
caracteristică poate fi aproximată ca una de ordinul întâi, examinând mărimile relative ale
constantelor de timp implicate. Valorile constantelor de timp ale sistemului de control al
frecvenței sunt următoarele:
< relația (4.59)
Cu = 0.4 s ; ;
Considerând = și , diagrama bloc se reduce astfel, conform Fig.
4.13

Fig. 4.13 Diagrama bloc a modelului simplificat de control al frecvenței
Analizând schema de mai sus, putem scrie:

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

47

F s
( ⁄ )

relația (4.60)
Δf(t) =
{ [
(
)]} relația (4.61)
Considerând următoarele valori pentru parametrii schemei de mai sus,
R = 3; ⁄
obținem: Δf(t) = – 0.029·(1 – rezultă Δf(t) = – 0.029 [Hz] relația (4.62)
Având toate datele cunoscute și toate subansamblurile de diagrame bloc ce compun
schema finală de reglare a frecvenței și puterii active , am reușit să gasesc un model valid, și
împreună cu aceste date, să simulez procesul cu ajutorul programului MatLab/Simulink.
Schema de simulare este prezentată în figura de ma i jos.

Fig. 4.14 Schema de reglare a frecvenței și puterii active cu comparație între modelul simplificat și
cel complex
În Fig. 4.14 se face comparație între modelul de simulare simplificat, considerând doar
funcția de transfer a generatorului și modelul complex cu toate funcțiile de transfer aferente
sistemului de reglare.

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

48

Considerând :
= 0.4 s ; s; s; ; R = 3; ⁄

Rezultatul obținut se poate observa în Fig. 4 .15

Fig. 4.15 Răspunsul în regim dinamic la modificarea frecvenței
S-au reprezentat ră spunsurile pentru cele două scheme de reglare: pentru modelul
simplificat al grupului generator ș i pentru modelul complex . Modelul simplificat foloseș te
constantele de timp nule iar modelul complex consideră toate componentele ce alcătuiesc
structura de reglare .
Pentru a obseva răspunsul în regim dinamic la modificarea f recvenței se aplică o treaptă
pozitivă ca perturbație și se observă variația frecvenței în timp.
Din Fig. 4.15 rezultă performantele în regim tranzitoriu și în regim stationar pentru
sistemul de ordin II:
– suprareglaj ζ = 0.047,
– durata regim ului tranzitoriu sec. (se stabilizează după aproximativ 13 .5
secunde ),
– eroare staționară εst = 0.029 Hz.

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

49

4.5.6 Reglarea frecvenței cu regulator de tip PI (Proporț ional – Integra l)
Având î n vedere faptul că se dorește obținerea frecvenț ei nominale de 50 [Hz], este
necesară o acordare a regulatorului de frecvență astfel încât să se obțină eroare staționară
nulă.
Din Fig. 4.15 se observă că, odată cu sistemul de reglare al turației instalat pe fiecare
mașină, caracteristica statică frecvență – putere activă produce la o variaț ie a
sarcinii/co nsumului o abatere considerabilă. De ex emplu, sistemul utilizat conduce la o
scădere a frecvenței de 2,9 Hz într-un ciclu complet de creș tere a consumului. Rezultă că
funcționarea reglajului de frecvență/turaț ie a grupului generator se realizează cu eroare
staționară diferită de 0.
Abaterile de frecvență ale sistemului sunt destul de stricte și nu pot fi tolerate atât de
mult. În timp ce f recvența poate fi readusă la valoarea programată prin reglarea setării
schimbătorului de viteză, sistemul poate suferi modificări de frecvență dinamice intolerabile
cu modificări ale încărcării. Deci este necesară introducerea unei compo nente integrale î n
structura regulatorului.
Semnalul ΔPC generat de comanda integr ală trebuie să fie de semn contrar lui ΔF. Acum
eroarea staționară a fost redusă la zero prin adăugarea regulatorului de tip integral. Acest
lucru poate fi argumentat și fizic. Δ f atinge starea de echilibru (o valoar e constantă) numai
atunci când Δ PC și ΔPD sunt constante . Din cauza acțiunii de integrare a regulatorului , acest
lucru este posibil numai dacă Δ f = 0. În controlul frecvenței într-o zonă de control dată,
variația (eroarea) în frecvență este cunoscută sub denumirea de eroare de control al zonei
(ACE).
Dinamica regulatorulu i proporțional – integral poate fi studiată doar numeric, sistemul
fiind de ordinul patru – ordinul sistemului a crescut cu o unitate prin adăugarea unei bucle
integrale .

