Technicaltraining. [608134]
Technicaltraining.
Productinformation.
BMWServiceN20Engine
Generalinformation
Symbolsused
Thefollowingsymbol/signisusedinthisdocumenttofacilitatebettercomprehensionandtodraw
attentiontoparticularlyimportantinformation:
Containsimportantsafetyguidanceandinformationthatisnecessaryforpropersystemfunctioning
andwhichitisimperativetofollow.
Informationstatusandnational-marketversions
TheBMWGroupproducesvehiclestomeettheveryhigheststandardsofsafetyandquality.Changes
intermsofenvironmentalprotection,customerbenefitsanddesignmakeitnecessarytodevelop
systemsandcomponentsonacontinuousbasis.Consequently,thismayresultindifferencesbetween
thecontentofthisdocumentandthevehiclesavailableinthetrainingcourse.
Asageneralprinciple,thisdocumentdescribesleft-handdrivevehiclesintheEuropeanversion.Some
controlsorcomponentsarearrangeddifferentlyinright-handdrivevehiclesthanthoseshownonthe
graphicsinthisdocument.Furtherdiscrepanciesmayarisefrommarket‐specificorcountry-specific
equipmentspecifications.
Additionalsourcesofinformation
Furtherinformationontheindividualtopicscanbefoundinthefollowing:
• Owner'sHandbook
• IntegratedServiceTechnicalApplication.
Contact:[anonimizat]
©2010BMWAG,Munich,Germany
ReprintsofthispublicationoritspartsrequirethewrittenapprovalofBMWAG,Munich
TheinformationinthedocumentispartoftheBMWGrouptechnicaltrainingcourseandisintended
foritstrainersandparticipants.RefertothelatestrelevantBMWGroupinformationsystemsforany
changes/supplementstothetechnicaldata.
Contacts
GernotNehmeyer/UdoMetz
Telephone+49(0)8938234059/+49(0)8938258506
[anonimizat]/[anonimizat]
Informationstatus: November2010
BV-72/TechnicalTraining
N20Engine
Contents
1. Introduction …………………………………………………………………………………………………………………………………………………………………………………………………………………1
1.1. History. ………………………………………………………………………………………………………………………………………………………………………………………………………….1
1.1.1. HistoricBMWAGengines …………………………………………………………………………………………………………………….1
1.1.2. HistoricBMWMengines ……………………………………………………………………………………………………………………….3
1.2. Technicaldata. ……………………………………………………………………………………………………………………………………………………………………………………3
1.2.1. Comparison ……………………………………………………………………………………………………………………………………………………………4
1.3. Newfeatures/changes ………………………………………………………………………………………………………………………………………………………………6
1.3.1. Overview. ……………………………………………………………………………………………………………………………………………………………………..6
1.4. Engineidentification …………………………………………………………………………………………………………………………………………………………………..7
1.4.1. Enginedesignation …………………………………………………………………………………………………………………………………………7
1.4.2. Engineidentification ……………………………………………………………………………………………………………………………………..8
2. EngineComponents …………………………………………………………………………………………………………………………………………………………………………………..11
2.1. Enginehousing ……………………………………………………………………………………………………………………………………………………………………………..11
2.1.1. Engineblock. ………………………………………………………………………………………………………………………………………………………12
2.1.2. Cylinderheadgasket ……………………………………………………………………………………………………………………………….16
2.1.3. Cylinderhead …………………………………………………………………………………………………………………………………………………….17
2.1.4. Cylinderheadcover. ………………………………………………………………………………………………………………………………….18
2.1.5. Oilsump. ………………………………………………………………………………………………………………………………………………………………….24
2.2. Crankshaftdrive ……………………………………………………………………………………………………………………………………………………………………………27
2.2.1. Crankshaftwithbearings.. …………………………………………………………………………………………………………………..27
2.2.2. Connectingrod ……………………………………………………………………………………………………………………………………………..42
2.2.3. Pistonwithpistonrings. ……………………………………………………………………………………………………………………….43
2.3. Camshaftdrive. ………………………………………………………………………………………………………………………………………………………………………………45
2.4. Counterbalanceshafts. ………………………………………………………………………………………………………………………………………………………..46
2.5. Valvegear ……………………………………………………………………………………………………………………………………………………………………………………………..50
2.5.1. Design. ………………………………………………………………………………………………………………………………………………………………………..50
2.5.2. Valvetronic. …………………………………………………………………………………………………………………………………………………………….55
2.6. Beltdrive ……………………………………………………………………………………………………………………………………………………………………………………………….63
3. OilSupply …………………………………………………………………………………………………………………………………………………………………………………………………………………..65
3.1. Overview ………………………………………………………………………………………………………………………………………………………………………………………………..65
3.1.1. Hydrauliccircuitdiagram. ……………………………………………………………………………………………………………………66
3.1.2. Oilpassages ………………………………………………………………………………………………………………………………………………………..68
3.2. Oilpumpandpressurecontrol. …………………………………………………………………………………………………………………………………73
3.2.1. Oilpump.. …………………………………………………………………………………………………………………………………………………………………73
3.2.2. Control ………………………………………………………………………………………………………………………………………………………………………..75
3.2.3. Pressure-limitingvalve.. …………………………………………………………………………………………………………………………83
3.3. Oilfilteringandcooling. ………………………………………………………………………………………………………………………………………………………84
3.3.1. Oilcooling. ……………………………………………………………………………………………………………………………………………………………..84
3.3.2. Oilfiltering ……………………………………………………………………………………………………………………………………………………………..85
N20Engine
Contents
3.4. Oilmonitoring. …………………………………………………………………………………………………………………………………………………………………………………86
3.4.1. Oilpressureandtemperaturesensor ………………………………………………………………………………….86
3.4.2. Oillevelmonitoring.. …………………………………………………………………………………………………………………………………..87
3.5. Oilspraynozzles.. ………………………………………………………………………………………………………………………………………………………………………..87
3.5.1. Pistoncrowncooling.. ………………………………………………………………………………………………………………………………87
3.5.2. Chaindrive. ……………………………………………………………………………………………………………………………………………………………88
3.5.3. Camshaft ………………………………………………………………………………………………………………………………………………………………….89
3.5.4. Gearing,Valvetronicservomotor. ……………………………………………………………………………………………….91
4. Cooling ……………………………………………………………………………………………………………………………………………………………………………………………………………………………93
4.1. Overview ………………………………………………………………………………………………………………………………………………………………………………………………..93
4.2. Heatmanagement …………………………………………………………………………………………………………………………………………………………………….96
4.2.1. Coolantpump ……………………………………………………………………………………………………………………………………………………96
4.2.2. Mapthermostat ………………………………………………………………………………………………………………………………………………97
4.2.3. Heatmanagementfunction.. ……………………………………………………………………………………………………………97
4.3. Internalenginecooling.. ………………………………………………………………………………………………………………………………………………………98
5. AirIntake/ExhaustEmissionSystems. ……………………………………………………………………………………………………………………………99
5.1. Overview ………………………………………………………………………………………………………………………………………………………………………………………………..99
5.2. Intakeairsystem.. ……………………………………………………………………………………………………………………………………………………………………101
5.2.1. Hot-filmairmassmeter. ……………………………………………………………………………………………………………………102
5.2.2. Intakemanifold …………………………………………………………………………………………………………………………………………….102
5.3. Exhaustturbocharger ………………………………………………………………………………………………………………………………………………………..103
5.3.1. FunctionofTwinScrollexhaustturbocharger. ……………………………………………………….105
5.4. Exhaustemissionsystem. ……………………………………………………………………………………………………………………………………………108
5.4.1. Exhaustmanifold ……………………………………………………………………………………………………………………………………….108
5.4.2. Catalyticconverter …………………………………………………………………………………………………………………………………..108
6. VacuumSystem …………………………………………………………………………………………………………………………………………………………………………………………….110
7. FuelPreparation …………………………………………………………………………………………………………………………………………………………………………………………..112
7.1. Overview …………………………………………………………………………………………………………………………………………………………………………………………….112
7.2. Fuelpumpcontrol.. ………………………………………………………………………………………………………………………………………………………………..113
7.3. High-pressurepump …………………………………………………………………………………………………………………………………………………………..113
7.4. Injectors ………………………………………………………………………………………………………………………………………………………………………………………………114
8. FuelSupply ………………………………………………………………………………………………………………………………………………………………………………………………………….117
8.1. Tankventilation.. ………………………………………………………………………………………………………………………………………………………………………..117
8.1.1. Two-stagetankventilation… ………………………………………………………………………………………………………….117
8.1.2. Two-stagetankventilationwithshutoffvalve ………………………………………………………..119
9. EngineElectricalSystem.. ……………………………………………………………………………………………………………………………………………………………..122
N20Engine
Contents
9.1. Overview …………………………………………………………………………………………………………………………………………………………………………………………….122
9.2. Enginecontrolunit ……………………………………………………………………………………………………………………………………………………………….124
9.2.1. Overallfunction ……………………………………………………………………………………………………………………………………………126
N20Engine
1.Introduction
1BMWhasdecidedtobringbackthe4–cylinderenginetotheUSmarket.ThelastBMW4–cylinder
engineintheUSwastheM44,thislasteduntil1999andwasinstalledintheE36318is/318ti/Z3.
SincethenBMWintheUShasnothada4–cylinderengine.TheN20enginerepresentsthenew
generationofBMW4-cylindergasolineengines.ItwillgraduallybephasedinonanumberofBMW
modelsstartinginSeptember2011.TheN20willreplacetheN526-cylindernaturallyaspirated
engines.TheN20engineisequippedwiththelatesttechnology,suchasTVDI(Turbocharged
ValvetronicDirectInjection)inconjunctionwithaTwinScrollexhaustturbocharger.Asawhole,itis
closelyrelatedtotheN55engine,thisiswhyconstantreferenceismadetotheN55engineinthis
document.
1.1.History
ThehistoryofBMW4-cylinderenginesbeganbackin1927withtheBMW3/15.Fromthatpointon,
apartfromaninterruptionstretchingfrom1936to1962,the4-cylindergasolineengineshaveagain
andagainbeentheprecursorstonewtechnologiesandhaveoftenalsobeenforerunners.Thus,
theM31engine(predecessoroftheM10engine)wastheworld'sfirst4-cylinderproductionengine
tofeatureaTwinScrollexhaustturbochargerandbackin1973alreadyachievingapoweroutputof
125kW/167bhpfromadisplacementof2liters.InmotorsportthecrankcaseoftheM10witha
displacementof1.5litersproducedthefirstFormula1worldchampionwithaturbochargedengine.In
theworldofmotorracingperformancefiguresofupto1350bhpfromadisplacementof1.5literswere
achieved,figureswhichtodatehaveonlybeenachievedbyBMW.
1.1.1.HistoricBMWAGengines
Designation Power
outputin
bhp/rpmDisplacement
in[cm³]Yearof
launchModel Series
DA1,2,4* 15/3000 748 1927BMW3/15 3/15
DA3* 18/3500 748 1930Wartburg 3/15
M68* 20/3500 782 1932BMW3/20 3/20
M68* 22/4000 845 1934BMW309 309
M115** 75/5700 1499 1961BMW1500 115
M115**
Availablein
theUS80/5500 1499 1962BMW1500 115
M116**
Availablein
theUS83/5500 1573 1964BMW1600 116
M116** 85/5700 1573 1966 BMW
1600-2114C
M116** 105/6000 1573 1967BMW1600ti 116
M116** 75/5800 1573 1975BMW1502 114
M118** 90/5250 1773 1963BMW1800 118
M118** 110/5800 1773 1964BMW1800ti 118
N20Engine
1.Introduction
2Designation Power
outputin
bhp/rpmDisplacement
in[cm³]Yearof
launchModel Series
M118**
Availablein
theUS130/6100 1773 1965 BMW
1800tiSA118
M118**
short-stroke90/5250 1766 1968BMW1800 118
M118**
short-stroke90/5500 1766 1974BMW518 E12/4
M05**
Availablein
theUS100/5500 19901965–1972 BMW
2000/2002121
M05** 120/5500 1990 1965BMW2000ti 121
M15**
Availablein
theUS130/5800 1990 1968 BMW
2000tii/2002tii121
M17** 115/5800 1990 1972BMW520 E12/4
M31** 170/5800 1990 1974 BMW
2002turboE20
M41** 90/6000 1573 1975BMW316 E21
M42** 98/5800 1766 1975BMW318 E12
M42** 90/5500 1766 1976BMW518 E12
M43/1** 109/5800 1990 1975BMW320 E21
M64** 125/5700 1990 1975BMW320i E21
M10(M92**) 105/5800 1766 1980BMW318i E30
M10(M99**) 90/5500 1766 1980 BMW
316/518E30/E28
M98** 75/5800 1573 1981BMW315 E21
M10
Availablein
theUS102/5800 1766 1984 BMW
318iCatE30
M40B16 102/5500 1596 1988BMW316i E30
M40B16 99/5500 1596 1988 BMW
316iCatE30
M40B18 116/5500 1796 1987BMW318i E30
M40B18 113/5500 1796 1987 BMW
318iCat
BMW
518iCatE28/
E30/E34
M42B18O0
Availablein
theUS140/6000 1796 1989318is/318ti E36
N20Engine
1.Introduction
3Designation Power
outputin
bhp/rpmDisplacement
in[cm³]Yearof
launchModel Series
M43B16O0 102/5500 1596 1993 316iE36
M43B16O0 87/5500 1596 1996 316g E36
M43B18O0 116/5500 1796 1993318i/518i/
Z31.8E34/E36
M43B19U1 105/5300 1895 2000 316iE46
M43B19O1 118/5500 1895 1998318i/Z31.8 E36/E46
M44B19O0
Availablein
theUS149/6000 1895 1995318is/318ti/
Z31.9E36
*denotesenginesupto1933,**denotesenginesfrom1957–1980,Cat=catalyticconverterfrom
M42/1989datawithandwithoutcatalyticconverter.
