60(2015) APPLICATIONSOFMATHEMATICS No.2,185196 [610089]
60(2015) APPLICATIONSOFMATHEMATICS No.2,185–196
HOMOGENIZATIONOFADUAL-PERMEABILITYPROBLEMIN
TW
O-COMPONENTMEDIAWITHIMPERFECTCONTACT
AbdelhamidAinouz ,Algiers
(ReceivedMay17,2013)
Abstract.Inthispaper,westudythemacroscopicmodelingofasteadyfluidflowinan
ε-periodicmediumconsistingoftwointeractingsystems: fissuresandblocks,withperme-
abilitiesofdifferentorderofmagnitudeandwiththepresenceofflowbarrierformulationat
theinterfacialcontact. Thehomogenizationprocedureisperformedbymeansofthetwo-
scaleconvergencetechniqueanditisshownthatthemacroscopicmodelisaone-pressure
fieldmodelinaone-phaseflowhomogenizedmedium.
Keywords:porousmedia;homogenization;twoscaleconvergence
MSC2010:35B27,76S05
1. Introduction
Thestudyoffluidflowsinporousmediaisasubjectofpracticalinterestinmany
engineeringareas,suchasgeomechanics,materialsciences,andwaterresourcesman-
agement.Sometypesofnaturallyporousrocks,likeaquifersorpetroleumreservoirs,
areusuallydescribedasadual-permeability(oradoubleporosity)medium,thatis
atwo-componentstructure:onerelatedtoblocks,andtheotherrelatedtofractures.
Whenaporousmediumiscomposedbytwoormoredifferentconstituents,apre-
cisemathematicalmodelingisrequired. Actually,duetothecomplexityofmicro-
structures,anymathematicalmodelingusedtodeterminefluidflowsthroughhet-
erogeneousporousmediamusttakeintoaccounttherapidspatialvariationofthe
phenomenologicalparameters. Furthermore,numericalmodelingofsuchsystems
yieldsatthelocalscaleahugenumberofdiscretizedequations,socomputationswill
befastidiousandintractable. Itisthenimportanttostudyfluidflowsinporous
mediaatthemicroscopicscaleandtodescribetheirbehavioratthemacroscopic
scale. Roughlyspeaking,itconsistsinthepassagefrommicroscopicscaletothe
185
macroscopiconebytendingtozeroasmallparameter,usuallyd enotedε,whichis
theratiobetweenthetwocharacteristicscales,see[6],[11].Weremarkherethatthe
factthathomogenizationindouble-porosityphasescanleadtoeffectivefluidflow
behaviorwasobservedbymanyauthorsinvariousproblems[1],[2],[5],[9],[10].
Forexample,in[5],amicroscopicmodelconsistingoftheusualequationsdescribing
Darcyflowinareservoirwithhighlydiscontinuousporosityandpermeabilitycoeffi-
cients,wasaddressed.Itwasrigorouslyprovedthatthemacroscopic(homogenized)
equationisadoubleporositymodelofsinglephaseflow. Alsoforporoelastichet-
erogeneousmedia,variouseffectivedoubleporositymodelsofcompositesmadeof
amixtureoftwoporoelasticsolidssaturatedbyacompressibleNewtonianfluidhave
beenderived. In[10],thehomogenizationofacompactboneporoelasticitymodel,
describinginteractionsbetweendeformationofthebonetissueandinducedflow,is
addressed. Thedouble-porousstructureconsistsoftheHavers-Volkmannchannels
(theprimaryporosity)andthecanaliculi(thedualporosity).Themacroscopicmodel
isderivedbymeansofperiodicunfoldingmethodanditdescribesthedeformation-
inducedDarcyflowintheprimaryporositieswhereasthemicro-flowinthedouble
porosityisresponsibleforthefadingmemoryeffectsviathemacroscopicporo-visco-
elasticconstitutivelaw.In[1],[2],Barenblatt-Biotconsolidationmodelsforflowsin
periodicporouselasticmediaarederivedbyusingthetwo-scaleconvergencetech-
nique. Themicro-structuresconsistoffluidflowsofslightlycompressibleviscous
fluidsthroughtwo-componentporo-elasticmediaseparatedbyperiodicinterfacial
barriers,describedbytheBiotmodelofconsolidationwiththeDeresiewicz-Skalak
interfaceboundarycondition.
