DYNAMICSYSTEMS.APPLICATIONSINTECHNICAL DumitruBĂLĂ1,a* 1CălugăreniStreet,DrobetaTurnuSeverin,România a*dumitru_bala@yahoo.com… [614015]
DYNAMICSYSTEMS.APPLICATIONSINTECHNICAL
DumitruBĂLĂ1,a*
1CălugăreniStreet,DrobetaTurnuSeverin,România
a*[anonimizat]
Keywords:stability,Leapunovfunction,primeintegralLagrangian,stabilitycharts
Abstract.Thepaperincludesthestudyofthestabilityofsomedynamicalsystemsgivenbysystems
ofdifferentialequations.Oftheannalysedsystems,somerepresentmechanicalvibratingsystems.
Introduction
Generally,themovementofamaterialpointorofasystemofmaterialpointscanbedescribedwith
thehelpofthedifferentialequations.Theproblemoftheintegrationofthedifferentialequationsorof
thesystemsofdifferentialequationsisnotalwayseasytosolve.That’swhy,inthiscaseitisvery
importantthequalitativeanalysisoftheseproblems.
Thequalitativeanalysisisachapterotthetheoryofthedifferentialequationsthatstudiesthe
behaviourofthesolutionsofaproblembythedatasoftheproblem,withoutknowingthosesolutions.
Notalwaysthesimpleintroductioninthecomputerofanequationcanleadtofavourableresults.
Sometimestheexistencetheoremsaremoreimportantthanthenon-existencetheorems.Ontheother
hand,theexistenceofmoresolutionscanleadattheblockofthenumericalcalculus,likeinthecase
oftheapparitionofabifurcation.
Thecompletestudyofsomeproblemsfordifferentialequationsconsistsin:thequantitative
analysis(methodsofinferenceofsomesolutions),thequalitativeanalysisandthenumericalsolving
onthecomputer.Wemustnoticethatthenumericalsolvingmustcomeafterthequalitative
analysis.Thequalitativeanalysisistheonethatfinallyshowswhichisthesetofallthesolutionsofa
problem,whatbehaviourofthesolutionswecanexpectconsiderringallthepossiblevaluesofallthe
datas.Onlyonesolutioncorrespondingtoafixsetofdataswillcorrespondtoonlyoneaspectofthis
evolution.
Theproductivityoftheworkatthemillingmachinesdependsdefintielybythethreadingcapacity
which,inmanycasesisearlylimitatedbytheinsufficientdynamicstability[1,2,3].Thelostofthe
dynamicalstabilityatathreadingbehaviour,sometimesmuchundertheonelimitatedbythepowerof
theengineofthedriveofthetool,itisbecausebothatthedesignofthetoolmachinesandatthe
designofthetechnologicalprocess,thedynamicbehaviourofthesystemtoolmachine–part–
device–tool,andespeciallyofthetoolmachineistakenintoconsiderrationinasimplifiedmanner.
Thebookofthemachine,deliveredtothebeneficiarytogetherwiththetoolmachine,mustinclude
[1,4]:
a)Thechartofunconditionedstabilityliftedbythreading.
b)Thechartsrepresentingthevariationofthedirectionalcoefficienciesandalsothechartsofthereal
partofthefrequentialamplitudecharacteristic–phaseofthemachine.
c)Recommandationsforavoidingthepossibledomainsofdynamicalinstability.
Therequestsonthegloballeveltoassureforthetool–machineastabledynamicbehaviour,has
becomeadailypreocupationandso,thecompetivityoftheindustryforthebuildingoftool–
machinescannotbeseenwithoutthestudyofthestability.
Thestudyofthestabilityofadynamicalsystemthatcandescribeamillingmachineforwheel
gear
Oneofthemeasuresthatmustbefulfilledinordertoincreasethethreadingcapacityforthemilling
machineforwheelgearFD-320isthediminuishingasmuchaspossibleofthevibrationsthatappear
inthethreadingprocess[4].Theincreaseofthethreadingcapacitybutalsoofthequalityofthe
workedsurfacesleadstotheincreaseoftheproductioncapacity.Thevibrationsofthesupplesystem
aredescribedbythesolutionsofthesystemofdifferentialequations(1)wherePS meCCJ,,are
constantrepresentingthemomentofinertiaandthelasttwoconstantofelasticity.Thechoseofthe
indexwasdonetakingintoconsiderationtheelectricalengine,thetoolandthepart[3,4].