Note:NotallenginesinthechartabovewereavailableintheUSmarket.TheM44B19O0was
thelast4cylinderengineavailableintheUSuptotheintroductionoftheN20in9/2011.
1.1.2.HistoricBMWMengines
Designation Power
outputin
bhp/rpmDisplacement
in[cm³]Yearof
launchModel Series
S14B23 197/6750 2302 1986BMWM3 E30
1.2.Technicaldata
Modeldesignation Enginedesignation Seriesintroduction
VariousBMWmodels N20B20O0 2012Modelyear
N20Engine
1.Introduction
41.2.1.Comparison
N20B20O0enginecomparedwithN52B30O1engine
Full-loaddiagram,N20B20O0enginecomparedwithN52B30O1engine
N20Engine
1.Introduction
5Unit N52B30O1 N20B20O0
Design Inline6 Inline4
Displacement [cm³] 2996 1997
Bore/stroke [mm] 85/88 84/90.091
Poweroutput
atenginespeedkW/bhp
[rpm]190/254
6600180/240
5000-6500
Poweroutputperliter [kW/l] 63.4 90.14
Torque
atenginespeedNm/ft-lbs
[rpm]310/228
2600-3000350/255
1250-4800
Compressionratio [ε] 10.7 10.0:1
Valvespercylinder 4 4
Fuelconsumption l/100 km 9.9 7,9
CO2emissions [g/km] 230 183
DigitalEngineElectronics MSV80 MEVD17.2.4
Exhaustemissionslegislation ULEVII ULEVII
N20Engine
1.Introduction
61.3.Newfeatures/changes
1.3.1.Overview
System Comment
Enginemechanical
components• Aluminiumcrankcasewithcoatedcylinderbore
• Optimizedcoolingjackets
• UseoftheTVDItechnology
• TwinScrollexhaustturbocharger
• 3rdgenerationValvetronicwithnewintermediatelevers
• NewgenerationVANOSwithcentralvalves
• Assembledcamshafts
• Twomodecrankcaseventilation
• Forgedcrankshaft
• Positivecrankshaftoffset
• Pistonwithnegativepinoffset
• Chaindriveforcounterbalanceshaftswithchaintensioner
• Counterbalanceshaftsarrangedontopofoneanother.
Oilsupply • Map-controlledoilpump
• Newpendulum-slideoilpumpdesign
• Unfilteredoilcooling
• Newcombinedoilpressureandtemperaturesensor.
Cooling • Electriccoolantpump
• Mapcontrolledthermostat.
Airintakeandexhaust
emissionsystems• TwinScrollexhaustturbocharger
• Hot-filmairmassmeter
• Enhancedcrankcaseventilation.
N20Engine
1.Introduction
7System Comment
Vacuumsystem • Two-stagevacuumpump
• Vacuumreservoirforthewastegatevalveisbuiltintothe
enginecover.
Fuelpreparation • High-pressureinjection(asN55)
• Solenoidvalveinjectors
• Boschhigh-pressurepump
• High-pressurelinestotheinjectorsaresolderedtotherail
• Nofuellow-pressuresensor.
Engineelectricalsystem • BoschMEVD17.2.4enginecontrolunit.
1.4.Engineidentification
1.4.1.Enginedesignation
TheN20 engineisdescribedinthefollowingversion:N20B20O0.
ThetechnicaldocumentationalsofeaturestheshortformoftheenginedesignationN20,whichonly
allowsassignmentoftheenginetype.
Item Meaning Index/explanation
1 Enginedeveloper M,N=BMWGroup
P=BMWMotorsport
S=BMWMGmbH
W=non-BMWengines
2 Enginetype 1=Inline4(e.g.N12)
2=Inline4(e.g.N20)
4=Inline4(e.g.N43)
5=Inline6(e.g.N53)
6=V8(e.g.N63)
7=V12(e.g.N73)
8=V102(e.g.S85)
3 Changetothebasicengine
concept0=basicengine
1to9=changes,e.g.
combustionprocess
4 Workingmethodorfueltype
andpossiblyinstallation
positionB=gasoline,longitudinal
installation
D=diesel,longitudinal
installation
H=hydrogen
5 Displacementinliters 1=1liter+
N20Engine
1.Introduction
8Item Meaning Index/explanation
6 Displacementin1/10liter 8=0.8liters=1.8liters
7 Performanceclass K=Smallest
U=Lower
M=Middle
O=Upper(standard)
T=Top
S=Super
8 Revisionrelevanttoapproval 0=Newdevelopment
1–9=Revision
BreakdownofN20enginedesignation
Index Explanation
N BMWGroupDevelopment
2 4-cylinderin-lineengine
0 Enginewithexhaustturbocharger,Valvetronic
anddirectfuelinjection(TVDI)
B Gasolineengine,longitudinallyinstalled
20 2.0litersdisplacement
O Upperperformanceclass
0 Newdevelopment
1.4.2.Engineidentification
Theengineshaveanidentificationmarkonthecrankcasetoensureproperidentificationand
classification.
WiththeN55engine,thisidentificationwassubjecttoafurtherdevelopment,withthepreviouseight
positionsbeingreducedtoseven.Theenginenumbercanbefoundontheenginebelowtheengine
identification.Thisconsecutivenumber,inconjunctionwiththeengineidentification,allowsproper
identificationofeachindividualengine.
N20Engine
1.Introduction
9Item Meaning Index/explanation
1 Enginedeveloper M,N=BMWGroup
P=BMWMotorsport
S=BMWMGmbH
W=non-BMWengines
2 Enginetype 1=Inline4(e.g.N12)
2=Inline4(e.g.N20)
4=Inline4(e.g.N43)
5=Inline6(e.g.N53)
6=V8(e.g.N63)
7=V12(e.g.N73)
8=V102(e.g.S85)
3 Changetothebasicengine
concept0=basicengine
1to9=changes,e.g.
combustionprocess
4 Workingmethodorfueltype
andpossiblyinstallation
positionB=gasoline,longitudinal
installation
D=diesel,longitudinal
installation
H=hydrogen
5 Displacementinliters 1=1liter+
6 Displacementin1/10liter 8=0.8liters=1.8liters
7 Typetestconcerns(changes
thatrequireanewtypetest)A=Standard
B-Z=dependingon
requirement,e.g. RON 87
N20Engine
1.Introduction
10
N20enginenumber,engineidentificationandenginenumber
Index Explanation
00034772 Individualconsecutiveenginenumber
N Enginedeveloper,BMWGroup
2 Enginetype,Inline4
0 Changetothebasicengineconcept,TurbochargedValvetronicDirectInjection
B Operatingprincipleorfueltypeandinstallationposition,gasolinelongitudinal
installation
20 Displacementin1/10liter,2liters
A Typetestconcerns,standard
N20Engine
2.EngineComponents
112.1.Enginehousing
Theenginehousingcomprisestheengineblock(crankcaseandbedplate),thecylinderhead,the
cylinderheadcover,theoilsumpandthegaskets.
N20engine,structureofenginehousing
Index Explanation
1 Cylinderheadcover
2 Cylinderheadcovergasket
3 Cylinderhead
4 Cylinderheadgasket
5 Crankcase
N20Engine
2.EngineComponents
12Index Explanation
6 Sealant
7 Bedplate
8 Oilsumpgasket
9 Oilsump
2.1.1.Engineblock
TheengineblockismadefromdiecastaluminiumAlSi9Cu3alongwiththecrankcaseandthe
bedplate.AnewcoatingforthecylinderwallisbeingusedforthefirsttimebyBMW.Itsreferredtoas
electricarcwirespraying.
Thecoolingjackethasalsobeenoptimizedtoimprovecoolingbetweenthecylinders,thisisdueto
therequirementsofaturbochargedengine.
Oilpassages
Thegraphicbelowshowstheoilpassagesintheengineblock.
N20engine,oilpassages
N20Engine
2.EngineComponents
13Index Explanation
1 Oilreturnduct
2 Blow-byduct
3 Cleanoilpassages
4 Unfilteredoilpassages
Coolantducts
Thegraphicbelowshowsthecoolantpassagesintheengineblock.
N20engine,coolingjacketandcoolantpassages
Index Explanation
1 Coolingjacket,exhaustside
2 Coolingjacket,intakeside
3+4 Coolantpassagesbetweenthecylinders
Compensationopenings
Thecrankcasefeatureslargemilledlongitudinalventilationholes.Theseventilationholesimprove
thepressurecompensationoftheoscillatingaircolumnscreatedbytheupanddownstrokesofthe
pistons.
Additionalopeningsontheintakesideonthebearingseatbetweenthecylindersalsoimprove
crankcasepressure.
N20Engine
2.EngineComponents
14
N20engine,compensationopeningsinthebearingseat
Index Explanation
1+2+3 Openings
4+5 Ventilationholes
Cylinder
Anironwireisusedintheelectricarcwiresprayingprocess(arcsprayprocess)tocoatthealuminium
cylinderbores.Highvoltageisusedtoigniteanelectricarcatbothendsofthewire.Thetemperatures
generatedintheprocessareintheregionof3000°C/5432°F.Thehightemperaturesmeltthewire,
whichiscontinuallyfedbythewirefeedunit.Themoltenironisblastedontothecylinderwallsurface
atpressureviathecentralandsecondarycompressed-airsupplies.
Theliquidironadherestothealuminiumsurfacethrough:
• Mechanicalbonding:
Moltenparticlespenetrateasaresultofhighkineticenergyandcapillaryactioninto
depressionsandundercuts,wheretheysolidifytocreateaverystrongcoating.
N20Engine
2.EngineComponents
15
Electricarcspraying
Index Explanation
1 Directionofmovement
2 Coatedcylindersurface
3 EASunit
4 Sprayjet
5 Nozzle
6 Secondarycompressed-airsupply
7 Spraywire
8 Powersupply
N20Engine
2.EngineComponents
16Index Explanation
9 Centralcompressed-airsupply
10 Contacttube
11 Wirefeedunit
12 Electricarc
Advantages:
• Sprayparticlesadherewiththebasemetal
• Idealforthickcoatingsorlargesurfaces
• Greatestapplicationrateperhourofallthethermalsprayingprocesses
• Thearcspraycoatingcanbarelybedistinguishedintermsofcolorfromthebasemetal
• Thelow-oxidespraycoatingcanbeprocessedduringmanufacturinglikeasolidmaterial
• Hightensilestrengthandlowercontractionstrain
• Micro-poroussurfacereducesfriction
• Coatingpropertiessuchascoatinghardnessorsurfacequalitycanbedetermined
• Allmaterialscanbeaddedascoatings,suchasforexampleferrous/nonferrousalloyoncast
iron
• Lowthermalstressthankstooptimizedheattransfer.
Thelowcoatingthicknessofabout1mmproducesoptimumheattransferbutdoesnotallow
reworkingofthecylinderboresurfaceinservice.
Ifacylinderisdeterminedoutofspecificationtheentireengineblockmustbereplaced.
2.1.2.Cylinderheadgasket
Athree-layerspringsteelgasketisusedforthecylinderheadgasket.Astopperplate(2)isweldedon
intheareaofthecylinderboresinordertoachievesufficientcontactpressureforsealing.Allthelayers
ofthegasketarecoated,thecylinderheadandtheengineblockcontactsurfacesarecoatedwitha
partialfluorocaoutchouc(elastomer)withnon-stickcoating.
N20engine,cylinderheadgasket
N20Engine
2.EngineComponents
17Index Explanation
1 Topspringsteellayerwithnon-stickcoating
2 Welded-onstopperplate
3 Middlespringsteellayerwithcoating
4 Bottomspringsteellayerwithnon-stickcoating
2.1.3.Cylinderhead
ThecylinderheadintheN20engineissimilartothecylinderheadintheN55.The3rdgeneration
ValvetronicsystemintroducedintheN55isalsousedintheN20engine.
TheclassicVANOSwithseparatesolenoidvalveintheN55enginehasbeenreplacedintheN20
enginebyacentralVANOSwithintegratedsolenoidvalve.Thebenefitofthissystemisareduced
numberofoilpassagesinthecylinderhead.
AsintheN55enginetheN20alsousesTVDItechnology.
Thecombinationofexhaustturbocharger,ValvetronicanddirectfuelinjectionisknownasTurbo
Valvetronic DirectInjection(TVDI).
N20engine,cylinderhead
N20Engine
2.EngineComponents
18Index Explanation
1 VANOSsolenoidactuator,intake
2 VANOSsolenoidactuator,exhaust
3 Rollertappet,high-pressurepump
4 Valvetronicservomotor
5 Spring
6 Guideblock
7 Intermediatelever
8 Eccentricshaft
2.1.4.Cylinderheadcover
Design
Thecylinderheadcoverisanewdevelopment.Allthecomponentsforcrankcaseventilationandthe
blow-byductsareintegratedintothecover.Apressurecontrolvalvepreventsanexcessivevacuum
frombeinggeneratedinthecrankcase.Ventilationisperformedviadifferentductsdependingon
whethertheengineisrunninginturbocharged(Boost)ornormallyaspirated(NA)mode.
InNAmode,ventilationisperformedviathepressurecontrolvalveatabout38 mbar.