Inthispaper,weshalldealwiththehomogenizationofasteadyfluidflowinme-
diamadeoftwointeractingporoussystemswithahighcontrastofpermeabilities.
Infact,forsuchaconfiguration,itiswell-knownthatthehydraulicconductivity
inthefracturessystemishigheratthelocalscalethanthehydraulicconductivity
intheblockmatrix[5],[7]. Thefamilyofthecorrespondingmicro-modelsthatwe
shallstudyisdescribedbyanellipticsystemoftwopartialdifferentialequations
inatwo-mediumdescription,withDarcy’slawineachphaseandwithcontrasting
permeabilities,plusexchangetermsrepresentingtheinterfacialcouplingthatresults
fromtheinteraction,atthemicro-scale,betweenthetwophases,see(2.1a)–(2.1e)be-
low.Themacro-modelisderivedbymeansofthetwo-scaleconvergencemethod[3].
Itisshownthattheoverallbehavioroffluidflowinsuchmediabehavesasasingle
porositymodelwithanaveragepermeabilityandobeysasingleequationofelliptic
type,meaningthatnodual-permeabilityeffectsoccuratthemacro-scaledescrip-
tion,see(2.15)below. Besidesthat,thederivedmodelpresentsanextrasource
surfacedensityontheexteriorboundary,whichessentiallyarisesfromthefactthat
(1)blockshavelowpermeabilitywhencomparedtothefissures,(2)nonnulland
186
regularsourcedensityontheblocksand(3)theinterfacecont actbetweenthetwo
constituentsisassumedimperfect.
Thepaperisorganizedasfollows:Section2isdevotedtotheproblemsettingofthe
micro-modelandthestatementofthemainresult.InSection3,weshallbeconcerned
withthederivationofthehomogenizedmodelviathetwoscaleconvergencemethod.
2. Settingoftheproblemandthemainresult
Weconsider Ωaboundedandsmoothdomainof RN(N/greaterorequalslant2)andY= ]0,1[N
thegenericcellofperiodicity.Let Y1,Y2⊂Ybetwoopendisjointsubsetsof Ysuch
thatY=Y1∪Y2∪Γ,whereΓ =∂Y1∩∂Y2,assumedtobeasmoothsubmanifold.
Wedenote νtheunitnormalof Γ,outwardto Y1. Fori= 1,2,letχidenotethe
characteristicfunctionof Yi,extendedby Y-periodicityto RN.Forε>0,weset
Ωε
i=/braceleftBig
x∈Ω:χi/parenleftBigx
ε/parenrightBig
= 1/bracerightBig
andΓε=∂Ωε
1∩∂Ωε
2.
Toavoidsomeunnecessarytechnicalcomputations,weassumethatthedualporosi-
tiesdonotmeettheboundary ∂Ω,thatis Ωε
2⊂ΩsothatΓε=∂Ωε
2a nd∂Ωε
1=
∂Ω∪Γε(seeFigure1below). Let Zi=/uniontext
k∈ZN(Yi+k). Asin[3],wealsoassume
thatZ1issmoothandaconnectedopensubsetof RN. Notethat Z2maynotbe
connected.Also, Z1andZ2aretheprimaryanddualporosities,respectively.
Ωε
1Ωε
2
Γε
ThedomainΩY1
Y2
Γ
Theunit
cellY
Figure1. Anexampleofaperiodictwo-componentmediumconsideredinthispaper.
LetA(resp.B)denotethepermeabilityofthemedium Z1(resp.Z2).Letfibea
measurablefunctionrepresentingtheinternalsourcedensityofthefluidflowin Ωε
i.
Finally,let ϑbethenon-rescaledhydraulicpermeabilityofthethinlayer Γε. We
shallassumethefollowings:
187
(H1)A(resp.B) iscontinuouson RN,Y-periodicandsatisfiestheellipticitycondi-
tion:
Aξ·ξ/greaterorequalslantC|ξ|2(resp.Bξ·ξ/greaterorequalslantC|ξ|2)∀ξ∈RN,
where,hereandinwhatfollows, Cdenotesvariouspositiveconstantswhich
areindependentof ε;
(H2)f1,f2∈L2(Ω);
(H3)ϑisacontinuousfunctionon RN,Y-periodicandboundedfrombelow:
ϑ(y)/greaterorequalslantC >0, y∈RN.