Westartwiththecinematicsystem
.)()()()()()(
53 51
66535 31
44315 13
221
P S meS me
PPP S meP me
SSP S meP S
meme
CCCxxCxxC
JCxxxCCCxxCxxC
JCxxxCCCxxCxxC
JCxxx
(1)
WebuildtheLagrangeextensionfollowingthemethodofprof.dr.ConstantinUdriște[5].Forthiswe
intorducethevectorialfield“millingmachine”thathassixcomponents
,)()(),,,,,(),,,,()()(),,,,,(),,,,,()()(),,,,,(),,,,,(
53 51
65432166654321535 31
65432144654321315 13
654321226543211
P S meS me
PPP S meP me
SSP S meP S
meme
CCCxxCxxC
JCxxxxxxXxxxxxxxXCCCxxCxxC
JCxxxxxxXxxxxxxxXCCCxxCxxC
JCxxxxxxXxxxxxxxX
(2)
where
),,,,,(654321 XXXXXXX și ),,,,,(654321 xxxxxxx
Thesystem(1)isanautonomoussystemintheform
),,,,,(654321 xxxxxxXdtdx
ii 6,1i. (3)
Theequillibriumpointsofthesystem(1)areinformx=(a,0,a,0,a,0)whereaisaconstant.
Theffunctiongivenby
6
12
21
iiX f (4)
Representstheenergydensityassociatedtothevectorialfield“millingmachine”andtheeuclidian
structureij.Thegeommetricaldynamicassociatedtothesupplesystemisdescribedbythe
differentialsystemofseconddegree
jj
ij
ji
ii
dtdx
xX
xX
xf
dtxd) (22
,i,j=6,1 (5)
ThatprovestobeanEuler-Lagrangeextension.Inotherwords,thelagrangian
6
12)(21
iiiXdtdxL (6)
or
fdtdxXdtdxLi
ii
ii
6
16
12)(21(6')
Determinsthisseconddegreesystemwithsixdegreesoffreedom,whosetrajectoriescontainalsothe
solutionsofthesystem(1).Dependingontheconstantvaluesthatappearinthesystemgivenby(1),
weapplythestabilitytheoremsLeapunovforautonomoussystems.AsaLeapunovfunctionwecan
taketheenergydensity,alangragianandaprimeintegrale.
Exemple2.uLsystem
Beinggiventhesystemofdifferentialequations,givenbytherelation(1).Thissystemdescribesa
technicalprocessandisknownastheuLsysteminthespecialityliterature[1,6].
213 3231 2121
xxcx xbxxxxaxaxx
(7)
WebuildtheLagrangeextensionusingthemethodofprof.Dr.ConstantinUdriste[5].Forthiswe
introducethevectorialfieldwhichhasthreecomponents.
213 3213231 321212 3211
),,(),,(),,(
xxcx xxxXbxxx xxxXaxaxxxxX
(8)
where
),,(321XXXX și ),,(321xxxx
The(1)systemisanautonomoussystemlikethis
),,(321xxxXdtdx
ii 3,1i. (9)
Theequilibriumpointsofthesystem(7)are
( bcbc,,b)and(- bc bc,,b).
Thefgivenfunction
3
12
21
iiX f (10)
representstheenergydensityassociatedwiththevectorialfieldandwiththeeuclidianstructureij.
Westudythestabilityofthe(7)systemon/3R.
WetakeasaLeapunovfunction
22),,(2
32
2
321xxxxxV (11)
WeverifytheconditionswhichmustbefulfilledbytheVfunctionforthesystemtobestabile.We
verifythestabilityconditionsfromtheLeapunovtheoremforautonomoussystems.
TheVfunctionadmitspartialderivativesoffirstorderwhicharecontinuousandV(0,0,0)=0.Italso
0,0)(xxV .
2
32
2213
3231
212
1) () ()(),(
cx bxxxcxxVbxxxxVaxaxxVf gradV
Itisfulfilledthethirdcondition,too,ifwehavetheconditionsb≤0andc≥0.Withthisconditionsthe
systemisstabile.
Wecalculateforthesystem(7)f,LandH.