N20Engine
2.EngineComponents
19
N20engine,cylinderheadcoverwithcrankcaseventilation
Index Explanation
A SectionA
B SectionB
C SectionC
1 Connectiontocleanairpipeaheadofexhaustturbocharger
N20Engine
2.EngineComponents
20Index Explanation
2 Non-returnvalve
3 Pressurecontrolvalve
4 Springtabseparator
5 Oilseparator
6 Settlingchamber
7 Non-returnvalve
8 Non-returnvalve
9 Blow-byducttotheintakeportsinthecylinderhead
Theblow-bygasespassthroughtheopeningintheintakesideareaofcylinderonetothethreespring
tabseparators.Theoilintheblow-bygasisseparatedbythespringtabseparators,andflowsalong
thewallsdownthroughanon-returnvalveandbackintothecylinderhead.Theblow-bygasseparated
fromtheoilnowpassesintotheairintakesystemportsorfreshairpipe(dependingontheoperating
mode).
Function
Innaturallyaspiratedmode,thenon-returnvalveintheblow-byductofthecylinderheadcoveris
openedbythevacuumpressureintheairintakesystemandtheblow-bygasesaredrawnoffviathe
pressurecontrolvalve.Thevacuumpressuresimultaneouslyclosesthesecondnon-returnvalveinthe
ducttocharge-airsuction/freshairline.
Theblow-bygasesarerouteddirectlyintothecylinderheadintakeportsviathepassagesintegrated
inthecylinderheadcover.
Apurgeairline,whichisconnectedtothefreshairpipeaheadoftheturbochargerandtothe
crankcase,routesfreshairviaanon-returnvalvedirectlyintothecrankcase.Thegreaterthevacuum
inthecrankcase,thehighertheairmassintroduced.Thispurgingpreventsthepressurecontrolvalve
fromicingupbyreducingmoistureinthesystem.
N20Engine
2.EngineComponents
21
N20engine,crankcaseventilation,naturallyaspiratedmode
Index Explanation
B Ambientpressure
C Vacuum
D Exhaustgas
E Oil
F Blow-bygas
1 Airfilter
2 Intakeplenum
N20Engine
2.EngineComponents
22Index Explanation
3 Perforatedplates
4 Passagesincylinderheadandcylinderheadcover
5 Blow-bygasduct
6 Purgeairline
7 Non-returnvalve
8 Crankcase
9 Oilsump
10 Oilreturnpassage
11 Turbocharger
12 Non-returnvalve,oilreturn
13 Charge-airsuctionline/freshairpipe
14 Connectiontocharge-airsuctionline
15 Non-returnvalvewithrestrictor
16 Throttlevalve
17 Pressurecontrolvalve
18 Non-returnvalvewithrestrictor
Onceinboostmodethepressureintheintakeplenumrisesthusitisnolongerpossibleforthe
blow-bygasestobeintroducedviathisroute.Anon-returnvalveintheblow-byductofthecylinder
headcoverclosestheducttotheintakeplenumandtherebyprotectsthecrankcaseagainstexcess
pressure.
Thenowgreaterfresh-airdemandgeneratesavacuuminthefreshairpipebetweentheturbocharger
andtheintakesilencer.Thisvacuumissufficienttoopenthenon-returnvalveinthecylinderhead
coveranddrawofftheblow-bygasesdirectlywithoutregulation.Thepressurecontrolvalve(17)is
bypassedinthismode,sinceonlyalowvacuumisgeneratedwhichdoesnothavetobelimited.
N20Engine
2.EngineComponents
23
N20engine,crankcaseventilation,boostmode
Index Explanation
A Chargingpressure
C Vacuum
D Exhaustgas
E Oil
F Blow-bygas
1 Airfilter
2 Intakeplenum
N20Engine
2.EngineComponents
24Index Explanation
3 Perforatedplates
4 Passagesincylinderheadandcylinderheadcover
5 Blow-bygasduct
6 Purgeairline
7 Non-returnvalve
8 Crankchamber
9 Oilsump
10 Oilreturnpassage
11 Turbocharger
12 Non-returnvalve,oilreturn
13 Charge-airsuctionline/cleanairpipe
14 Connectiontocharge-airsuctionline
15 Non-returnvalvewithrestrictor
16 Throttlevalve
17 Pressurecontrolvalve
18 Non-returnvalvewithrestrictor
2.1.5.Oilsump
TheoilsumpismadefromplasticforrearwheeldrivevehiclesandcastaluminiumforxDrivemodels.
ForxDrivevehiclestheoilsumphasbeenmodifiedduetotheinputshaftsandattachmentpointsfor
theaxledrive.
Theoilpumpwiththecounterbalanceshaftscoverstheentireoilsumpandtherebyprotectsthe
crankshaftagainst“oilsplashing”bydoublingasawindagetray.Theoilflowingbackthroughtheoil
returnpassagesisrouteddirectlyintotheoilsumpandthereforecannotcomeintocontactwiththe
crankshaft.
N20Engine
2.EngineComponents
25
N20engine,oilpumpwithcounterbalanceshafts
Index Explanation
1 Chaindrive
2 Counterbalanceshaft
3 Oilreturnducts,intakeside
4 Oilpump
5 Oilreturnducts,exhaustside
N20Engine
2.EngineComponents
26
N20engine,oilsumpwithoilpumpandcounterbalanceshafts
Index Explanation
1 Chaindrive
2 Housing,counterbalanceshafts
3 Oilsump
4 Oilpump
N20Engine
2.EngineComponents
272.2.Crankshaftdrive
2.2.1.Crankshaftwithbearings
Crankshaft
ThecrankshaftoftheN20enginehasastrokeof89.6mmandismadeofthematerialC38modBY.Itis
aforgedcrankshaftwithfourbalanceweightsandweighs13.9 kg/30.6lbs.
N20engine,crankshaft
Crankshaftbearingsandrodbearings
Thecrankshaftissupportedbyfive(lead-freetwocomponent)bearings.Thethrustbearingislocated
inthemiddleatthethirdbearingposition.Thethrustbearingisonlydesignedfor180°andislocated
inthebearingseat.Thebearinginthebearingcapdoesnotprovideanyaxialguidance.
N20Engine
2.EngineComponents
28
N20engine,crankshaftbearings
Index Explanation
1 Upperbearingshellwithgrooveandoilhole
2 Thrustbearingwithgrooveandoilhole
3 Lowerbearingshellwithoutgroove
TheN20usesthesameprocedureaswithN55forcalculatingthecorrectbearingsizebyusingthe
crankcaseandcrankshaftcodes.
Theidentificationmarkingsfortheupperbearingsarefoundstampedonthecrankcaseandforthe
lowerbearingsonthecrankshaft.Ifthecrankshaftistobefittedwithnewbearings refertotherepair
instructionsformoreinformationontheproceduretodeterminethecorrectbearingsize/color.
N20Engine
2.EngineComponents
29
N20engine,bearingidentification,crankshaftcode
Index Explanation
1 Codedigitsforcrankshaftbearings(21211)
2 Codelettersforconnectingrodbearings(rrrr)
Twobearingcategoriesareused.Thesebearingcategoriesare“r”and“b”.
Thefollowingappliestothebearingpositionandbearingallocation:
Bearingcategoryorcode
letterInstallationlocation Bearingcolor
Rodend Violet b
Bearingcapend Blue
Rodend Yellow r
Bearingcapend Red
ThebearingshellsareidenticalpartstothoseusedintheN54andN55engines.Alocatinggroove
preventsthewrongbearingshellfrombeinginstalled.
N20Engine
2.EngineComponents
30
N20engine,bearingidentification,crankcase
Index Explanation
1 “K”standsforclutchend
2 Bearing5
3 Bearing4
4 Bearing3
5 Bearing2
6 Bearing1
The“K”designationinposition(1)standsforclutchend(German:Kupplungsseite).Thusthefirst
codedigit(2)istheIDcodeforbearing5inthecrankcase.Thesecondcodedigit(3)standsfor
bearing4,etc.
Thefollowingisanexampleofhowtocalculatethecorrectcrankshaftmainandrodbearingsusingthe
stampingcodes.
N20Engine
2.EngineComponents
31
Exampleofthecrankshaftbearingselectionprocedure.
Exampleoftheconnectingrodbearingselectionprocedure.
N20Engine
2.EngineComponents
32
Note:Thistrainingmaterialisintendedforclassroominstructiononly.Itisnotmeantto
replacecurrentlyavailablerepairinstructions.Alwaysrefertothemostcurrentversionof
repairinstructions,technicaldataandtorquespecifications.Refertothelatestversionof
ISTA.
Pinoffset
Pistonsalwaysrequirearunningclearance.Therunningclearancemeansthatthereisalwaysacertain
degreeoflateralmovement(pistonslap)asthepistonchangesdirectionfromup-stroketodown-
stroke.Thegreatertheforceactingonthepistonandthegreatertherunningclearance,thegreater
thepistonslap.
Pinoffsetinvolvesadvancingthetimewhenthepistonchangesbetweenthecompressionandpower
stroketothelowerpressurerangebeforetopdeadcenter.Thisresultsinareductionofnoiseand
friction.
Pinoffsetreferstothedisplacementofthewristpinaxisfromthecylindercenterlineofthepiston.A
positiveoffsetindicatesoffsettothemajorthrustface,anegativeoffsetdenotesoffsettotheminor
thrustface.Themajorthrustfacereferstothatsideofthepistononwhichthepistonrestsinthe
combustionstrokeonitswaytobottomdeadcenter(seearrowofIII).Minorthrustisthepiston's
thrustagainsttheoppositecylinderwallduringthecompressionstroke(seearrowofI).
Thefollowinggraphicshowsaconventionalcrankshaftdrivewithoutpinandcrankshaftoffset.
N20Engine
2.EngineComponents
33
Conventionalcrankshaftdrive
Index Explanation
I Pistonpositionandcrankshaftpositionshortlybeforetopdeadcenter(TDC)
II Pistonpositionandcrankshaftpositionattopdeadcenter
III Pistonpositionandcrankshaftpositionaftertopdeadcenter
A Majorthrustface
B Minorthrustface
C Directionofenginerotation
1 Wristpin
2 Centerofcrankshaftrotation
3 Thrustforce
Asthegraphicshows,inaconventionalcrankshaftdriveassemblythewristpinboss,theconnecting
rodandthecenterofcrankshaftrotationareinlineattopdeadcenter(TDC).Becauseofthis
arrangement,thepistonisforcedagainsttheminorthrustface(B)duringtheup-stroke.AtTDCthe
forcesarecompensatedbecausethepressureontheminorthrustfacedecreasesasthecrankshaft
rotatesawayfromTDCandthepistontiltstowardsthemajorthrustface(A).Becausethereisalready
highpressureatTDC,thisabruptchangeoffacecausesanoisewhichisreferredtoaspistonslap.
Pinoffsetcanbeeffectedtowardsthemajorthrustface(positive)andalsotowardstheminorthrust
side(negative).Major-thrust-facepinoffsetisalsoreferredtoasnoiseoffset.
N20Engine
2.EngineComponents
34Minor-thrust-facepinoffsetisalsoreferredtoasthermaloffset.Inthispositionthesealingeffectof
thepistonringsisimproved.
Pinoffset
Index Explanation
A Major-thrust-facepinoffset(positive)
B Minor-thrustfacepinoffset(negative)
OT Topdeadcenter
UT Bottomdeadcenter
Becausethenoisecanbeheardduringthechangeoffaces,technicalmeasuresareusedtoshiftthis
changeoffacesasfaraspossibletoarange(pistonposition)inwhichtheactingforcesarelower.This
isdoneincurrentBMWenginesbyoffsettingthewristpintowardsthemajorthrustface.
Theoffsetisabout.0.3-0.8mminconventionalenginesandisthereforevirtuallyimperceptibletothe
eye.Thisisalsothereasonwhythepistonshaveadirectionalmarkingatthetop.Incorrectinstallation
mayresultinextremenoisesimilartothatgeneratedbypistondamage.
N20Engine
2.EngineComponents
35
Pistonrockinginanenginewithpinoffset
Index Explanation
I Pistonpositionandcrankshaftpositionbeforetopdeadcenter
II Pistonpositionandcrankshaftpositionshortlybeforetopdeadcenter,with
perpendicularconnectingrod
III Pistonpositionandcrankshaftpositionattopdeadcenter
A Majorthrustface
B Minorthrustface
C Directionofenginerotation
1 Wristpin
2 Centerofcrankshaftrotation
3 Thrustforce
Thepistonrestsagainsttheminorthrustfaceduringtheup-stroke.Aneutralpistonpositionisalready
achievedbeforeTDCbyoffsettingthewristpin.Thisisthecasewhenthecenterlinesofthecylinder
andofthebigandsmallconnectingrodeyesareparalleltoeachother.AlreadybeforeTDCthepiston
changesfromtheminorthrustfacetothemajorthrustface.Inthisphasetheforceonthepistonis
stilllow.Duetotheoff-centersupportofthepiston,theforceactingonthepistonfromabovehasa
higherleverarmontheonefacethanontheother.Inthisway,thepistonisalreadytiltedduringtheup-
N20Engine
2.EngineComponents
36stroke,resultingincontactwiththemajorthrustfaceattheupperedge.Initssubsequentmovement
thepistonagaintravelsstraightahead,sothatthepistonrestscompletelyonthemajorthrustface.
Thechangeoffacesismuchquieterthaninaconventionalcrankshaftdrive.
Thedownsideofpinoffsetisthatthereisaslightincreaseinfrictiononthemajorthrustface.This
minordownside,however,ismadeupforbythereducednoise.