Remark2.1. Itshouldbenoticedthatinthehypothesis(H1),thecontinuity
isnotnecessary. Indeed,onecantake A,B∈L∞(RN)andthemainresultofthis
paperremainsunchanged.
Todealwithperiodichomogenizationwithmicro-structures,weshalldenotefor
x∈RN,
χε
i(x) =χi/parenleftBigx
ε/parenrightBig
, Aε(x)=A/parenleftBigx
ε/parenrightBig
, Bε(x)=B/parenleftBigx
ε/parenrightBig
,andϑε(x) =εϑ/parenleftBigx
ε/parenrightBig
.
Th
emicro-modelthatweshallstudyinthispaperisgivenbythefollowingsetof
equations:
−div(Aε∇uε) =f1inΩε
1, (2.1a)
−ε2div(Bε∇vε) =f2inΩε
2, (2.1b)
Aε∇uε·νε=−ϑε(uε−vε)onΓε, (2.1c)
ε2Bε∇vε·nε=−ϑε(vε−uε)onΓε, (2.1d)
uε= 0on∂Ω, (2.1e)
whereνεandnεstandfortheunitnormalof Γεoutwardto Ωε
1andΩε
2,respectively.
Here,Ωε
1representsthefissuredregionwithpermeability AεandΩε
2theblockregion
withpermeability ε2Bε.Thephysicalquantities uεandvεarerespectivelythefluid
flowpressuresin Ωε
1andΩε
2. AsinArbogast,Douglas,andHornung[5],wehave
chosenaparticularscalingofthepermeabilitycoefficientsin(2.1b). Thismeans
thatboth terms/integraltext
Ωε
1|∇uε|2andε2/integraltext
Ωε
2|∇vε|2havethe sameorderofmagnitude
andthusleadtoabalanceindissipationpotential. Equations(2.1a)and(2.1b)
expresstheconservationofmassoffluidwithDarcy’slawin Ωε
1andΩε
2,respectively.
Conditions(2.1c)and(2.1d)expressfluxcontinuityacross Γεandtheimperfect
contactbetweentheblockandthefissuresalong Γεwithpermeabilitygivenby ϑε,
see[8].Transmissioncondition(2.1d)isknownintheliteratureasDeresiewicz-Skalak
188
condition. Finally,(2.1e)isthehomogeneousDirichletcond itionontheexterior
boundaryof Ω.
LetHε= (H1(Ωε
1)∩H1
0(Ω))×H1(Ωε
2).Thespace Hεisequippedwiththenorm:
/ba∇dbl(ϕ,ψ)/ba∇dbl2
Hε=/ba∇dbl∇ϕ/ba∇dbl2
L2(Ωε
1)+ε2/ba∇dbl∇ψ/ba∇dbl2
L2(Ωε
2)+ε/ba∇dblϕ−ψ/ba∇dbl2
L2(Γε).
Theweakformulationof(2.1a)–(2.1e)isasfollows:find (uε,vε)∈Hε,suchthatfor
all(ϕ,ψ)∈Hε,wehave
(2.2)/integraldisplay
Ωε
1A/parenleftBigx
ε/parenrightBig
∇uε∇ϕdx+ε2/integraldisplay
Ωε
2B/parenleftBigx
ε/parenrightBig
∇vε∇ψdx
+ε/integraldisplay
Γεϑ/parenleftBigx
ε/parenrightBig
(uε−vε)(ϕ−ψ)dsε=/integraldisplay
Ωε
1f1ϕdx+/integraldisplay
Ωε
2f2ψdx,
wheredxanddsεdenote,respectively,theLebesguemeasureon RNandtheHaus-
dorffmeasureon Γε.Next,westatetheexistenceanduniquenessresultoftheweak
formulation(2.2).
Theorem2.1.Lettheassumptions (H1)–(H3)befulfilled. Then,foranysuffi-
cientlysmall ε>0,thereexistsauniquecouple (uε,vε)∈Hε,solutionoftheweak
problem (2.2),suchthat
(2.3) /ba∇dbl(uε,vε)/ba∇dblHε/lessorequalslantC.
