Gazi University Dept. of Electrical Electronics Engineering, Spring 2010 [608952]

1

Gazi University Dept. of Electrical Electronics Engineering, Spring 2010

Logic Circuits
Laboratory

Rev 3.0

Note:
In this laboratory CADET development tool will be used . CADETs have 8 display LED, and 8 switch. Display
LED inputs are 5V tolerant and high impedance. So you can connect circuit’s input and output to these LEDs
directly without any resistor such as 390 Ω.

Important:
Please read datasheets of IC’s before using it. Some ques tions may be asked during experiments, pay attention to
the lab. assistant during experiment and do not forget to answer them in reports.

Supplemental Textbooks:

 M. Moris MANO, “Digital Design” ,
Prentice Hall.

Weights of reports and project to the lab. grade:

Report average : 40%
Lab.Project : 60%

Web page:
Course related material handouts and announcements will be made through the course web page under
Course . Assist. Asuman Yavano ğlu’s web page.

Laboratory Assistants(Spring 2010):
Asuman Yavano ğlu
Ertuğrul Aksoy

2

Gazi University Dept. of Electrical Electronics Engineering, Spring 2010
Experiment-1
Resistor Diode Logic “AND” Gate
 Setup below the circuit. (Use CADET switches. 390 Ω and LED are not required. Instead of these use
CADET display LEDs)
 Control connections.
 Power up the circuit.
 Use switch to determine the truth table for the circuits.
 What is the function of R3?

Inputs Outputs
A B C
0 0
0 1
1 0
1 1

Circuit:

Circuit Components:

Component Value #
Diode 1N4001 2
Resistor 390  3
LED 3
R1
390R23901N4001R3390
1
01N400110+5V +V
A
B
C

3

Gazi University Dept. of Electrical Electronics Engineering, Spring 2010
Experiment-2
Resistor Diode Logic “OR” Gate
 Setup below the circuit. (Use CADET switches. 390 Ω and LED are not required. Instead of these use
CADET display LEDs)
 Control connections.
 Power up the circuit.
 Use switch to determine the truth table for the circuits.

Inputs Outputs
A B C
0 0
0 1
1 0
1 1

Circuit:

Circuit Components:

Component Value #
Diode 1N4001 2
Resistor 390  3
LED 3 R1
390R23901N40011
010+5V +V
A
B
C
R3
3901N4001

4

Gazi University Dept. of Electrical Electronics Engineering, Spring 2010

Experiment-3
Resistor Transistor Logic “NOT” Gate
 Setup below the circuit. (Use CADET switches. 390 Ω and LED are not required. Instead of these use
CADET display LEDs)
 Control connections.
 Power up the circuit.
 Use switch to determine the truth table for the circuits.
 What is the function of R3?

Inputs Outputs
A B
0
1

Circuit:

Circuit Components:

Component Value #
Resistor 390  2
Resistor 3.3 k 1
Transistor BC238 1
LED 2
R1
3901
0+5V +V
A R2
3.3BC238R3
390
B

5

Gazi University Dept. of Electrical Electronics Engineering, Spring 2010
Experiment-4
TTL Logic “AND” Gate
 Setup below the circuit. Control connections.
 Power up the circuit.
 Use switch to determine the truth table for the circuits.

Inputs Outputs
A B C
0 0
0 1
1 0
1 1

Circuit:

Circuit Components:

Component Value #
Resistor 390  3
IC 7408 1
LED 3
R1
390R23901
010+5V +V
A
BC 1
23
7408
R3
390

6

Gazi University Dept. of Electrical Electronics Engineering, Spring 2010
Experiment-5
TTL Logic “OR” Gate
 Setup below the circuit.
 Control connections.
 Power up the circuit.
 Use switch to determine the truth table for the circuits.

Inputs Outputs
A B C
0 0
0 1
1 0
1 1

Circuit:

Circuit Components:

Component Value #
Resistor 390  3
IC 7432 1
LED 3 R1
390R23901
01
0+5V +V
A
BC
R3
3901
23
7432

7

Gazi University Dept. of Electrical Electronics Engineering, Spring 2010
Experiment-6
TTL Logic “NOT” Gate
 Setup below the circuit.
 Control connections.
 Power up the circuit.
 Use switch to determine the truth table for the circuits.

Inputs Outputs
A B
0
1

Circuit:

Circuit Components:

Component Value #
Resistor 390  3
IC 7404 1
LED 3
R1
3901
0+5V +V
A B 1 2
7404 R2
390

8

Gazi University Dept. of Electrical Electronics Engineering, Spring 2010
Experiment-7
TTL Logic “NAND” Gate
 Setup below the circuit.
 Control connections.
 Power up the circuit.
 Use switch to determine the truth table for the circuits.

Inputs Outputs
A B C
0 0
0 1
1 0
1 1

Circuit:

Circuit Components:

Component Value #
Resistor 390  3
IC 7400 1
LED 3
R1
390R23901
010+5V +V
A
BC
R3
3901
23
7400

9

Gazi University Dept. of Electrical Electronics Engineering, Spring 2010
Experiment-8
TTL Logic “NOR” Gate
 Setup below the circuit.
 Control connections.
 Power up the circuit.
 Use switch to determine the truth table for the circuits.