Crankshaftoffset
AcrankcasewithcrankshaftoffsetisusedforthefirsttimebyBMW.
Crankshaftoffsetdenotestheoffsetofthecrankshaftaxisfromthecylindercenterline.Thisoffsetcan
effectonboththemajorthrustfaceandtheminorthrustface.Apositiveoffsetdenotesoffsettothe
majorthrustface,anegativeoffsetdenotesoffsettotheminorthrustface.
Crankshaftoffsetcanbasicallybeeffectedinbothdirections,butuptonowonlythevariationinthe
positivedirection(A)hasbeenused.
Crankshaftoffset
Index Explanation
A Positiveoffset
B Negativeoffset
OT Topdeadcenter
UT Bottomdeadcenter
N20Engine
2.EngineComponents
37Thefollowinggraphicclearlyshowsthatpositivecrankshaftoffset,whencomparedwithpositivepin
offset,hasanopposedeffectonpistonrocking.Thuspistonrockingoccursmuchlaterandinthe
rangeofahighcylinderpressure.
Pistonrockinginanenginewithcrankshaftoffset
Index Explanation
I Pistonpositionandcrankshaftpositionshortlyaftertopdeadcenter
II Pistonpositionandcrankshaftpositionwithperpendicularconnectingrod
III Pistonpositionandcrankshaftpositionafterpistonrocking
A Majorthrustface
B Minorthrustface
C Directionofenginerotation
1 Wristpin
2 Crankshaft
OT Topdeadcenter
UT Bottomdeadcenter
N20Engine
2.EngineComponents
38Thetopandbottomdeadcentersarealsoshiftedbythecrankshaftoffset.Thetopandbottomdead
centersareachievedintheextendedandoverlappositionsrespectively.Theconnectingrodandthe
crankshaftpointgeometricallyinthesamedirection.
TDCpositioninanenginewithcrankshaftoffset
Index Explanation
OT Topdeadcenter
UT Bottomdeadcenter
l Connectingrodlength
r Crankthrow
y Crankshaftoffset
sOT DistanceTDC
h Pistonstroke
1 AngleinTDCpositionαTDC
Bottomdeadcenterlikewisechangesitspositionandrunstoacrankangleofover180°.
N20Engine
2.EngineComponents
39
BDCpositioninanenginewithcrankshaftoffset
Index Explanation
OT Topdeadcenter
UT Bottomdeadcenter
l Connectingrodlength
r Crankthrow
y Crankshaftoffset
sUT DistanceBDC
h Pistonstroke
2 AngleinBDCpositionαBDC
AcombinationofpositivecrankshaftoffsetandnegativepinoffsetisusedintheN20engine .
Bothnegativeandpositivepinoffsetaffectthepistonrockingbehavior.Inresponsetothedistribution
offorcesduringpistonrocking,thisoccurslaterandmorequietly.
N20Engine
2.EngineComponents
40
Combinationofcrankshaftandpinoffset
Index Explanation
OT Topdeadcenter
UT Bottomdeadcenter
l Connectingrodlength
r Crankthrow
y Crankshaftoffset
sD Pinoffset
sOT DistanceTDC
h Pistonstroke
TheN20enginefeaturesconnectingrods144.35mmlong,withacrankthrowof44.8mm.Crankshaft
offsetis+14mm,offsetofthewristpinis-0.3mm.
N20Engine
2.EngineComponents
41Data Value
Stroke 90.09mm
TDC +4.336°
BDC +188.259°
Inductioncycleangleandpowercycleangle 183.923°
Compressioncycleangleandexhaustcycle
angle176.077°
Advantages
Inanenginewithcrankshaftoffset,theconnectingrodinthepowerstrokeisinaroughly
perpendicularposition(seethegraphicontheright)incontrasttoanenginewithoutcrankshaftoffset
(seethegraphicontheleft).Thisdesignsignificantlyreducesthethrustforce(5)andthefrictionofthe
pistononthecylinderwallwhichresultisincreasedefficiency.ThecrankshaftoffsetintheN20engine
isthusconsideredonemoreBMWEfficientDynamicsmeasure.
Systemdiagramofactingforces,left:normalengine,right:enginewithcrankshaftoffset
N20Engine
2.EngineComponents
42Index Explanation
1 Pressureforcefromcombustion
2 Normalpistonforce
3 Oppositepistonforce
4 Lateralpistonforce
5 Thrustforce
6 Resultingforce
7 Crankshaftoffset
2.2.2.Connectingrod
Connectingrod
TheconnectingrodoftheN20enginehasaninsidediameterof144.35 mm.AswiththeN55theN20
usesaspeciallyformedholeinthesmallendoftheconnectingrod.Thisformedholeismachined
widerontheloweredgesofthewristpinbushing/bore.Thisdesignevenlydistributestheforceacting
onthewristpinovertheentiresurfaceoftherodbushingandreducestheloadattheedges,asthe
pistonisforceddownwardonthepowerstroke.
N20Engine
2.EngineComponents
43
N20engine,connectingrod
2.2.3.Pistonwithpistonrings
AfullslipperskirtpistonmanufacturedbythecompanyFMisused.Thepistondiameteris84 mm.
Thefirstpistonringisasteel-nitridedplaincompressionring.Thesecondpistonringisastepped
compressionring.Theoilscraperringisasteelbandringwithaspring,whichisalsoknownasanMF
systemring.
Aspreviouslydiscussedthewristpinaxishasanegativeoffsettotheminorthrustface.
Aninstallationpositionarrowisstampedonthepiston.Thisarrowalwayspointstotheinstallationof
thepistoninalongitudinaldirectionfacingthetimingchain.Itisnecessarytoinstallthepistoninthe
correctposition,sincetheasymmetricvalvereliefsontheintakeandexhaustsideswillresultinvalve
andcylinderwalldamage.
N20Engine
2.EngineComponents
44
N20engine,piston
N20engine,pistonrings
N20Engine
2.EngineComponents
45Index Explanation
1 Plaincompressionring
2 Steppedcompressionring
3 MFsystemring
4 Piston
2.3.Camshaftdrive
Thecamshaftdrivedesignissimilartopreviousengines.Theoilpumpisgeardrivenviathe
counterbalanceshafts.Toensurethatthecounterbalanceshaftsarecorrectlypositionedinrelation
tothecrankshaft,asecondarychaindriveisusedwhichisalsoequippedwithachaintensioner.Both
chainshavetooth-typedesign.
N20engine,camshaftdrive
N20Engine
2.EngineComponents
46Index Explanation
1 ExhaustVANOS
2 IntakeVANOS
3 Chaintensioner
4 Primarychain
5 Tensioningrail
6 Sprocket,drivenbycrankshaft
7 Secondarychain(tooth-typechain)
8 Chaintensioner
9 Sprocketforcounterbalanceshaftandoilpumpdrive
2.4.Counterbalanceshafts
Thepurposeofthecounterbalanceshaftsistoimprovetheengine'ssmoothrunningandacoustic
performance.Thisisachievedusingtwocounter-rotatingshaftswhicharefittedwithbalanceweights.
Thecounterbalanceshaftsaredrivenbythecrankshaftviaatooth-typechain.Thetooth-typechain
requirestheuseofspecialgearsonthecrankshaftandthecounterbalanceshafts.Thetooth-type
chainoptimizestherollingofthedrivechainonthesprockets,therebyreducingnoise.
N20engine,counterbalanceshaftandoilpumpdrive
N20Engine
2.EngineComponents
47Index Explanation
1 Crankshaftsprocket
2 Tooth-typechain
3 Chaintensioner
4 Counterbalanceshaftsprocket
N20engine,counterbalanceshafts
Index Explanation
1 Sprocketoncrankshaft
2 Uppercounterbalanceshaft
3 Lowercounterbalanceshaft
4 Gear,uppercounterbalanceshaft
5 Gear,oilpump
6 Oilpump
7 Tooth-typechain,counterbalanceshaftandoilpumpdrive
8 Counterbalanceshaftsprocket
N20Engine
2.EngineComponents
48Beforeremovingandinstallingthecounterbalancedrivesprocketthelowercounterbalanceshaft
mustbesecuredwitha4.5 mmthickalignmentpin(specialtool#2212825)tosecurelypositionthe
counterbalanceshaftswiththecrankshaft.
Counterbalanceshaftalignmentpintool2212825
Asealplugwhichisinsertedinthelocatingholemustberemovedforthispurpose.Thissealplug
preventsoilfromflowingintothecounterbalanceshaftchamberduringoperation,asituationwhich
wouldcauseoilfoaming.Itisthusimperativethatthissealplugbereinstalledduringfinalassembly.
Theexcessoilinthechamberiscarriedalongbytherotationofthebalanceweightsandreturnedviaa
dischargeopeningtotheoilsump.
Counterbalanceshaftsealplug
Positioningofthecounterbalanceshaftsinalignmentisnecessarytoensuresmooth,fault-
freeengineoperation.Pleaserefertotherepairinstructionsformoreinformation .
N20Engine
2.EngineComponents
49
N20engine,cutawayviewofcounterbalanceshafts
Index Explanation
1 Dischargeopening
2 Uppercounterbalanceshaft
3 Lowercounterbalanceshaft
4 Alignmentpin,lowercounterbalanceshaft
5 Sealplug
N20Engine
2.EngineComponents
502.5.Valvegear
2.5.1.Design
N20engine,valvegear
Index Explanation
1 Intakecamshaft
2 Rollercamfollower
3 Intermediatelever
4 Guideblock
5 Torsionspring
6 Eccentricshaft
7 Valvetronicservomotor
8 Exhaustcamshaft
N20Engine
2.EngineComponents
51
N20engine,valvegear
Index Explanation
1 Torsionspring
2 Intermediatelever
3 Eccentricshaft
4 VANOSunit,intake
5 Intakecamshaft
6 HVCCelement,intake
7 Rollercamfollower,intake
8 Valvespring,intakevalve
N20Engine
2.EngineComponents
52Index Explanation
9 Intakevalve
10 Valvetronicservomotor
11 Exhaustvalve
12 Valvespring,exhaustvalve
13 Rollercamfollower,exhaust
14 HVCCelement,exhaust
15 Exhaustcamshaft
16 VANOSunit,exhaust
Therollercamfollowersontheintakesidearemadefromsheetmetalandsubdividedintofive
classes,Class“1”toClass“5”.Theintermediateleversarenowalsomadefromsheetmetalandare
subdividedintosixclasses,Class“00”toClass“05”.
Camshafts
TheN20engineisfittedwiththeassembledcamshaftsalreadyknownfromtheM73engine.Allthe
componentsareshrink-fittedontotheshaft.Thetimingofthecamshaftsrequiresnewspecialtool,#
2212831.Pleaserefertotherepairinstructionsforpropertimingprocedures.
N20engine,assembledcamshafts
Index Explanation
1 Exhaustcamshaft
2 Intakecamshaft
N20Engine
2.EngineComponents
53
N20engine,assembledcamshafts
Index Explanation
1 FlangeforVANOSunit,exhaust
2 Cam
3 Camforhigh-pressurepump
4 Sealingcap
5 Pipe
6 Hexagonhead
7 FlangeforVANOSunit,intake
8 Cam
N20Engine
2.EngineComponents
54Index Explanation
9 Sealingcap
10 Pipe
11 Hexagonhead
12 Vacuumpumpdrive
Valvetiming
N20engine,valvetimingdiagram
N55B30M0 N20B20O0
Intakevalvedia./stemdia. [mm] 32/5 32/5
Exhaustvalvedia./stemdia. [mm] 28/6 28/6
Maximumvalvelift,intake/exhaustvalve [mm] 9.9/9.7 9.9/9.3
VANOSadjustmentrange,intake [°CA] 70 70
VANOSadjustmentrange,exhaust [°CA] 55 55
Spread,intakecamshaft [°CA] 120–50 120–50
Spread,exhaustcamshaft [°CA] 115–60 115–60
Openingperiod,intakecamshaft [°CA] 258 258
Openingperiod,exhaustcamshaft [°CA] 261 252
N20Engine
2.EngineComponents
55Intakeandexhaustvalves
TheintakeandexhaustvalvesarecarryoverpartsfromtheN55engine.Theintakevalvehasastem
diameterof5 mm.Theexhaustvalvehasastemdiameterof6 mm,becauseitishollowandsodium
filled.Theexhaustvalveseatsaremadefromhardenedmaterialandtheintakevalveseatsare
induction-hardened.
Valvesprings
Thevalvespringsusedfortheintakeandexhaustvalvesaredifferent.Theintakevalvespringshave
alreadybeenusedintheN52,N52TUandN55engines.Theexhaustvalvespringsarefamiliarfrom
theN51,N52,N52TU,N54andN55engines.
2.5.2.Valvetronic
TheValvetroniccomprisesfullyvariablevalveliftcontrolandvariablecamshaftcontrol(double
VANOS),whichmakestheclosingtimeoftheintakevalvefreelyadjustable.
Valveliftcontrolisperformedontheintakeside,whilecamshaftcontrolisperformedonboththe
intakeandexhaustsides.
Throttle-freeloadcontrolisonlypossibleif:
• theliftoftheintakevalve
• andcamshaftadjustmentoftheintakeandexhaustcamshaftsarevariablycontrollable.
Result:
Theopeningandclosingtimesandthustheopeningperiodandtheliftoftheintakevalvearefreely
adjustable.