Proof. WeshallusetheLax-Milgramlemma.Letusdenote
aε((ϕ,ψ),(η,ς)) =/integraldisplay
Ωε
1Aε∇ϕ∇ηdx+ε2/integraldisplay
Ωε
2Bε∇ψ∇ςdx
+ε/integraldisplay
Γεϑ/parenleftBigx
ε/parenrightBig
(ϕ−ψ)(η−ς)dsε,
Lε((ϕ,ψ)) =/integraldisplay
Ωε
1f1ϕdx+/integraldisplay
Ωε
2f2ψdx,
where(ϕ,ψ),(η,ς)∈Hε. Therefore,theweakformulation(2.2)isequivalentto:
find(uε,vε)∈Hεsuchthatforall (ϕ,ψ)∈Hεwehave
(2.4) aε((uε,vε),(ϕ,ψ)) =Lε((ϕ,ψ)).
Thecoercivenessandthecontinuityoftheform aε(·,·)followimmediatelyfrom(H1)
and(H3). Itremainstoprovethecontinuityof Lε. First,from(H2),weeasilysee
thatforall (ϕ,ψ)∈Hε,
(2.5) |Lε((ϕ,ψ))|/lessorequalslantM(f1,f2)/parenleftbigg/parenleftbigg/integraldisplay
Ωε
1|ϕ|2dx/parenrightbigg1/2
+/parenleftbigg/integraldisplay
Ωε
2|ψ|2dx/parenrightbigg1/2/parenrightbigg
,
189
where
M(f1,f2)
= max/parenleftbigg/parenleftbigg/integraldisplay
Ω|f1|2dx/parenrightbigg1/2
,/parenleftbigg/integraldisplay
Ω|f2|2dx/parenrightbigg1/2/parenrightbigg
isaconstantindependentof ε.Next,followinganideaofH.EneandD.Polisevski[9],
weknowthatthereexists C >0suchthatforall ϕ= (ϕ,ψ)∈Hε
/integraldisplay
Ωε
1|ϕ|2dx/lessorequalslantC/integraldisplay
Ωε
1|∇ϕ|2dx, (2.6)
/integraldisplay
Ωε
2|ψ|2dx/lessorequalslantC/parenleftbigg
ε2/integraldisplay
Ωε
2|∇ψ|2dx+ε/integraldisplay
Γε|ψ|2dsε/parenrightbigg
, (2.7)
ε/integraldisplay
Γε|ϕ|2dsε/lessorequalslantC/parenleftbigg
ε2/integraldisplay
Ωε
1|∇ϕ|2dx+/integraldisplay
Ωε
1|ϕ|2dx/parenrightbigg
. (2.8)
The inequalities (2.6) and (2.7) are Poincaré’sinequality and (2.8) is the trace
inequality. These are obtained by the change of variable: x=ε(k+y),k∈
{k∈ZN:ε(k+y)⊂Ωε
i},y∈Zi,i= 1,2,andusingPoincaré’sinequalityand
thetracetheoremonthereferencecell Yi. Asεissufficientlysmall,say ε <1,we
havefrom(2.8)
(2.9) ε/integraldisplay
Γε|ϕ|2dsε/lessorequalslantC/parenleftbigg/integraldisplay
Ωε
1|∇ϕ|2dx+/integraldisplay
Ωε
1|ϕ|2dx/parenrightbigg
.
Using(2.6)in(2.9),weget
(2.10) ε/integraldisplay
Γε|ϕ|2dsε/lessorequalslantC/parenleftbigg/integraldisplay
Ωε
1|∇ϕ|2dx/parenrightbigg
.
Next,from(2.7),wehave
(2.11)/integraldisplay
Ωε
2|ψ|2dx/lessorequalslantC/parenleftbigg
ε2/integraldisplay
Ωε
2|∇ψ|2dx+ε/integraldisplay
Γε|ϕ−ψ|2dsε+ε/integraldisplay
Γε|ϕ|2dsε/parenrightbigg
.
Now,combining(2.10)and(2.11)gives
/integraldisplay
Ωε
2|ψ|2dx/lessorequalslantC/parenleftbigg/integraldisplay
Ωε
1|∇ϕ|2dx+ε2/integraldisplay
Ωε
2|∇ψ|2dx+ε/integraldisplay
Γε|ϕ−ψ|2dsε/parenrightbigg
,
whichmeansthat
(2.12)/integraldisplay
Ωε
2|ψ|2dx/lessorequalslantC/ba∇dbl(ϕ,ψ)/ba∇dbl2
Hε.
190
Observethat(2.6)yields
(2
.13)/integraldisplay
Ωε
1|ϕ|2dx/lessorequalslantC/ba∇dbl(ϕ,ψ)/ba∇dbl2
Hε.