Inputs Outputs
A B C
0 0
0 1
1 0
1 1

Circuit:

Circuit Components:

Component Value #
Resistor 390  3
IC 7402 1
LED 3 R1
390R23901
01
0+5V +V
A
BC
R3
3902
31
7402

10

Gazi University Dept. of Electrical Electronics Engineering, Spring 2010
Experiment-9
TTL Logic “EXOR” Gate
 Setup below the circuit.
 Control connections.
 Power up the circuit.
 Use switch to determine the truth table for the circuits.

Inputs Outputs
A B C
0 0
0 1
1 0
1 1

Circuit:

Circuit Components:

Component Value #
Resistor 390  3
IC 7486 1
LED 3
R1
390R23901
010+5V +V
A
BC
R3
3901
23
7486

11

Gazi University Dept. of Electrical Electronics Engineering, Spring 2010
Experiment-10
TTL Logic “EXNOR” Gate
 Setup below the circuit.
 Control connections.
 Power up the circuit.
 Use switch to determine the truth table for the circuits.

Inputs Outputs
A B C
0 0
0 1
1 0
1 1

Circuit:

Circuit Components:

Component Value #
Resistor 390  3
IC 4077 1
LED 3
R1
390R23901
010+5V +V
A
BC
R3
3901
23
4077

12

Gazi University Dept. of Electrical Electronics Engineering, Spring 2010
Experiment-11
Half Adder
 Setup below the circuit.
 Control connections.
 Power up the circuit.
 Use switch to determine the truth table for the circuits.

Inputs Outputs
A B S Co
0 0
0 1
1 0
1 1

Circuit:

Circuit Components:

Component Value #
Resistor 390  4
IC 7400 1
IC 7404 1
LED 4 1
01
0
12
3
74001098
7400
54
6
74001312
11
7400
1 2
7404 R1
390R2390 R3390 R4390+5V V
S
CoA
B

13

Gazi University Dept. of Electrical Electronics Engineering, Spring 2010
Experiment-12
Full Adder
 Setup below the circuit.
 Control connections.
 Power up the circuit.
 Use switch to determine the truth table for the circuits.

Inputs Outputs
A B S Co
0 0
0 1
1 0
1 1

Circuit:

Circuit Components:

Component Value #
Resistor 390  5
IC 7408 1
IC 7432 1
IC 7486 1
LED 5 1
0
1
0
101
23
7486
1
23
7408
R1
390R23904
56
7486
R33904
56
74081
23
7432
R4390 R5390CoS+5V V
A
B
Ci

14

Gazi University Dept. of Electrical Electronics Engineering, Spring 2010
Experiment-13
RS Flip-Flop
 Setup below the circuit.
 Control connections.
 Power up the circuit.
 Use switch to determine the truth table for the circuits.

Inputs Outputs
R S Q Q’
0 0
0 1
1 0
1 1

Circuit:

Circuit Components:

Component Value #
Resistor 390  5
IC 7408 1
IC 7432 1
IC 7486 1
LED 5 R1
390R23901
01
0+5V +V
R
S
R4
3901
23
4001
5
64
4001
R3390
Q Q’

15

Gazi University Dept. of Electrical Electronics Engineering, Spring 2010
Experiment-14
D Flip-Flop with NAND Gate
 Setup below the circuit.
 Control connections.
 Power up the circuit.
 Use switch to determine the truth table for the circuits.

Inputs Outputs
D Clk Q Q’
0 0
0 1
1 0
1 1

Circuit:

Circuit Components:

Component Value #
Resistor 390  4
IC 7400 1
LED 4 R4
390R3390
Q Q’9
108
7400
12
1311
74001
23
7400
4
56
7400R1
390R23901
010+5V +V
D
Clk

16

Gazi University Dept. of Electrical Electronics Engineering, Spring 2010
Experiment-15
D Flip-Flop
 Setup below the circuit.
 Control connections.
 Power up the circuit.
 “D” input should be change before “Clk”
 Observe the Q an d Q’ outputs.
 Use switch to determine the function of the inputs.

Circuit:

Circuit Components:

Component Value #
Resistor 390  6
IC 7474 1
LED 6 1
01
0
1
01
0
R2
390R1390 R3390 R43901 2 3 4 5 6 714 13 12 11 10 9 8
7474
R5390 R6390
Q’ Q+5V V
Silme
ClkD
Preset

17

Gazi University Dept. of Electrical Electronics Engineering, Spring 2010
Experiment-16
Multiplexer
 Setup the circuit by using 74151 IC.
 Control connections.
 Power up the circuit.
 Use switch to determine the logic function of the outputs for inputs “A” and “B”
 Build a demultiplexer circuit corresponding to MUX you used.

Circuit Components:

Component Value #
Resistor 390  14
IC 74151 1
LED 14 1 2 3 4 5 6 7 89 10 11 12 13 14 15 16
74151
D3D2D1 D 0X Y GNDABC V c c D 4D 5D 6D 7
Yet

18

Gazi University Dept. of Electrical Electronics Engineering, Spring 2010
Experiment-17
Up-Down Counter
 Setup the circuit below.
 Control connections.
 Power up the circuit.
 Use switch, and comment on function of the inputs.

Circuit Components:

Component Value #
Resistor 390  8
IC 74151 1
LED 8
1
010
1
01
0
R2
390R1390 R3390 R43901 2 3 4 5 6 7+5V V
89 10 11 12 13 14 15 16
74192
R7
390R8390Temizl e
Yükle
Yukari
Asağı
R5
390R6390
QD QC QB QA

Similar Posts