VANOS
TheVANOSsystemhasbeenmodified.ThismodificationnowprovidesforevenfasterVANOSunit
settingspeeds.Themodificationhasalsofurtherreducedsystemfailure.Thefollowingcomparisonof
theVANOSsystemsofN55andN20enginesshowsthatfeweroilpassagesarenecessary.
N20Engine
2.EngineComponents
56
N55engine,VANOSwithoilsupply
Index Explanation
1 Mainoilpassage
2 VANOSsolenoidvalve,intakeside
3 VANOSsolenoidvalve,exhaustside
4 Chaintensioner
5 VANOSunit,exhaustside
6 VANOSunit,intakeside
N20Engine
2.EngineComponents
57
N20engine,VANOSwithoilsupply
Index Explanation
1 OilpassagetoVANOSunit,intakeside
2 VANOSunit,intakeside
3 Camshaftsensorwheel,intakecamshaft
4 VANOSsolenoidactuator,intakeside
5 Mainoilpassage
6 OilpassageforintakecamshaftandHVCCelements
7 Camshaftsensorwheel,exhaustcamshaft
8 VANOSsolenoidactuator,exhaustside
9 VANOSunit,exhaustside
10 OilpassagetoVANOSunit,intakeside
11 OilpassageforexhaustcamshaftandHVCCelements
12 Chaintensioner
N20Engine
2.EngineComponents
58ThefollowinggraphicshowstheoilpassagesintheVANOSunit.Theintakecamshaftcanbe
“advanced”withthepassagesshadedlightyellow;theVANOSunitcanbe“retarded”withthe
passagesshadeddarkyellow.
Thecamshaftsensorwheelsrequireanewspecialtoolforproperpositioning,tool#2212830.
Pleaserefertotherepairinstructionsformoreinformation.
N20engine,VANOSunit,intakecamshaft
Index Explanation
1 Rotor
2 Oilpassageforadvancingthetiming
3 Oilpassageforretardingthetiming
4 Oilpassageforadvancingthetiming
5 Oilpassageforretardingthetiming
ThelockingpinensuresthattheVANOSunitislockedinasetpositionwheninthedepressurized
state.Thespiralortorsionspring(notshownhere)isdesignedtocompensatethemiddlecamshaft
friction,becausewithoutthespringtheVANOSadjustsmuchfasterto“retarded”(withfriction)than
to“advanced”(againstfriction).Thelockingeffectisprovidedbytheoilpressure,whichwhenthe
N20Engine
2.EngineComponents
59actuatorisnonregisteredalwaysforcestheVANOSunitintothelockingposition(wherethelocking
pinengagesandblockstheVANOSunit).Thetimingcanbeadjustedinthisway.Thisisimportant
whentheengineisstartedtoensureexacttiming.Thelockingpinissimultaneouslysuppliedwith
theoilpressureavailablefortimingadvanceviaoilpassagesintheVANOSunit.Ifthecamshaftisto
be“advanced”,thelockingpinisthenforcedbytheappliedoilpressureagainstthelockingspring
towardsthecartridgeandthelockingcoverisreleasedforVANOSadjustment.
N20engine,lockingpin
Index Explanation
1 Lockingcover
2 Lockingpin
3 Lockingspring
4 Cartridge
N20Engine
2.EngineComponents
60Index Explanation
5 Oilpassage
6 Lockingcover
7 Oilpassage
8 VANOScentralvalve
TheVANOSunitissecuredtothecamshaftbytheVANOScentralvalve.TheoilflowintotheVANOS
unitissimultaneouslycontrolledbythisVANOScentralvalve.Thesystemisactuatedbyasolenoid
actuator(whichpressesagainsttheplunger(4)oftheVANOScentralvalve)therebyswitchingthis
valvefromadvancetotheretardposition.
Theplungerinthecentralvalvecontrolstheoilflow.Intheillustrationbelowtheplungerisshown
extended.ThelargegraphicshowstheflowofoilfromthemainoilpassageintotheVANOSunit,while
thesmallgraphicshowstheflowofoilfromtheVANOSunitintothecylinderhead.
N20Engine
2.EngineComponents
61
N20engine,VANOScentralvalve,intakecamshaft
Index Explanation
1 Filter
2 Ball
3 Spring
4 Plunger
5 Sleeve
6 Housing
N20Engine
2.EngineComponents
62Index Explanation
7 Openinginplunger
8 Oilsupplyfrommainoilpassage
9 BoretooilpassageinVANOS(timingadvance)
10 BoretooilpassageinVANOS(timingretard)
N20engine,VANOScentralvalve,intakecamshaft
Valveliftcontrol
Ascanbeenseenfromthefollowinggraphic,valveliftcontrolwiththeValvetronicservomotoris
identicalintermsofdesigntothatoftheN55engine.Theeccentricshaftsensorisintegratedinthe
Valvetronicservomotor.
ThesystemusesValvetronicIII,whichisalreadyusedintheN55engine.
N20Engine
2.EngineComponents
63
N20engine,cylinderhead
Index Explanation
1 VANOSsolenoidactuator,intake
2 VANOSsolenoidactuator,exhaust
3 Rollertappet,high-pressurepump
4 Valvetronicservomotor
5 Spring
6 Guideblock
7 Intermediatelever
8 Eccentricshaft
2.6.Beltdrive
ThebeltdriveconsistsofamainbeltdrivewithalternatorandA/Ccompressorandanauxiliarybelt
drivewiththepowersteeringpump.Themainbeltdriveisequippedwithabelttensioner,theauxiliary
beltdriveisanelasto-belttensioningsystem.
N20Engine
2.EngineComponents
64
N20engine,beltdrive
Index Explanation
1 Beltpulley,powersteeringpump
2 Belt,powersteeringpump
3 Beltpulleys,crankshaft
4 Belttensioner
5 Beltpulley,alternator
6 Beltpulley,A/Ccompressor
7 Belt
N20Engine
3.OilSupply
65TheoilsupplyintheN20engineisverysimilartothatintheN55engine.Thereareafewchanges
tothedesignwithsomeslightdifferencesinoperation.Duetothecomplexityofthissystem,itis
discussedagainingreaterdetailinthistrainingmaterial.
ThespecialfeaturesoftheoilsupplyintheN20engineare:
• Map-controlledoilpump
• Newpendulum-slideoilpumpdesign
• NewVANOSvalves
• Chaintensionerforcounterbalanceshaft/oilpumpdrive
• Unfilteredoilcooling
• Newcombinedoilpressureandtemperaturesensor.
3.1.Overview
ThefollowinghydrauliccircuitdiagramandgraphicsprovideanoverviewoftheN20oilsupplyanda
betterunderstandingoftheactuallayoutoftheoilpassagesintheengine.
N20Engine
3.OilSupply
663.1.1.Hydrauliccircuitdiagram
N20engine,hydrauliccircuitdiagram
Index Explanation
A Oilsump
B Crankcase
C Cylinderhead
D Oilfiltermodule
N20Engine
3.OilSupply
67Index Explanation
E VANOScentralvalve,intakecamshaft(alsooilsupply,lubricationpoint,
camshaftthrustbearing)
F VANOScentralvalve,exhaustcamshaft(alsooilsupply,lubricationpoint,
camshaftthrustbearing)
1 Oilpump
2 Pressure-limitingvalve
3 Chaintensioner,counterbalanceshaftandoilpumpdrive
4 Engineoil-to-coolantheatexchanger
5 Permanentbypass
6 Non-returnvalve
7 Oilfilter
8 Filterbypassvalve
9 Lubricationpoints,intakecamshaftbearings(via4thbearing,supplyof
vacuumpump)
10 Oilspraynozzle,gearing,Valvetronicservomotor
11 Oilspraynozzles,cams,intakecamshaft
12 Hydraulicvalveclearancecompensation(HVCC),intakeside
13 Lubricationpoints,bearings,exhaustcamshaft
14 Hydraulicvalveclearancecompensation(HVCC),exhaustside
15 Non-returnvalve
16 Filter
17 4/3-wayvalve
18 VANOSunit,intakecamshaft
19 VANOSunit,exhaustcamshaft
20 Oilspraynozzles,cams,exhaustcamshaft
21 Chaintensioner,timingchain
22 Oilspraynozzlesforpistoncrowncooling
23 Combinedoilpressureandtemperaturesensor
24 Lubricationpoints,crankshaftmainbearings
25 Mapcontrolvalve
26 Emergencyvalve/pressurelimitingblowoffvalve
27 Lubricationpoints,bearings,counterbalanceshafts
N20Engine
3.OilSupply
683.1.2.Oilpassages
N20engine,oilpassages(phantomrearleftview)
Index Explanation
1 Oilfilter
2 Lubricationpointsincylinderhead(details,seebelow)
3 Oilspraynozzlesforpistoncrowncooling
4 Mainoilpassage
5 Lubricationpoints,connectingrodbearings
6 Lubricationpoints,crankshaftmainbearings
N20Engine
3.OilSupply
69Index Explanation
7 Oilpump
8 Emergencyvalve/pressurelimitingblowoffvalve
9 Mapcontrolvalve
10 Unfilteredoilpassage
N20engine,oilpassages(phantomrightfrontview)
N20Engine
3.OilSupply
70Index Explanation
1 Lubricationpointsincylinderhead(details,seebelow)
2 VANOSactuatorunit,exhaustcamshaft
3 VANOSactuatorunit,intakecamshaft
4 Unfilteredoilpassage
5 Engineoil-to-coolantheatexchanger
6 Chaintensioner,counterbalanceshaftandoilpumpdrive
7 Oilsuctionpipe
8 Lubricationpoints,counterbalanceshaftbearings
9 Lubricationpoints,crankshaftmainbearings
10 Lubricationpoints,connectingrodbearings
11 Oilspraynozzlesforpistoncrowncooling
12 Chaintensioner,timingchain
N20engine,oilpassagesincylinderhead(phantomleftview)
N20Engine
3.OilSupply
71Index Explanation
1 Lubricationpoints,intakecamshaftbearings
2 OilspraynozzlesinGuideblockforintermediateleversandintakecams
3 Oilspraynozzle,gearing,Valvetronicservomotor
4 HVCCelements,intakevalves
5 VANOSactuatorunit,intakecamshaft
6 VANOSactuatorunit,exhaustcamshaft
7 Chaintensioner,timingchain
8 Oilpipeforoilspraynozzles,exhaustcams
9 HVCCelements,exhaustvalves
10 Lubricationpoints,exhaustcamshaftbearings
N20Engine
3.OilSupply
72
N20engine,oilreturnpassages(phantomleftrearview)
Index Explanation
1 Ventilationpassagesincylinderhead
2 Ventilationpassagesincrankcase
3 Ventilationpassagesinbedplate
4 Oilreturnpassagesinbedplate
5 Oilreturnpassagesincrankcase
6 Oilreturnpassagesincylinderhead
N20Engine
3.OilSupply
733.2.Oilpumpandpressurecontrol
Avariable-volumetric-flowslideoilpumpisusedintheN20engine.Despiteitsshapebeingmodified,
itsfunctionisfamiliartothatoftheN63andN55engines.Althoughthesetwoenginesshareasimilar
oilpump,theydifferinhowtheyarecontrolled.WhiletheoilpumpintheN63engineisvolumetric-
flow-controlled,intheN55andN20enginesitsmap-controlled.
3.2.1.Oilpump
Theoilpumpisconnectedtothecounterbalanceshafthousing.Theoilpumpislocatedatthe
flywheelsideoftheengine,butisdrivenatthefrontoftheenginebythecrankshaftviaachain.
Thechainsprocketconnectstotheoilpumpviaalongshaft.Thisshaftformspartofthefirst
counterbalanceshaftwhichrotatesinthesamedirectionasthecrankshaft.Therotationalspeedis
steppeddownfromthecounterbalanceshaftfortheoilpumpviaapairofgears.
N20engine,oilpumpwithcounterbalanceshafts
Index Explanation
1 Sprocketoncrankshaft
2 Uppercounterbalanceshaft
3 Lowercounterbalanceshaft
4 Gear,uppercounterbalanceshaft
5 Gear,oilpump
6 Oilpump
7 Tooth-typechain,counterbalanceshaftandoilpumpdrive
8 Counterbalanceshaftsprocket
N20Engine
3.OilSupply
74Asalreadymentioned,thefunctionoftheslideoilpumphasnotchanged.Themaindifferenceisthat
theslidemechanismnolongerpivotsonanaxisduringadjustment,butinsteadismovedinparallel.
N20engine,innerworkingsofoilpump
Index Explanation
1 Pressureside
2 slidingblock
3 Outerrotor
4 Pendulum
5 Innerrotor
6 Controloilchamber
7 Suctionside
8 Housing
9 Mainspring
Asinallnewergenerationslideoilpumpstheoilactsdirectlyontheslidemechanism.Thehigherthe
pressurehere,themoretheslidingblockisforcedagainstthespringinthedirectionofthecenterof
thepump,whichreducesthevolumetricdisplacement.Thisreducesthepumpdeliveryrateandlimits
N20Engine
3.OilSupply
75thepressureinthesystem.Inthisway,itispossibletoachievepurelyhydraulic/mechanicalcontrolof
thevolumetricflow,allowingsufficientoperatingpressuretobeset.Thispressureisdeterminedby
thestrengthofthemainspringintheoilpumpwhichactsontheslidingblock.
AswiththeN55theN20enginefeaturesamapcontrolvalvewhichtheDMEactivatestoinfluencethe
pumpdeliveryrate.
Theoilpumpcannotbereplacedseparately.Theentireunitincludingthecounterbalanceshaftsmust
bereplacediftheoilpumpfails.