Using(2.5),(2.12),and(2.13)wededucethat
(2.14) |Lε((ϕ,ψ))|/lessorequalslantC/ba∇dbl(ϕ,ψ)/ba∇dblHε.
Thus,Lεiscontinuouson Hε. Notethattheconstant Cappearingin(2.5)is
independentof ε.
By Lax-Milgram’s lemma, we conclude that there exists a unique solution
(uε,vε)∈Hεtotheweakformulation(2.4). Finally, putting (ϕ,ψ) = (uε,vε)
in(2.4),usingtheuniformcoercivenessof aε(·,·)andthecontinuityof Lεyieldsthe
uniformestimate
/ba∇dbl(ϕ,ψ)/ba∇dblHε/lessorequalslantC,
whereagain Cisindependentof ε.Thisconcludestheproofofthetheorem. /square
Now,wearereadytostatethemainresultofthepaper:
Theorem2.2.Let(uε,vε)∈Hεbethesolutionoftheweaksystem (2.2). As-
sumethatf2∈H1(Ω).LetUε=χ1(x/ε)uε+χ2(x/ε)vεdenotetheoverallpressure.
Then,uptoasubsequence,thereexistsaunique U∈H1(Ω),suchthatUεconverges
weaklyinH1(Ω)toU. Furthermore, Uistheuniquesolutiontothehomogenized
model:
(2.15)/braceleftBigg
−div(˜A∇U) =FinΩ,
U=Gon∂Ω,
where˜A, FandGaregivenin (3.17)–(3.18).
Remark2.2. Observethatweneedmoreregularityon f2.Namely,werequire
thatf2∈H1(Ω)sothatthefunction Gdefinedby(3.18)isin H1(Ω)andwhich
givesF∈H−1(Ω).SeealsoRemark3.1below.
Theremainderofthispaperisdevotedtotheproofofthistheorem.Tothisaim,
weshallapplyinthenextsectionthetwo-scaleconvergencetechnique.
191
3. ProofofTheorem2.2
In
thissection,weshallderivethehomogenizedsystem(2.15).Todoso,weshall
firstbeginwithsomenotations.Wedefine C#(Y)tobethespaceofallcontinuous
functionson RNwhichareY-periodic. Let C∞
#(Y) =C∞(RN)∩ C#(Y)andlet
L2
#(Y)(resp.L2
#(Yi),i= 1,2)tobethespaceofallfunctionsbelongingto L2
loc(RN)
(resp.L2
loc(Zi))whichare Y-periodic,and H1
#(Y)(resp.H1
#(Yi))tobethespaceof
thosefunctionstogetherwiththeirderivativesbelongingto L2
#(Y)(resp.L2
#(Zi)).
Next,werecallthedefinitionofthetwo-scaleconvergence[3].
Definition3.1. Asequence (wε)inL2(Ω)two-scaleconvergesto w∈L2(Ω×Y)
(wewritewε2−s⇀ w)if,foranyadmissibletestfunction ϕ∈L2(Ω;C#(Y)),
lim
ε→0/integraldisplay
Ωwε(x)ϕ/parenleftBig
x,x
ε/parenrightBig
dx=/integraldisplay
Ω×Yw(x,y)ϕ(x,y)dxdy.
Thefollowingresultwillbeofuse,see[3],[4].
Theorem3.1.
(1)Let(wε)beauniformlyboundedsequencein H1(Ω) (resp.H1
0(Ω)).Thenthere
existsw∈H1(Ω) (resp.H1
0(Ω))andw1∈L2(Ω;H1
#(Y)/R)suchthat,upto
asubsequence, wε2−s⇀ wand∇wε2−s⇀∇w+∇yw1.
(2)Let(wε)beasequenceoffunctionsin H1(Ω)suchthat
/ba∇dblwε/ba∇dblL2(Ω)+ε/ba∇dbl∇wε/ba∇dblL2(Ω)N/lessorequalslantC.
Then,thereexistasubsequenceof (wε),stilldenotedby (wε),andw0(x,y)∈
L2(Ω;H1
#(Y))such that wε2−s⇀ w0andε∇wε2−s⇀∇yw0and for every ϕ∈
D(Ω;C∞
#(Y))wehave
lim
ε→0ε/integraldisplay
Γεwεϕεdsε=/integraldisplay
Ω×Γw0ϕdxds, ϕε(x) =ϕ/parenleftBig
x,x
ε/parenrightBig
,
wh
eredsistheHausdorffmeasureon Γ.
