Paper23 Acta27 2011 [612109]
Acta Universitatis Apulensis
ISSN: 1582-5329No. 27/2011
pp. 225-228
A SUBCLASS OF ANALYTIC FUNCTIONS DEFINED BY
MULTIPLIER TRANSFORMATION
Laura Stanciu and Daniel Breaz
Abstract. In this paper, we consider the multiplier transformation
Ip(n, λ)f(z) =zp+∞/summationdisplay
k=p+1/parenleftbiggk+λ
p+λ/parenrightbiggn
akzk
where p∈N, n∈N∪0, λ≥0 and we provide the sufficient conditions for functions
to be in the class B(n, µ, α, λ ).
2000 Mathematics Subject Classification. 30C45.
Key words and phrases. Univalent function, Starlike function, Convex function,
Multiplier transformation.
1. Introduction and Preliminaries
LetApdenote the class of functions of the form
f(z) =zp+∞/summationdisplay
k=p+1akzk, p ∈N={1,2, …}
which are analytic in the open unit disk
U={z∈C:|z|<1}.
LetSpdenote the subclass of functions that are univalent in U.
A function f∈Apis said to be p-valent starlike of order α(0≤α < p ) inU,if it
satisfies the following inequality:
Re/parenleftbiggzf/prime(z)
f(z)/parenrightbigg
> α, z ∈U.
We denote by S∗
p(α) the class of all such functions.
A function f∈Apis said to be p-valent convex of order α(0≤α < p ) inU,if and
only if
Re/parenleftbiggzf/prime/prime(z)
f/prime(z)+ 1/parenrightbigg
> α, z ∈U
225
Laura Stanciu and Daniel Breaz – A Subclass of Analytic Functions defined…
for some α,(0≤α <1).
We denote by Kp(α) the class of all those functions f∈Apwhich are multivalently
convex of order αinUand denote by R(α) the class of functions in Apwhich satisfy
Ref/prime(z)> α, z ∈U.
It is well known that Kp(α)⊂S∗
p(α)⊂Sp.
Iffandgare analytic functions in U,we say that fis subordinate to g,written
f≺gifw(0) = 0 ,|w(z)|<1,for all z∈U.Ifgis univalent then f≺gif and only
iff(0) = g(0) and f(U)⊆g(U).
The following multiplier transformation was given by Sukhwinder Singh, Sushma
Gupta and Sukhjit Singh [1].
Definition 1. ([1]). Forf∈Ap, p∈N, n∈N∪0, λ≥0,the operator Ip(n, λ)f(z)
is defined by the following infinite series
Ip(n, λ)f(z) =zp+∞/summationdisplay
k=p+1/parenleftbiggk+λ
p+λ/parenrightbiggn
akzk. (1)
It is easily verified from (1) that
(p+λ)Ip(n+ 1, λ)f(z) =p(1−λ)Ip(n, λ)f(z) +λz(Ip(n, λ)f(z))/prime. (2)
Remark 1. Ifp= 1we have I1(n, λ)f(z) =I(n, λ)and(λ+ 1)I(n+ 1, λ)f(z) =
(1−λ)I(n, λ)f(z) +λz(I(n, λ)f(z))/prime,forz∈U.
Remark 2. Iff∈An, f(z) =z+/summationtext∞
k=p+1akzk,then
I(n, λ)f(z) =z+∞/summationdisplay
k=p+1/parenleftbiggk+λ
p+λ/parenrightbiggn
akzk,
forz∈U.
In the proof of our main result we need the following lemma.
Lemma 1. ([2]).Letube analytic in Uwithu(0) = 1 and suppose that
Re/parenleftbigg
1 +zu/prime(z)
u(z)/parenrightbigg
>3α−1
2α, z∈U. (3)
Then Reu(z)> α forz∈Uand1
2≤α <1.
2. Main results
226
Laura Stanciu and Daniel Breaz – A Subclass of Analytic Functions defined…
Definition 2. We say that a function f∈Apis in the class B(n, µ, α, λ ), n∈
N, µ≥0, α∈[0,1).
If/vextendsingle/vextendsingle/vextendsingle/vextendsingleI(n+ 1, λ)
z/parenleftbiggz
I(n, λ)f(z)/parenrightbiggµ
−1/vextendsingle/vextendsingle/vextendsingle/vextendsingle<1−α, z∈U. (4)
In this paper we provide a sufficient condition for functions to be in the class
B(n, µ, α, λ ).
Theorem 1. For the functions f∈Ap, n∈N, µ≥0,1
2≤α <1.