3.2.2.Control
ControllingthedeliveryrateoftheoilsupplypumpiscrucialcomponentoftheBMW
EfficientDynamicsstrategy.Essentially,engineersattempttodesignapumpwithregardtoitspower
inputassmallaspossibleinordertokeepenginelossesaslowaspossible.Ontheotherhand,the
pumpmustalsobedesignedinsuchawayastodeliversufficientvolumeandpressureunderall
operatingconditions.Aconventional,non-variablepumpwouldthereforehavetobedesignedin
accordancewiththesecondstandpoint,i.e.largeenoughtobeabletodeliversufficientamountsofoil
atalltimes.However,thismeansthatthepumpmaydeliverfartoomuchoilvolumeandpressureover
alargeportionofitsservicelifeandtherebydrawmoreenergythannecessaryfromthepowertrain.
Forthisreason,moreandmorepumpsarenowvariableindesignandtheircontrolisbecoming
increasinglymorefine-tuned.Thustheconventionalpumpwasfollowedbyvolumetricflowcontrol,
whichwassubsequentlyextendedtoincludedmapcontrol.
Volumetricflowcontrol
TheN20usesavanetypeoilpump.Thecoreofthisvariable-volumetric-flowoilpumpisthesliding
mechanism.Itcanbedisplacedwithrespecttothepumpshafttovarythepump'sdeliveryrate.
N20engine,oilpump(leftatmaximumdelivery,rightatminimumdelivery)
N20Engine
3.OilSupply
76Index Explanation
1 Controloilchamber
2 Pressureside
3 Slidingblock
4 Mainspring
5 Suctionside
Inthemaximumdeliverysettingtheslidingblockispositionedoff-centerwithrespecttothepump
shaft.Inthisway,anincreaseinvolumeoccursonthesuctionsideandcorrespondinglyadecreasein
volumeoccursonthepressureside.Thisgenerateshighpumpcapacity.
Whentheslidingblockisdisplacedtowardsthepumpshaft,thepumpvolumeisreduced.Therefore,
thepumpcapacityisreduceduntilfinallytheminimumdeliveryisreached.
Thepositionoftheslidingblockisdependentontheoilpressureinthepump'scontroloilchamber.
Thispressurepushesontheslidingblockagainsttheforceofaspring.Whenthepressureislowinthe
controlchamber,theslidingblockismovedoff-centerbytheforceofthespringandthedeliveryrate
ishigh.Whenthepressureishighinthecontrolchamber,theslidingblockisdisplacedtowardsthe
centerofthepumpasthespringiscompressedandthedeliveryratedecreases.
Withpurevolumetricflowcontrol,thepressureinthecontroloilchambercorrespondstothatinthe
mainoilpassage.Inthisway,itispossibletomaintainarelativelyuniformpressureirrespectiveofthe
necessaryvolumetricflow.Onereasonforlargedifferencesinthenecessaryvolumetricflowinthe
oilcircuitistheVANOSvariablecamshafttimingcontrolsystem.IntheVANOSunitstheoilisused
notonlyforlubricationpurposesbutalsoforhydraulicactuationofthecamtiming.Alargeoilvolume
isthusnecessaryduringtheadjustmentphase,whichcausesthepressureinthesystemtodrop.
Thefallingpressurecausestheslidingblockintheoilpumptobedisplacedinthedirectionofhigher
delivery.Inthisway,ahighervolumetricflowismadeavailableandthepressuredropiscompensated
for.
Asalreadymentioned,thepressurethatissetintheoilsystemisdependentontheforceofthespring
whichcounteractsthepressureinthecontroloilchamber.Withasofterspring,theslidingblockcan
bedisplacedmoreeasily,i.e.withalowerpressure,towardsthecenter.Withaharderspring,more
pressureisrequiredtoreducethevolumetricdisplacementofthepump.Thustheappropriatespring
wascalculatedandselectedtoproperlyoperatetheN20oilsystem.
Mapcontrolrepresentsafurtherfine-tuningofvolumetricflowcontrol.
Mapcontrol
Mapcontrolisusedtoinfluencethepressureinthecontroloilchamberofthepump.Twovalvesare
involvedinthisprocess,asolenoidvalvecalledthemapcontrolvalveandahydraulicvalvewhichalso
actsasafail-safe.This“failsafe”valveisalsoreferredtoasanemergencyvalveorasecond-level
modecontrolvalve.
Themapcontrolvalveislocatedontheleftsideoftheengine(boltedtobedplate)andchannelsthe
oilpressurefromthemainoilpassagetothecontroloilchamberwithinthepump.Itspurposeisto
influencepumpvolumeoutputbygraduallyandsmoothlyreducingtheoilpressureinthecontroloil
chamber.
N20Engine
3.OilSupply
77
Mapcontrolvalve
Thefurtheritreducesthepressure,themorevolumeisdeliveredbytheoilpumpastheslidingblock
movesfurtheroffcenter.However,thismodedoesnotproduceapositiveeffectonenergysaving.
Thereforethemainspringintheoilpumpwhichactsontheslidingblockissofterthantheoneused
inapurelyvolumetric-flow-controlledsystem.Inotherwords,theslidingblockcanbemovedtoa
centredpositionveryeasily,asthepumpswitchestominimumdelivery.Inthisway,therearelower
pressureconditionsintheoilsystem,whichinturntranslatesintolessenergyspenttodrivetheoil
pump.Wherenecessary,thepressureinthecontroloilchambercannowbereducedbythemap
controlvalvewhichalsoreducesthedeliveryrate.
Thesecondstageofmapcontrolisahydraulic/emergencyvalvewhichislocatedintheoilpump
housing.
N20Engine
3.OilSupply
78
N20engine,oilpumpwithhydraulicemergencyvalve
Index Explanation
1 Connectionfrommainoilpassage
2 Connectionfrommapcontrolvalve
3 Hydraulic/Emergencyvalve
4 Channeltocontroloilchamber
5 Connectiontocounterbalanceshafts
6 Controloilchamber
Thisis3/2-wayvalveisusedtochannelthemainoilpressureintotheoilpump'scontroloilchamber.
Theoilfromthemainoilpassageforcesaplungeragainstaspringuntilthepassagetotheoilpump
controlchamberisopened.Theoilpressurefromthemapcontrolvalveactsontheotherendofthe
plunger.Thepressureinthemapcontrolvalveportcounteractsthemainoilpassagepressuretofine
tunetheoilpressurewithintheoilpump'svolumecontrolchamberwhichinturnvariestheoildelivery
rateofthepump.
N20Engine
3.OilSupply
79
N20engine,emergencyvalve
Index Explanation
1 Oilpumphousing
2 Emergencyspring
3 Plunger
4 Frommainoilpassage
5 Tocontroloilchamberinoilpump
6 Frommapcontrolvalve
Thehydraulicvalveislocatedbetweenthemapcontrolvalveandthecontroloilchamberintheoil
pump.Thefollowinggraphicshowsthisinasimplifiedoilcircuit.
N20engine,simplifiedmapcontroloilcircuit
N20Engine
3.OilSupply
80Index Explanation
1 Oilpump
2 Mainoilpassage
3 Mapcontrolvalve
4 Emergencyvalve
Inmapcontrolmodeoilpressureactsonbothendsoftheplunger.Theoilpressuredirectlyfromthe
mainoilpassageactsagainsttheemergencyvalvespring.Atthesametimetheoilpressurereleased
bythemapcontrolvalveactsontheotherend,i.e.alongwiththeemergencyvalvespring.
N20engine,hydraulic3/2-wayvalvewithmapcontrol
Theplungerremainsconstantlyinitsendpositionduringmapcontrol.Todisplacetheplunger,there
wouldhavetobeapressureof5.5 barinthemainoilporttocounteractthespring.Thisneverarises
inmapcontrolmode,sincethemaximumsetpressureinthesystemis4.5 barinthecircuit.Inthis
settingtheemergencyvalveformsaconnectionbetweenthemapcontrolvalveandtheoilpump's
controloilchamber(thevalveis closedtothemainoilduct).
N20engine,simplifiedoilcircuitwithmapcontrol
Thepumpdeliveryrateiscontrolledbythepressureinthepump'scontroloilchamberwhichinturnis
determineddirectlybytheDMEviathemapcontrolvalve.
Mapcontrolistheoilsystem'sstandardoperatingmode.Itisalwaysengagedwhentherearenofaults
inthesystemandtheoperatingconditionsdonotexceedordropbelowcertainvalues(seebelow).
Uptonowmapcontrolsystemwouldmanagewithouttheemergencyvalve.Thisishoweverasecond
stageofmapcontrol–akindoffailsafemode.
N20Engine
3.OilSupply
81Ifthemapcontrolvalveisdeactivated,thechamberattheendofthespringintheemergencyvalve
isdepressurized.Becausetheplungerisnowonlybeingheldbythespringthemainoilpressure
displacesitandmakesitswayintothepump'scontrolchamber.Apressuredifferenceof5.5 baris
requiredtoswitchtheemergencyvalveintothisposition.
N20engine,emergencyvalvewith“second-levelcontrol”
Inthismodethepressureischannelledfromthemainoilpassagedirectlyintotheoilpump'scontrol
oilchamber.
N20engine,simplifiedoilcircuitinemergencymode
Thereisnomapcontrolinemergencymodebecausetheoilpressureissetto5.5 barmax.andthere
isnooiladmittedintotheoilpump'scontroloilchamberbelowthislevel.
Themapcontrolvalveisclosedatzerocurrent.Therefore,shouldthemapcontrolvalvefail,the
systemisautomaticallyinemergencymode,guaranteeingpressurelimitationto5.5 bar.Asalready
mentioned,mapcontrolmodeisthenormalmodeofoperation.Thereare,however,severalreasons
whytheDMEwillswitchtoemergencymode.
Emergencymodeisappliedinthefollowingconditions:
• Mapcontrolvalvefaulty
• Oilpressuresensorfaulty
• Outsidetemperaturelessthan- 20 °C/-4°F
• Highengineoilorcoolanttemperature
• Drivingprofile(e.g.highenginerevsforalongtime)
N20Engine
3.OilSupply
82TheoilpressuresensorsignalallowstheDMEtoidentifywhethertheemergencyvalveisstuck.Ifthis
isthecase,theDMEattemptstofreetheemergencyvalvebyapplyingavaryingpressurebuildup.
Iftheemergencyvalveisstuckinthe“closed”position,itispossibletocontinuemapcontrol.If,
however,theemergencyvalveisstuckinthe“open”positionsufficientpressurebuildupisnolonger
possible.Theoilpressureindicatorlightisactivatedandtheenginemustbeshutdownimmediately.
Summary
Byapplyingoilpumpmapcontrol,itispossibletodeliveranoilsupplytomatchdemandandto
reducetheaveragepressurelevelintheoilcircuit.Thisensuresthattheoilpumphasalowerenergy
requirement.
Themapcontrolvalvecontrolsthepressureinthesystemandinturnallowsthedeliveryratetobe
controlledbytheDME.
Thefollowingdiagramshows(insimplifiedform)thepressurecurvesplottedagainstenginespeedfor
differentoilpumps.
Simplifiedpressurecurvesfordifferentoilpumps
N20Engine
3.OilSupply
83Index Explanation
A Oilpressure
B Enginespeed
1 Non-controlledoilpump
2 Volumetric-flow-controlledoilpump
3 Map-controlledoilpumpatfullload
4 Map-controlledoilpumpatpartialload
Thediagramillustratestheadvantageofcontrolledoilpumps.Whenasufficientoilpressureis
reached,thedeliveryrateoftheoilpumpcanbereduced.Lowerpressureissynonymouswith
fuelsaving.Thusthemap-controlledoilpumpoffersthegreatestadvantagehere,sinceitcanbe
controlledregardlessofenginespeed.Atpartialload,forexample,onlylowerpressuresarerequired,
becausethecrankshaftmainbearingshavetobearlessload.Accordingly,aloweroilpressurecan
besetinthepartialloadrange,whichillustratesevenmoreclearlytheadvantageoverthevolumetric-
flow-controlledoilpump.
Theoilpressureinmapmoderangesbetween1.5and4.5 bar.
Theemergencyvalvehasbeenintegratedinthesystemasafailsafeandtofacilitateahigherpressure
incertainconditions.Forexampleifthemapcontrolvalvefails,itensuresthenecessarypressureis
builtupandtheoilpumppressurecontrolof5.5 bar.
3.2.3.Pressure-limitingvalve
Additionallyavailabletocontroltheoilpumpisapressure-limitingvalve,whichisoftenalsoknownasa
cold-startvalve.
N20engine,pressure-limitingvalveinoilpump
Index Explanation
1 Oilpumphousing
2 Oilpumpcover
3 Pressure-limitingvalve
N20Engine
3.OilSupply
84Thepressure-limitingvalveislocatedintheoilpumphousingandintheoilcircuitasthefirst
componentafterthepump.Itopensatapressureofroughly12to13 baranddischargestheoil
directlyintotheoilsump.Itisnecessaryatlowtemperaturesandwhentheoilhasahigherviscosity.
Inthesesituationsthepressure-limitingvalvepreventsdamagetocomponents,inparticulartotheoil
filtermoduleanditsseals.Thisisrelevantattemperaturesofbelow-20 °C/-4 °F,sincemapcontrolis
alreadyactiveabovethistemperature.
3.3.Oilfilteringandcooling
TheN20enginehasasimilarplasticoilfilterhousingastheN55engine,towhichtheengineoil-to-
coolantheatexchangerisalsodirectlymounted.Thisentireunitisknownastheoilfiltermodule.