Now,weturnourattentiontodeterminingthelimitingproblem(2.15). Thanks
totheaprioriestimates(2.3)andusingTheorem3.1,thereexistsasubsequenceof
(uε,vε),solutionof(2.2),stilldenoted (uε,vε),andthereexist
u∈H1
0(Ω), u1∈L2(Ω;H1
#(Y)/R)andv0∈L2(Ω;H1
#(Y2))
192
suchthat
χε
1uε2−s⇀ χ1u
, χε
2vε2−s⇀ χ2v0, (3.1)
χε
1∇uε2−s⇀ χ1(∇u+∇yu1), εχε
2∇vε2−s⇀ χ2∇yv0,
andforany ψ∈ D(Ω;C#(Y))
(3.2) lim
ε→0/integraldisplay
Γεε(uε−vε)ψεdsε=/integraldisplay
Ω×Γ(u−v0)ψdxds, ψε(x) =ψ(x,x/ε).
Formoredetails, wereferthereaderto[3], Proposition1.14i)andii)and[4],
Proposition2.6.
Now,letϕ∈ D(Ω)andϕ1,ψ∈ D(Ω;C∞
#(Y)). Setϕε(x) =ϕ(x) +εϕ1(x,x/ε)
andψε(x) =ψ(x,x/ε).Takingϕ=ϕεandψ=ψεin(2.2),weobtain
(3.3)/integraldisplay
Ωε
1Aε∇uε/parenleftBig
∇ϕ+∇yϕ1/parenleftBig
x,x
ε/parenrightBig/parenrightBig
dx+/integraldisplay
Ωε
2εBε∇vε∇yψ/parenleftBig
x,x
ε/parenrightBig
dx
+/integraldisplay
Γεϑε(uε−vε)(ϕ−ψε)
dsε+εRε=/integraldisplay
Ωε
1f1ϕdx+/integraldisplay
Ωε
2f2ψdx,
where
Rε=/integraldisplay
Ωε
1Aε∇uε∇xϕ1/parenleftBig
x,x
ε/parenrightBig
dx+ε/integraldisplay
Ωε
2Bε∇vε∇xψ/parenleftBig
x,x
ε/parenrightBig
dx
+/integraldisplay
Γεϑε(uε−vε)ϕ1/parenleftBig
x,x
ε/parenrightBig
dsε.
Ac
cordingtotheassumptions(H1)–(H3),tA∇ϕ,tA∇yϕ1,tB∇xψ,andtB∇yψare
admissibletestfunctions.Therefore,inviewof(3.1)–(3.2),thereholdthefollowing
limits:/integraldisplay
Ωε
1Aε∇vε(∇ϕ+(∇yϕ1)ε)dx−→
ε→0/integraldisplay
Ω×Y1A(∇u+∇yu1)(∇ϕ+∇yϕ1)dxdy, (3.4)
/integraldisplay
Ωε
2εBε∇vε∇yψ/parenleftBig
x,x
ε/parenrightBig
dx−→
ε→0/integraldisplay
Ω×Y2B∇v0∇yψdxdy, (3.5)
/integraldisplay
Γεϑε(uε−vε)(ϕ−ψε)dsε−→
ε→0/integraldisplay
Ω×Γϑ(u−v0)(ϕ−ψ)dxds, (3.6)
wherewehavedenoted (∇yϕ1)ε(x) = (∇yϕ1)(x,x/ε). Moreover,using(2.3),itis
easytoseethat Rε=O(1). Thus,by(3.4)–(3.6)andpassingtothelimitin(2.2),
wegetthetwo-scalevariationalformulation:
(3.7)/integraldisplay
Ω×Y1A(∇u+∇yu1)(∇ϕ+∇yϕ1)dxdy+/integraldisplay
Ω×Y2B(y)∇yv0∇yψdxdy
+/integraldisplay
Ω×Γϑ(y)(u−v0)(ϕ−ψ)dxds=/integraldisplay
Ω×Y1f1ϕdx+/integraldisplay
Ω×Y2f2ψdx.