If
(λ+ 1)
λI(n+ 2, λ)f(z)
I(n+ 1, λ)f(z)−µ(λ+ 1)
λI(n+ 1, λ)f(z)
I(n, λ)f(z)+1
λ(µ−1)≺1 +βz, z∈U(5)
where
β=3α−1
2α
thenf∈B(n, µ, α, λ ).
Proof. If we consider
u(z) =I(n+ 1, λ)f(z)
z/parenleftbiggz
I(n, λ)f(z)/parenrightbiggµ
,
then u(z) is analytic in Uwith u(0) = 1 .A simple differentation yields
zu/prime(z)
u(z)=(λ+ 1)
λI(n+ 2, λ)f(z)
I(n+ 1, λ)f(z)−µ(λ+ 1)
λI(n+ 1, λ)f(z)
I(n, λ)f(z)+(µ−1)
λ
Using (4) we get
Re/parenleftbigg
1 +zu/prime(z)
u(z)/parenrightbigg
>3α−1
2α.
From Lemma 1. we have
Re/parenleftbiggI(n+ 1, λ)f(z)
z/parenleftbiggz
I(n, λ)f(z)/parenrightbiggµ/parenrightbigg
> α.
Therefore, f∈B(n, µ, α, λ ),by Definition 2.
3. Applications of Theorem 1.
First of all, setting n= 1, µ= 1, α=1
2, λ= 1 in Theorem 1, we immediatly
arrive at the following application of Theorem 1. we have
Corollary 1. Iff∈A1and
Re/parenleftbiggzf/prime(z) + 3z2f/prime/prime(z) +z3f/prime/prime/prime(z)
zf/prime(z) +z2f/prime/prime(z)−zf/prime(z) +z2f/prime/prime(z)
zf/prime(z)/parenrightbigg
>−1
2
227
Laura Stanciu and Daniel Breaz – A Subclass of Analytic Functions defined…
thenf∈B/parenleftbig
1,1,1
2,1/parenrightbig
.
Setting n= 1, µ= 0, α=1
2, λ= 1 we obtain the following interesting consequence
of Theorem 1.
Corollary 2. Iff∈A1and
Re/parenleftbiggzf/prime(z) + 3z2f/prime/prime(z) +z3f/prime/prime/prime(z)
zf/prime(z) +z2f/prime/prime(z)/parenrightbigg
>−3
2
thenf∈B/parenleftbig
1,0,1
2,1/parenrightbig
.
Setting n= 0, µ= 1, α=1
2, λ= 1 we obtain another consequence of Theorem
1.
Corollary 3. Iff∈A1andRe/parenleftBig
zf/prime(z)+z2f/prime/prime(z)
zf/prime(z)−zf/prime(z)
f(z)/parenrightBig
>−1
2thenf∈B/parenleftbig
0,1,1
2,1/parenrightbig
.
Finally, setting n= 0, µ= 0, α=1
2, λ= 1 we obtain the next consequence of
Theorem 1.
Corollary 4. Iff∈A1andRe/parenleftBig
zf/prime(z)+z2f/prime/prime(z)
zf/prime(z)/parenrightBig
>3
2thenf∈B/parenleftbig
0,0,1
2,1/parenrightbig
.
Acknowledgments: This work was partially supported by the strategic project
POSDRU 107/1.5/S/77265, inside POSDRU Romania 2007-2013 co-financed by the
European Social Fund-Investing in People.
References
[1]. Sukhwinder Singh, Sushma Gupta and Sukhjit Singh, On a subclass of analytic
functions , General Mathematics Vol. 16, No. 2 (2008), 37-47.
[2]. B. A. Frasin and Jay M. Jahangiri, A new and comprehensive class of analytic
functions , Analele Universit˜ at ¸ii din Oradea, Tom XV, 2008, 61-64.
Laura Filofteia Stanciu
University of Pite¸ sti
Department of Mathematics
Tˆ argul din Vale Str., No.1, 110040, Pite¸ sti
Arge¸ s, Romˆ ania.
E-mail address: laura stanciu 30@yahoo.com
Daniel Breaz
”1 Decembrie 1918”’ University of Alba Iulia
Department of Mathematics
Alba Iulia, Str. N. Iorga, 510000, No. 11-13, Romˆ ania.
E-mail address: dbreaz@uab.ro
228
Copyright Notice
© Licențiada.org respectă drepturile de proprietate intelectuală și așteaptă ca toți utilizatorii să facă același lucru. Dacă consideri că un conținut de pe site încalcă drepturile tale de autor, te rugăm să trimiți o notificare DMCA.
Acest articol: Paper23 Acta27 2011 [612109] (ID: 612109)
Dacă considerați că acest conținut vă încalcă drepturile de autor, vă rugăm să depuneți o cerere pe pagina noastră Copyright Takedown.