N20engine,oilfiltermodule
Index Explanation
1 Oilfilter
2 Engineoil-to-coolantheatexchanger
3.3.1.Oilcooling
IntheN20enginetheengineoil-to-coolantheatexchangerislocatedintheoilcircuitaheadoftheoil
filter.Thisisknownasraw/unfilteredoilcooling,incontrasttocleanoilcooling.Thisisduetothelead-
freecrankshaftandconnectingrodbearings.Becausethesecomponentsareextremelysensitiveto
dirtparticles,thisarrangementbringstheoilfilterevenclosertojustbeforethebearingpositions.The
importanceisevengreatershouldauxiliaryengineoilcoolersbeusedinlatermodels,asherethereis
alwaystheriskofdirtgettingintotheoilcircuitafteranaccident.
Permanentbypass
TheN20enginedoesnothaveaheatexchangerbypassvalve.Instead,astheN55,ithasapermanent
bypass.Thisisapermanentlyopenbypassaroundtheengineoil-to-coolantheatexchanger.The
bypassincorporatesaflowrestrictortoensurethatthemajorityoftheoilflowsthroughtheengineoil-
to-coolantheatexchanger.
N20Engine
3.OilSupply
853.3.2.Oilfiltering
Thefull-flowoilfilterusedintheN20engine.Insteadofanon-returnvalve,anon-returndiaphragmis
mounteddirectlyonthefilterelement.Thefunctionofthisdiaphragmistopreventtheoilfilterfrom
drainingaftertheengineisshutdown.
N20engine,oilfilter
Index Explanation
1 Oilfilter
2 Non-returndiaphragm
Thenon-returndiaphragmismadeofrubberandisraisedbytheoilpressuretoadmitoilintothefilter.
Whentheengineisshutdownandtheoilpressuredrops,thenon-returndiaphragmusesitsshape
andelasticitytosealofftheoilduct.Theengineoilisunabletoflowoutofthefilter.Thenon-return
diaphragmispartoftheoilfilterandisthereforeautomaticallyreplacedeachtimethefilterischanged.
TheN20enginehasafilterbypassvalvewhichcanopenabypassaroundthefilterif,forexample,the
engineoiliscoldandhasahigherviscosity.Thisoccursifthepressuredifferencebetweenbeforeand
afterthefilterexceedsabout.2.5bar.Theallowablepressuredifferencehasbeenincreasedfrom2.0
to2.5 barinordertoprotectthelead-freecrankshaftandconnectingrodbearings.Thisensuresthat
thefilterisbypassedmuchlessfrequentlyandanydirtparticlesarereliablyfilteredout.
N20Engine
3.OilSupply
863.4.Oilmonitoring
3.4.1.Oilpressureandtemperaturesensor
N20engine,oilpressureandtemperaturesensor
Anewcombinedoilpressureandtemperaturesensorisused.Thepressuresignalisrequiredforoil
pumpmapcontrol,thetemperaturesignalforengineheatmanagement.
Thesensorisexposedinthemainoilpassagetotheoilpressureprevailingthereandtheoil
temperature.Thus,whatismeasuredisnolongertheoiltemperatureintheoilsump,butinsteadthe
actualoiltemperatureintheengine.
Combinedpressureandtemperaturesensorsusuallyhavefourconnections(powersupply,ground,
temperaturesignal,pressuresignal).Theoilpressureandtemperaturesensorhasonlythree
connections.Thetemperatureandpressuresignalsarenottransmittedonseparatewires.Instead,
thesensoroutputsapulse-width-modulated(PWM)signal.ThisPWMsignalissplitintothreefixed
cycles.Thefirstcycleisforsynchronizationanddiagnosis,thesecondtransmitsthetemperature,and
thethirdthepressure.Thedurationofthe“highlevel”ofarespectivecycledeterminesthevalue.
Cycle Function Durationofcycle Durationofhigh
level
1 Synchronizationand
diagnosis1024 μs 256–640 μs
2 Temperature 4096 μs 128–3968 μs
3 Pressure 4096 μs 128–3968 μs
Thelengthofthehighlevelisforthediagnosticsignalalwaysamultipleof128 μs(microsecond=
0.000001seconds),asisshowninthetablebelow:
Durationofhighsignal Pulsewidth Meaning
256μs 25 % DiagnosisOK
384μs 37.5 % Pressuremeasurementfailed
512μs 50 % Temperaturemeasurement
failed
640μs 62.5 % Hardwarefault
Forthispurposethesensoriscapableofself-diagnosisandcanidentifysensor-internalmechanical
andelectricalfaults.
N20Engine
3.OilSupply
87Forthetemperaturesignal:
• 128 μs(3.125 %pulsewidth)=-40 °C/-40 °F
• 3968μs(96.875 %pulsewidth)=160 °C/320°F
Forthepressuresignal:
• 128μs(3.125 %pulsewidth)=0.5bar(absolute)
• 3968μs(96.875 %pulsewidth)=10.5 bar(absolute)
Thetimesindicatedarenominalvalues.Actuallythedurationsofeachcycleandoftherespectivehigh
levelaremeasureandcomparedwitheachother.Theresultingpulsewidthproducestherespective
measuredvalue.
Theactualoilpressurecanbemeasuredbyinstallingspecialtool#2212823.Pleasereferto
therepairinstructions.
3.4.2.Oillevelmonitoring
Theestablishedthermaloillevelsensorisusedtomonitortheoillevelandtheoiltemperature.
3.5.Oilspraynozzles
AswithpreviousBMWenginesthosecomponentswhichcannotbereacheddirectlybyanoilpassage
arelubricatedand/orcooledbyoilspraynozzles.
3.5.1.Pistoncrowncooling
TheoilspraynozzlesforpistoncrowncoolingareusedintheN20engine.Theyincorporateanon-
returnvalvetoenablethemtoopenandcloseonlyfromaspecificoilpressure.
Aswellascoolingthepistoncrowns,theyarealsoresponsibleforlubricatingthewristpins,whichis
whyitisveryimportantforthemtobepreciselyaligned.
N20engine,oilspraynozzlesforpistoncrowncooling
Openingpressure 2.5–2.9 bar
Closingpressure 2.1 bar
N20Engine
3.OilSupply
88
TheoilspraynozzlesforpistoncrowncoolingintheN20enginemustbecorrectlypositionedusinga
specialtool#2212829afterbeinginstalled.Refertotherepairinstructions.
TherearetwodifferentvariantsofoilspraynozzleforpistoncrowncoolingfortheN20engine,
dependingontheirarrangementintheengine.Onevariantforcylinders1and3andonevariantfor
cylinders2and4.
3.5.2.Chaindrive
ThechaindriveintheN20engineisdividedintoanuppersection(thecamshaftdrive)andalower
section(theoilpumpdrive).
Camshaftdrive
Thetimingchainislubricatedbyanoilspraynozzlelocatedinthechaintensioner.Thereisanopening
inthetensioningrailthroughwhichtheoilcanbesprayedforthispurpose.
N20engine,chaintensionerwithoilspraynozzlefortimingchain
N20Engine
3.OilSupply
89Counterbalanceshaftandoilpumpdrive
N20engine,counterbalanceshaftandoilpumpdrive
Index Explanation
1 Crankshaftsprocket
2 Chain
3 Chaintensioner
4 Counterbalanceshaftsprocket
Oilissprayedontothechainthroughthechaintensionerforthecounterbalanceshaftandoilpump
drive.Thisishowevernotnecessaryforlubrication,sincethechainisimmersedintheoilsump.Inthis
case,thishelpstheoiltodrainfromthechaintensioner.
3.5.3.Camshaft
Thelobesonthecamshaftarealsolubricatedviaoilspraynozzles.Fortheintakecamshaftthereare
finegroovesinthegateswhicharesuppliedwithoilfromthescrewhole.
N20Engine
3.OilSupply
90
N20engine,guideblockwithoilspraynozzlesforintakecams
Index Explanation
1 Screwconnection,gates
2 Oilspraynozzlesforintakecams
3 Oilsupplyforoilspraynozzles
Whenfittingtheguideblockitisessentialtoworkinabsolutelycleanconditions,asanysoilingcould
blocktheoilspraynozzles.Lubricationofthecamlobeswouldnolongerbeguaranteedandcould
resultindamagetothevalvetrain.
Fortheexhaustcamshaft,thecylinderheadfeaturesanoilpipewhichspraysoilthroughsmallholes
directlyontothecamlobes.Accordingly,thereareeightholesforlubricatingtheexhaustvalvelobes
andanextraholeforlubricatingthetriplecamwhichdrivesthehigh-pressurefuelpump.
N20engine,oilpipewithoilspraynozzlesforexhaustcamlobes
N20Engine
3.OilSupply
91Index Explanation
1 Oilpipe
2 Hole
3.5.4.Gearing,Valvetronicservomotor
N20engine,oilspraynozzleforValvetronicservomotor
TheN20enginefeaturesthesameValvetronicservomotorastheN55engineincludingthesame
installationposition.Thewormgearforadjustingtheeccentricshaftisalsolubricatedbyanoilspray
nozzle.Thisnozzlemustbecorrectlyalignedwhenfitted.However,thisdoesnotrequiretheuseofa
specialtool.Insteadthenozzlehastobecarefullyandnoticeablyengagedinthedesignatedguideon
theValvetronicservomotor.
N20Engine
3.OilSupply
92
N20engine,engagedoilspraynozzleforValvetronicservomotorgearing
Index Explanation
1 OilspraynozzleforValvetronicservomotorgearing
2 Valvetronicservomotor
3 Correctlyengagedoilspraynozzle
Duetothesizeoftheoilspraynozzleandthefactthatthemotorcanbeassembledwithouttheoil
spraynozzle,thereisthedangerofitbeingforgottenduringfitting.
Makesurewhenfittingtheoilspraynozzlethatitiscorrectlypositionedandengaged.Anincorrectly
engagedoilspraynozzlewillbesubjectedtovibrationsandmaybreak.Refertotherepairinstructions.
N20Engine
4.Cooling
93ThecoolingsystemisverysimilartotheN55engine.IntheN20engineanengineoil-to-coolantheat
exchangerisusedtocooltheengineoil.Thecoolingsystemiscontrolled(e.g.electriccoolantpump,
mapthermostatandelectricfan)bytheheatmanagementcoordinatorintheDME.
4.1.Overview
N20engine,coolingcircuit
Index Explanation
1 Radiator
2 Electricfan
3 Mapthermostat
4 Heaterformapthermostat
5 Filllevelsensorinexpansiontank
6 Expansiontank
7 Exhaustturbocharger
N20Engine
4.Cooling
94Index Explanation
8 Heatercore
9 Engineoil-to-coolantheatexchanger
10 Coolanttemperaturesensor
11 Electriccoolantpump
Thecoolingmoduleitselfonlycomesinonevariant.Anauxiliaryradiator(intherightwheelarch)is
usedinvehiclesusedinhotclimatesmarketsandincombinationwiththemaximumspeedoptional
equipment.
Theelectricfanhasanominalpowerof600 W.
Thefollowinggraphicsshowtheinstallationlocationsandlayoutsofthecomponents.
N20engine,coolingsystemcomponentsfromrear
N20Engine
4.Cooling
95Index Explanation
1 Engineoil-to-coolantheatexchanger
2 Enginereturn,bypasscircuit
3 Mapthermostat
4 Radiator
5 Ventilationline
6 Expansiontank
7 Enginefeed
8 Electriccoolantpump
9 Auxiliaryradiator(notinstalledinallmodels)
10 Feed,heatercore
11 Return,heatercore
N20engine,coolingsystemcomponentsonenginefrontview
N20Engine
4.Cooling
96Index Explanation
1 Expansiontank
2 Mapthermostat
3 Enginereturn,bypasscircuit
4 Engineoil-to-coolantheatexchanger
5 Connection,feed,heatercore
6 Feed,radiator
7 Return,heatercore
8 Electriccoolantpump
9 Return,radiator
4.2.Heatmanagement
TheN20enginehasthesameheatmanagementfunctionsintheDMEastheN55.Thisallows
independentcontroloftheelectriccoolingcomponentsofelectricfan,mapthermostatandcoolant
pump.
4.2.1.Coolantpump
TheN20enginehasanelectriccoolantpump,asisthecasewithmanyBMWengines.Itsnominal
powerconsumptionis400 W.
N20engine,coolantpump
Ifthecoolantpumpisremovedbutistobereused,itisimportanttoensurethatitissetdownstillfilled
withcoolant.Dryingoutmaycausethebearingstostick.Notfollowingthisprocedurecanpossibly
causethecoolantpumpnotstart,whichinturnmayresultindamagetotheengine.
Beforeinstalling,turnthepumpimpellermanuallytoensurethatitmovesfreely.
N20Engine
4.Cooling
974.2.2.Mapthermostat
TheN20engineisfittedwithaconventionalmapthermostatwhichhasthefollowingtechnicaldatain
non-electricallycontrolledmode:
Settingofmapthermostat Coolanttemperature
Startstoopen 97 ±2 °C/206±2 °F
Fullyopen 109 °C/228±2 °F
Inaddition,anelectricheaterinthemapthermostatcanbeusedtomakethethermostatopenata
lowercoolanttemperature.
4.2.3.Heatmanagementfunction
Theheatmanagementdeterminesthecurrentcoolingrequirementandcontrolsthecoolingsystem
accordingly.Undercertaincircumstancesthecoolantpumpcanevenbeshutdownentirely,for
exampleinordertoheatthecoolantmorequicklyinthewarm-upphase.Thecoolantpumpcontinues
todeliverwhentheengineisstoppedandveryhottocooltheexhaustturbochargers.Thecooling
outputcanthereforeberequestedindependentlyoftheenginespeed.Inadditiontothemap
thermostattheheatmanagementisabletoactivatethecoolantpumpusingdifferentprogrammaps.