193
Byadensityargument, theequation(3.7)stillholdstruefora ny(ϕ,ϕ1,ϕ2)∈
H1
0(Ω)×L2(Ω;H1
#(Y1)/R)×L2(Ω;H1
#(Y2)). Now, integratingbypartsin(3.7)
yieldsthefollowingtwo-scalehomogenizedsystem:
−divy(A(∇u+∇yu1)) = 0a.e.inΩ×Y1, (3.8)
−divy(B∇yv0) =f2a.e.inΩ×Y2, (3.9)
−div/parenleftbigg/integraldisplay
Y1A(∇u+∇yu1)dy/parenrightbigg
+/integraldisplay
Γϑ(y)[u−v0]ds=f1a.e.inΩ, (3.10)
(A(∇u+∇yu1))·ν= 0a.e.onΩ×Γ, (3.11)
B∇yv0·v=−ϑ(u−v0)a.e.onΩ×Γ, (3.12)
u= 0on∂Ω. (3.13)
Letusfirstnotethatequations(3.8)and(3.11)leadtothefollowingrelation:
(3.14) u1(x,y) =N/summationdisplay
j=1∂u
∂xj(x)ωj(y)+u∗(x),
wh
ere,for1/lessorequalslantj/lessorequalslantN,ωj∈H1
#(Y1)/Ristheuniquesolutiontothefollowingcell
problem:
/braceleftBigg
−divy(A(∇yωj+ej)) = 0a.e.inY1,(ej)isthecanonicalbasisof RN,
A(∇yωj+ej)·ν= 0a.e.onΓ,
andu∗(x)isanyadditivefunctionindependentof y.Similarly,from(3.9)and(3.12)
weseethat v0canbewrittenas
(3.15) v0(x,y)−u(x) =α(y)f2(x),(x,y)∈Ω×Y2,
whereα∈H1
#(Y2)istheuniquesolutionofthefollowingproblem:
(3.16)/braceleftBigg
−divy(B∇yα) = 1inY2,
B∇yα·ν+ϑα= 0onΓ.
Inthesequel,weshalldenoteforconvenience
˜A= (/tildewideraij)1/lessorequalslanti,j/lessorequalslantN,/tildewideraij=/integraldisplay
Y1A(∇yωi+ei)·(∇yωj+ej)dy, (3.17)
f∗=|Y1|f1+|Y2|f2, G=/parenleftbigg/integraldisplay
Y2α/parenrightbigg
f2, F=f∗+div(˜A∇G). (3.18)
194
Letusmentionthat,inviewof(H1), ˜Ais symmetricandpositivedefinite,see[6].
Observealsothat f∗liesinL2(Ω)andsincef2∈H1(Ω),GisinH1(Ω).Therefore,
F∈H−1(Ω).Inserting(3.14)–(3.15)into(3.10)yieldstheellipticequation:
(3.19) −div(˜A∇u) =f∗.
Now,with(3.15)inmind,theoverallpressure Uε=χ1(x/ε)uε+χ2(x/ε)vεtwoscale
convergesto u+χ2αf2.Consequently, Uεconvergesweaklyin L2(Ω)toU=u+G
whichistheuniquesolutionofthehomogenizedmodel:
(3.20)/braceleftBigg
−div(˜A∇U) =FinΩ, U∈H1(Ω),
U=Gon∂Ω.
TheproofofTheorem2.2isthenachieved.
Remark 3.1. If f2∈H1(Ω)isnolongersatisfied,say f2isonlyinL2(Ω),
thenasalreadymentionedbyG.Allairein[3],Remark4.5,thesolution Udoesnot
satisfytherequiredDirichletboundarycondition.Itisthenpreferabletowrite Uas
asumoftwoterms: uand/integraltext
Y2v0dy.Thus,thehomogenizedproblemconsistsoftwo
equations:(3.15),(3.19)withthehomogeneousboundarycondition u= 0on∂Ω.