( ) (

)
( )
relația (4.63 )
Rezultă:

( )
relația ( 4.64)

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

50

Fig. 4.16 Schema de reglare a frecvenței în simulare utilizând un regulator PI pentru restabilire
În Fig. 4.16 , se face comparație între modelul de simulare cu regulator de tip P
(Proporțional) si modelul de simulare cu un regulator de tip PI (Proporțional – Integral) PI
pentru reglarea turației grupului.

Fig. 4.17 Răspunsul în regim dinamic la modificarea frecvenței pen tru o setare a treptei în sarcină
utilizând un regulator PI pentru restabilire

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

51

Conform Fig. 4.17 , eroarea staționară a devenit nulă rezultând astfel o revenire a
frecvenței la valoarea de consemn (valoarea nominală) de 50 Hz.
Pentru sistemul de reglare al frecvenei (reglaj secundar) rezultă performanțele în regim
tranzitoriu și staționar :
-suprareglaj ζ = 0.043,
– durata regimului tranzitoriu sec. (se stabilizează după aproximativ 18 secunde) ,
– eroare staționară εst = 0 Hz.

Fig. 4.18 Schema de funcționare pentru reglarea automată a frecvenței și puterii active
Schema funcțională pentru reglarea automată a frecvenței ș i puterii active este
reprezentată în Fig. 4.18 , și constituie o reglare complexă, în cascadă , de tip ierarhizat. Există
bucla de reglare a turaț iei turbinei, perturbată de variația de sarcină mecanica Δ YE și bucla de
reglare a frecvenței ș i puterii active, perturbata de varia țiile de sarcină electrică ΔP D.

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

52

CAP.5 CONCLUZII
Reglarea automată a frecvenței și puterii active este una dintre cele mai importante
automatizări din industria energetică realizând astfel echilibrul între puterea consumată și
puterea produsă. Modificarea frecvenței influențează turația anumitor consumatori, efect ce
poate afecta procesele de producție. Mai mult, este necesar să se mențină constantă frecvența
rețelei astfel încât centralele electrice să funcționeze în mod satisfăcător în paralel, diverse
motoare care funcționează în sistem să funcționeze la turația dorită, timpul corect fiind
obținut de la ceasurile sincrone din sistem.
Lucrarea de față își propune să realizeze un sistem de reglare pornind de la modelul
procesului, pentru care se cunosc parametrii aferenți funcțiilor de tr ansfer echivalente.
Neavând astfel un model complet pentru a realiza simularea procesului, a fost nevoie de
alcătuirea acestuia din subsisteme, cum ar fi: modelul regulatorului de viteză, modelul de
turbină și modelul de generator care, după considerente t eoretice au fost aproximate cu
sisteme de ordinul I.
Am făcut comparație între modelul de simulare simplificat, considerând doar funcția de
transfer a generatorului și modelul complex cu toate funcțiile de transfer aferente sistemului
de reglare. S-au repr ezentat astfel, răspunsurile pentru cele două scheme de reglare: pentru
modelul simplificat al grupului generator și pentru modelul complex . Modelul simplificat
folosește constantele de timp nule iar modelul complex consideră toate componentele ce
alcătuie sc structura de reglare folosind un regulator de tip P. Pentru a obseva răspunsul în
regim dinamic la modificarea frecvenței se aplică o treaptă pozitivă ca perturbație și se
observă variația frecvenței în timp.
Am putut observa că, sistemul este unul de ordin II, cu un suprareglaj ζ = 0.047, se
stabilizează după aproximativ 13 .5 secunde, deci durata regim ului tranzitoriu este
sec. și eroare staționară εst = 0.029 Hz.
Având în vedere faptul că se dorește obținerea frecvenței nominale de 50 [Hz], este
necesară o acordare a regulatorului de frecvență astfel încât să se obțină eroare staționară
nulă.
S-a constatat că, odată cu sistemul de reglare al vitezei instalat pe fiecare mașină,
caracteristica statică frecvență – putere activă produ ce la o variație a sarcinii/consumului o
abatere considerabilă. Rezultă că funcționarea reglajului de frecvență/turație a grupului
generator se realizează cu eroare staționară diferită de 0.
Abaterile de frecvență ale sistemului sunt destul de stric te și nu pot fi tolerate atât de
mult. În timp ce frecvența poate fi readusă la valoarea programată prin reglarea setării
schimbătorului de viteză, sistemul poate suferi modificări de frecvență dinamice intolerabile
cu modificări ale încărcării. Deci este necesară introducerea unei componente integrale în