]) () () [(212
2132
2312
12 xxcx bxxx axax f (12)
dtdxxaxaxdtdx
dtdx
dtdxL1
21223 22 21)(])()()[(21) (231bxxxdtdx2
-(213xxcx )dtdx3+ ]) () () [(212
2132
2312
12 xxcx bxxx axax (13)
])()()[(2123 22 21
dtdx
dtdx
dtdxH ]) () () [(212
2132
2312
12 xxcx bxxx axax (14)
Methodofstudy
Inordertostudythestabilityofthedynamicsystemsdescribedbythedifferentiateequations
systemsitisusedLeapunovfunction.ThereisnotageneralmethodofdetermingLeapunovfunction.
AsaLeapunovfunctionwecanconsideranenergydensity,alagrangianorahamiltonian.The
Leapunovfunctionmustverifythestabilityconditionsfromthestabilitytheoremsforautonomous
systems.Finallyitisobtainedtheconditionorconditionsnecessarytothesystemtobestableor
asimptomaticallystable.
Conclusions
ForthefirstcaseofthedynamicsystemstudiedwhencosideringasaLeapunovfunctionthe
lagrangianortheenergydensityitisstudiedthestabilityofthesystem.Theconditionofstabilitywill
dependonPS meCCJ,,constants.Theyhaveatechnicalsignificance,accordingtothepresentationof
thework.
Thelagrangianiscalculedwith(6)or(6)formulaandtheenergydensitywith(4)formula.
ConcerningtheseconddynamicsystemweconsiderasLeapunovfunctiontheVfunctiongiven
bytherelation(11)andhavingtheformenergy.ThestabilitycanbestudiedtakingasLeapunov
functionthefunctionsgivenbytherelations(12),(13)and(14).Fortheseconddynamicsystemthis
workdeterminedthestabilityconditions.
Forbothdynamicsystemsthestabilityconditionsdependontheconstantsappearinginthe
dynamicsystems.Theseconstantshaveatechnicalsignificance,havingasaresultthetechnical
characteristicswhichshouldbecarriedoutsothatthemechanicalsystemscouldbeperformant.
TheoriginalityoftheworkconsistsonthewayLeapunovfunctionisrealised.Thebetterthe
Leapunovfunctionchosenthemoreandbetterprecisedthestabilitydomainis.Atthemilling
machinesthestabilitydiagramsaregraphicalrepresentationshavingontheirabscisethevalueofthe
rotationofthemillandontheordonatethedepthofmilling.
References
[1]DumitruBălă,GeometricalMethodsintheStudyofVibrantandVibropercutanteSystems
Movement,UniversitariaPublishingHouse,Craiova,2006.
[2]DumitruBălă,Optimumproductivity,performance,andmillingmachine,Officialjournalofthe
contemporaryscienceassociation-NewYork,Economics,Management,andFinancialMarkets,
Volume5,Number2-June(2010)316-321.
[3]G.Silaș,L.Brîndeu,VibroIncisiveSystems,TechnicalPublishingHouse,Bucharest,1986.
[4]S.T.Chiriacescu,TheDynamicoftheThedinamicsoftheProlegomenaToolMachines,
TechnicalPublishingHouse,Bucharest,2004.
[5]ConstantinUdrișteConstantin,AtlasofMagneticGeometricDynamics,GeometryBalkanPress,
Bucarest,2001.
[6]VirgilObădeanu,VasileMarinca,Inverseprobleminanalyticalmechanics,Mathematical
Monographs44,Tip.Univ.Timișoara,1992.
[7]DumitruBălă,Quantitativeandqualitativemethodsinthestudyofsomedynamicsystems,
AdvancedEngineeringForum,Vol13(2015)168-171.
[8]DumitruBălă,GeometricDynamicsUsedintheStudyofMechanicalMethods,
AdvancedEngineeringForum,Vol27(2018)142-146.
Copyright Notice
© Licențiada.org respectă drepturile de proprietate intelectuală și așteaptă ca toți utilizatorii să facă același lucru. Dacă consideri că un conținut de pe site încalcă drepturile tale de autor, te rugăm să trimiți o notificare DMCA.
Acest articol: DYNAMICSYSTEMS.APPLICATIONSINTECHNICAL DumitruBĂLĂ1,a* 1CălugăreniStreet,DrobetaTurnuSeverin,România a*dumitru_bala@yahoo.com… [614015] (ID: 614015)
Dacă considerați că acest conținut vă încalcă drepturile de autor, vă rugăm să depuneți o cerere pe pagina noastră Copyright Takedown.