Remark 3.2. Inviewof(H2),weseethatwesimplychoosethesourcedensi-
tiesf1andf2independentof εanddefineda.e. onthewholedomain Ωwhereas,
throughoutthispaper, f1andf2areonlyusedonthesubregions Ωε
1andΩε
2respec-
tively.Infact,wecanconsiderthecase,wheresourcedensitiesaredefinedontheir
respectiveregionsaswell,withoutmodifyingsubstantiallythehomogenizedmodel
(3.20)exceptfortheaveragedsourcedensity f∗definedin(3.18). Moreprecisely,
iffi=fε
ia.e.inΩε
i(i= 1,2),wherefε
i∈L2(Ωε
i)with/ba∇dblfε
i/ba∇dblL2(Ωε
i)/lessorequalslantC,thenus-
ingtheextensionbyzeroto Ωoffε
i,weseethat /ba∇dblχi(x/ε)fε
i/ba∇dblL2(Ω)/lessorequalslantC. Denoting
byf0
ithetwoscalelimitof χi(x/ε)fε
i,theweaklimitof χi(x/ε)fε
iisthengiven
byFi(x) =/integraltext
Yif0
i(x,y)dyinsteadof |Yi|fi(x)(seether.h.s.oftwo-scalevariational
formulation(3.7))and f∗shouldbegivenby F1+F2insteadof |Y1|f1+|Y2|f2.
Acknowledgments. Theauthorisverygratefultotheanonymousreferee
forcarefullyreadingthepaperandforvaluablesuggestionswhichenabledhimto
improveconsiderablythepaper.TheauthoracknowledgesthesupportoftheAlge-
rianministryofhighereducationandscientificresearchthroughtheC.N.E.P.R.U.
project “Techniques de modélisation en milieux hétérog`enes et couches minces”
No.B00220090078.
195
References
[1
]A.Ainouz:Homogenizeddoubleporositymodelsforporo-elasticmediawithinterfacial
flowbarrier.Math.Bohem. 136(2011),357–365. zblMR
[2]A.Ainouz:Homogenizationofadoubleporositymodelindeformablemedia.Electron.
J.Differ.Equ.(electroniconly) 2013(2013),1–18. zblMR
[3]G.Allaire:Homogenizationandtwo-scaleconvergence.SIAMJ.Math.Anal. 23(1992),
1482–1518. zblMR
[4]G.Allaire,A.Damlamian,U.Hornung : Two-scaleconvergenceonperiodicsurfacesand
applications.Proc.Int.ConferenceonMathematicalModellingofFlowThroughPorous
Media,1995(A.Bourgeatetal.,eds.).WorldScientificPub.,Singapore,1996,pp.15–25.
[5]T.Arbogast, J.Douglas, Jr.,U.Hornung:Derivationofthedoubleporositymodelof
singlephaseflowviahomogenizationtheory.SIAMJ.Math.Anal. 21(1990),823–836. zblMR
[6]A.Bensoussan,J.-L.Lions,G.Papanicolaou : AsymptoticAnalysisforPeriodicStruc-
tures.StudiesinMathematicsanditsApplications5,North-HollandPubl.Company,
Amsterdam,1978. zblMR
[7]G.W.Clark: Derivationofmicrostructuremodelsoffluidflowbyhomogenization.J.
Math.Anal.Appl. 226(1998),364–376. zblMR
[8]H.Deresiewicz,R.Skalak : Onuniquenessindynamicporoelasticity.Bull.Seismol.Soc.
Amer.53(1963),783–788.
[9]H.I.Ene,D.Poliševski :Modelofdiffusioninpartiallyfissuredmedia.Z.Angew.Math.
Phys.53(2002),1052–1059. zblMR
[10]E.Rohan,S.Naili,R.Cimrman,T.Lemaire : Multiscalemodelingofafluidsaturated
mediumwithdoubleporosity:relevancetothecompactbone.J.Mech.Phys.Solids 60
(2012),857–881. MR
[11]E.Sanchez-Palencia : Non-HomogeneousMediaandVibrationTheory.LectureNotesin
Physics127,Springer,Berlin,1980. zblMR
Author’saddress :Ab delhamidAinouz ,LaboratoryAMNEDP,FacultyofMathemat-
ics,UniversityofSciencesandTechnologyHouariBoumedienne,POB32ElAlia,Algiers,
Algeria,e-mail:aainouz@usthb.dz .
196
Copyright Notice
© Licențiada.org respectă drepturile de proprietate intelectuală și așteaptă ca toți utilizatorii să facă același lucru. Dacă consideri că un conținut de pe site încalcă drepturile tale de autor, te rugăm să trimiți o notificare DMCA.
Acest articol: 60(2015) APPLICATIONSOFMATHEMATICS No.2,185196 [610089] (ID: 610089)
Dacă considerați că acest conținut vă încalcă drepturile de autor, vă rugăm să depuneți o cerere pe pagina noastră Copyright Takedown.