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

53

structura regulatorului. Făcând posibil acest lucru, eroarea staționară a fost redusă la zero prin
adăugarea regulatorului de tip integral. Acest lucru poate fi argumentat și fizic: Δf atinge
starea de ech ilibru (o valoare constantă) numai atunci când ΔP C și ΔP D sunt constante. Din
cauza acțiunii de integrare a regulatorului, acest lucru este posibil numai dacă Δf = 0. În
simulare, s-a făcut comparație între modelul de simulare cu regulator de tip P (Proporț ional)
si modelul de simulare cu un regulator de tip PI (Proporțional – Integral) PI pentru reglarea
vitezei grupului pentru a vedea dacă frecvența a ajuns la valoarea de consemn. Conform
simulării, eroarea staționară a devenit nulă rezultând astfel o reve nire a frecvenței la valoarea
nominală, de 50 Hz.
Schema funcțională pentru reglarea automată a frecvenței și puterii active constituie o
reglare complexă, în cascadă, de tip ierarhiza t.

Universitatea POLITEHNICA din București
FACULTATEA DE E NE RGETICĂ
Departamentul de Sisteme E lectroenergetice
060042 București, Splaiul Independenței, nr. 313, sector 6

54

CAP.6 BIBLIOGRAFIE
[1]. D. Mihoc, S. St. Iliescu, I. Făgărășan, Gh. Tăranu, G. Matei, Automatizarea
sistemelor electroenergetice, Ed. Printech, București, 2008

[2]. Codul Tehnic al Rețelei Electrice de transport. TRANS -ELECTRICA S.A., 2000

[3]. ***, S. St. Iliescu, N. Arghira, Conducerea și automatizarea instalațiilor energetice –
notițe de curs, Facultatea de Energetică, Universitatea Poilitehnica din București,
2018

[4]. Manualul de Operare UCTE – Anexa 1: Reglaj Frecventa -Putere, Efectuare (proiect
final 1.7 E, 31.12.03) A1 -1

[5]. Sergiu Steli an ILIESCU , Teoria reglării automate, Editura Proxima, București 2006.
ISBN(10): 973 -7636 -15-5

[6]. Reprintare cu permisiune – McGraw -Hill book Co, New York, from Olle I. Elgerd:
Electric Energy System Theory: An Introduction, 1971, p 322

[7]. Studiu UCTE, Load -Flow Analysis with Respect to a Possible Synchronous
Interconnection of Networks of UCTE and IPS/UPS, May 2003

[8]. Shahidehpour, M., Yamin, H., Li, Zuyi, Market Operations in Electric Power Systems,
IEEE, Wiley, Interscience N.Y., 2002

[9]. S. ST. Iliescu, I. Făgărășan, D. Pupăză, Analiza de sistem în informatica industrială,
Editura AGIR, ISBN (10): 973 -720-091-8, București, 2006

[10]. ***, Triștiu, I., Rețele electrice – notițe de curs, Facultatea de Energetică ,
Universitatea Poilitehnica din București , 2017

[11]. ***, Documentație tehnică Matlab – Simulink

[12]. ***, Bulac C., Teoria și modelarea sistemelor electroenergetice – notițe de curs,
Facultatea de Energetică, Universitatea Poilitehnica din București, 201 7

[13]. ***, Pătrașcu M., Ingineria reglării automate – notițe de curs, Facultatea de
Energetică, Universitatea Poilitehnica din București, 2017

[14]. Bulac C., Eremia M., Dinamica sistemelor electroenergetice, Ed. Printech, București,
2006

Similar Posts