Theenginemanagementisthusabletoadaptthecoolanttemperaturetothedrivingsituation.
Thefollowingtemperaturerangesareadjustedbytheenginemanagement:
• 109 °C/228±2 °F=Economyoperation
• 106 °C/222±2 °F=Normaloperation
• 95 °C/203±2 °F=Highoperation
• 80 °C/176±2 °F=Highoperationandcurrentsupplytothemapthermostat.
Iftheenginecontrolunitidentifiesthe”Economy”operatingrangeonthebasisofrunning
performance,theenginemanagementadjuststoahighertemperature(109°C/228°F).Inthis
temperaturerangetheengineistobeoperatedwitharelativelylowfuelrequirement.Internalengine
frictionisreducedathighertemperature.Thetemperatureincreasethereforefavorsthelowerfuel
consumptioninthelowloadrange.In”Highoperationandcurrentsupplytothemapthermostat”
modethedriverwouldliketoutilizetheengine'soptimumpowerdevelopment.Thusthetemperature
inthecylinderheadisreducedto80°C/176°Fforthispurpose.Thisreductionimprovesvolumetric
efficiency,whichresultsinanenginetorqueincrease.Theenginecontrolunitcannow(adaptedto
therelevantdrivingsituation)adjustaspecificoperatingrange.Itisthereforepossibletoinfluence
consumptionandpoweroutputviathecoolingsystem.
Systemprotection
Ifthecoolantorengineoilissubjecttoexcessivetemperaturesduringengineoperation,certain
functionsinthevehicleareinfluencedinsuchawaythatmoreenergyismadeavailableforengine
cooling.
Themeasuresaresplitintotwooperatingmodes:
• Componentprotection
N20Engine
4.Cooling
98- Coolanttemperaturefrom117°C/242°F
– Engineoiltemperaturefrom143°C/289°Fattheoilpressureandtemperaturesensorin
themainoilpassage
– Measure:e.g.powerreductionofclimatecontrolandofengine
• Emergency
– Coolanttemperaturefrom122°C/251°F
– Engineoiltemperaturefrom151°C/303°Fattheoilpressureandtemperaturesensorin
themainoilpassage
– Measure:e.g.powerreductionofengine(uptoabout.90%)
4.3.Internalenginecooling
AsintheN55engine,thecoolantpassagesinthecylinderheadalsosurroundtheinjectors,whichare
cooledinthisway.
UnliketheN55engine,theN20enginehasnogroovesontheblockdeckbetweenthecylinders.
Instead,theN20enginehasboreholesbetweenthecylinders,twooneachside,whichmeetinthe
middle.
N20engine,coolingjacketandcoolantpassages
Index Explanation
1 Coolingjacket,exhaustside
2 Coolingjacket,intakeside
3+4 Coolantpassagesinthelands
N20Engine
5.AirIntake/ExhaustEmissionSystems
99TheairintakeandexhaustemissionsystemsareinprinciplesimilartotheN55.Thelistbelowitemizes
themostimportantfeaturesoftheairintakeandexhaustemissionsystems:
• Permanentlyattachedintakesilencer
• Hot-filmairmassmeter
• TwinScrollexhaustturbochargerwithintegratedwastegateandblowoffvalves
• Threeconnectionsforcrankcaseventilation
5.1.Overview
N20engine,airintakeandexhaustemissionsystems
Index Explanation
1 Chargeaircooler
2 Blowoffvalve
3 Intakesilencer
4 Hot-filmairmassmeter
5 Exhaustturbocharger
N20Engine
5.AirIntake/ExhaustEmissionSystems
100Index Explanation
6 Wastegatevalve
7 Oxygensensorbeforecatalyticconverter
8 Catalyticconverter
9 Oxygensensoraftercatalyticconverter
10 DigitalEngineElectronics(DME)
11 Intakemanifoldpressuresensor
12 Throttlevalve
13 Chargeairtemperatureandpressuresensor
N20Engine
5.AirIntake/ExhaustEmissionSystems
1015.2.Intakeairsystem
N20engine,airintakesystem
Index Explanation
1 Intakemanifold
2 Intakemanifoldpressuresensor
3 Throttlevalve
4 Chargeairtemperatureandpressuresensor
5 Hot-filmairmassmeter
6 Intakesilencer
N20Engine
5.AirIntake/ExhaustEmissionSystems
102Index Explanation
7 Unfilteredairintake
8 Chargeaircooler
9 Connection,crankcaseventilation,turbochargedmode
10 Connection,purgeairline,crankcaseventilation
11 Blowoffvalve
12 Exhaustturbocharger
5.2.1.Hot-filmairmassmeter
TheN20engineisequippedwithahot-filmairmassmeter,whichisverysimilartothatintheN74
engine.
Itcangenerallybesaidthatthequalityofairmassdeterminationbymeasurementusingahot-filmair
massmeterandbycalculationofthesubstitutevalue(ofintakeairtemperature,chargingpressure,
enginespeed,etc.)istobeconsideredasequalinthecurrentstateofdevelopment.Thecalculated
substitutevalueisneverthelessusedforengineloadcontrol.Thisvalueishoweverregularlyadjusted
withthevalueofthehot-filmairmassmeterinordertocompensatefortoleranceswhichariseon
accountofthecomplexflowconditionsintheairintakesystem.Themoresophisticatedthemixture
preparationmethod(Valvetronic,HighPrecisionInjection(especiallyinconjunctionwithstratified
chargemode),TVDI),themoreimportantitistoadjustthesubstitutevaluewiththehot-filmairmass
meter.TVDIiscurrentlythemostsophisticatedmixturepreparationmethod.Forthisreason,allTVDI
enginesarealsoequippedwithahot-filmairmassmeter.
Theuseofahot-filmairmassmeteralsoofferstheopportunityofextendeddiagnostics,e.g.fortank
orcrankcaseventilation,asthesesystemscreateadeviationintheairmassthatcanbeinterpreted
andusedtodiagnoserunningfaults.
Failureordisconnectionofthehot-filmairmassmeterdoesnotimmediatelyresultinemergency
engineoperation.However,impairedmixturepreparationandthereforepooreremissionvaluesare
possible,whichiswhytheemissionswarninglamp(CheckEngineLight)lightsup.
5.2.2.Intakemanifold
AsintheN55engine,theDigitalEngineElectronics(DME)ismountedontheintakemanifold.
However,therearedifferences.First,theDMEislocatedontheintakemanifoldandnotunderit.
Second,theintakemanifoldisnotopenaftertheDMEisremoved.Locatedbetweentheintake
manifoldandtheDMEisametalplate(heatsink)whichconductsheatawayfromtheDMEthisplateis
cooledbytheairflowoftheintakemanifold.
N20Engine
5.AirIntake/ExhaustEmissionSystems
103
N20engine,intakemanifoldwiththrottlevalve
Index Explanation
1 Throttlevalve
2 Intakemanifoldpressuresensor
3 Connectionfromtankventvalve
4 MetalplateforaccommodatingtheDME
5 Intakemanifold
Intakemanifoldpressuresensor
Locateddirectlybehindthethrottlevalve,attheentrytotheintakemanifold,istheintakemanifold
pressuresensor.Oncloserinspection,itcanbeseentobeacombinedpressureandtemperature
sensor.Thetemperaturesignalisthereforenotreadout.Thereasonforusingthissensorliesinthe
conceptofcommonparts.Itisbettertousethesamesensorwhichisalsousedasthechargeair
temperatureandpressuresensorandsimplynottoreadoutthetemperaturesignalthantointroducea
separatesensor.
5.3.Exhaustturbocharger
TheN20enginefeaturesanexhaustturbochargerwithTwinScrolltechnology.Itincludesatthe
turbineinlettwoseparateportsinwhichtheexhaustgasisroutedfromtwocylinderstotheturbine
vanes.
N20Engine
5.AirIntake/ExhaustEmissionSystems
104
N20engine,turbocharger
Index Explanation
A Exhaustport,cylinders2and3
B Exhaustport,cylinders1and4
C Outlettocatalyticconverter
D Inletfromintakesilencer
E Ringport
F Outlettochargeaircooler
1 Vacuumunitforwastegatevalve
2 Oilsupply
3 Wastegatevalve
4 Turbinewheel
N20Engine
5.AirIntake/ExhaustEmissionSystems
105Index Explanation
5 Coolingpassage
6 Oilpassage
7 Coolantreturn
8 Blowoffvalve
Theturbochargerhasafamiliardesignwithanelectricblowoffvalveandavacuum-controlled
wastegatevalve.
5.3.1.FunctionofTwinScrollexhaustturbocharger
ThedesignationTwinScrolldenotesanexhaustturbochargerwithatwin-scrollturbinehousing.The
exhaustgasfromtwocylindersineachcaseisroutedseparatelytotheturbine.IntheN20engine(as
isusualin4-cylinderengines)cylinders1and4andcylinders2and3arebroughttogethertoformtwo
portseachfeedingonescroll.Thisresultsinpulsechargingwhichisusedtogreatereffect.
Pressureandpulsecharging
Twoprinciplesofforcedinductionareusedinengineswithexhaustturbochargers–pressureand
pulsecharging.Pressurechargingmeansthatthepressureaheadoftheturbineisapproximately
constant.Theenergywhichdrivestheexhaustturbochargerisobtainedfromthepressuredifference
beforeandaftertheturbine.
Inthecaseofpulsecharging,thepressurebeforetheturbineishigh-speedandgreatlyfluctuating,or
pulsatingbythedischargeoftheexhaustgasfromthecombustionchamber.Thepressureincrease
resultsinapressurewavewhichstrikestheturbine.Inthiscase,thekineticenergyoftheexhaustgas
isused,wherebythepressurewavesdrivetheturbocharger.
Pulsechargingprovidesforafastresponsebytheturbocharger,especiallyatlowspeeds,because
pulsationisatitsstrongesthere,whereasinthecaseofpressurechargingthepressuredifference
betweenbeforeandaftertheturbineisstilllow.
Inactualfact,bothprinciplesarealwaysusedinexhaustturbochargersinpassengercarengines.The
proportionofpulsechargingishigherorlower,dependingonthesizefactors,theexhaustportguides
andthenumberofcylinders.
Dependenceonthenumberofcylinders
Inasingle-cylinderenginethereisanexhaustcycleeverytworevolutionsofthecrankshaft.
Theoretically,exhaustgasisthereforedischargedfor180°every720°crankangle.Thegraphicbelow
showsinhighlysimplifiedformthepressureconditionsbeforetheexhaustturbochargerinasingle-
cylinderengine.
N20Engine
5.AirIntake/ExhaustEmissionSystems
106
Pressurediagraminexhaustportbeforetheturbochargerina1-cylinderengine
Index Explanation
A Bottomdeadcenter,exhaustvalveopens
B Topdeadcenter,exhaustvalvecloses,intakevalveopens
C Bottomdeadcenter,intakevalvecloses
D Topdeadcenter,ignition
Ascanbeseenhere,every720°CAthereisapressurewavewhichstrikestheturbine.Thispulse
acceleratestheturbine.
Thenextgraphicshowsthepressureconditionsbeforetheturbineina4-cylinderengine.
Pressurediagraminexhaustportbeforeexhaustturbochargerina4-cylinderengine
Index Explanation
1 Exhaustvalve,1stcylinder,opens
2 Exhaustvalve,2ndcylinder,opens
3 Exhaustvalve,3rdcylinder,opens
4 Exhaustvalve,4thcylinder,opens
Becauseeachcylinderhaditsexhaustcycleaftertwofullcrankshaftrevolutions,therearefour
pressurewaveswithinthe720°CA.Becauseofthefiringinterval,theyaredistributedevenlyatan
intervalof180°CA.Thepressurewavesaresuperimposedhere.Whilethepressureofonecylinder
decreases,thepressureofthenextcylinderisalreadyincreasing.
Thisproducesasuperimposedpressurebeforetheturbine,asthenextgraphicshows.
N20Engine
5.AirIntake/ExhaustEmissionSystems
107
Pressurediagraminexhaustportbeforetheturbochargerina4-cylinderengine,superimposed
Becausetheyaresuperimposed,thepressuredifferencefromminimumtomaximumisclearlylower.
Inthisway,thepulsebythepressurewaveontheturbinealsodecreases.Inthiscases,theproportion
ofpulsesuperchargingintheexhaustturbochargerislower.
Onewayofpreventingthisina4-cylinderengineistheTwinScrollexhaustturbocharger.Bysplitting
thefourcylindersintotwoports,thepressureconditionsofa2-cylinderenginearedepictedinthetwo
portsineachcase,asthefollowinggraphicshows.
Pressurediagraminexhaustportbeforetheturbochargerina4-cylinderengine,individuallyandsuperimposed
Index Explanation
1 Exhaustvalve,1stcylinder,opens
4 Exhaustvalve,4thcylinder,opens
Heretoothepressuresofthetwocylindersaresuperimposed.However,cylinders1and4and2and3
arecombinedinthetwoports.Becauseofthefiringorderofa4-cylinderengine,thereisineachcase
anintervalof360°CAbetweentheexhaustcyclesofaport.Thusthereisalargepressuredifference
andthekineticenergyoftheexhaustgascanbebetterutilized.
Aspeciallyshapedexhaustmanifoldisusedtocombinetheexhaustpipesfromcylinders1and4and
2and3.
Intheturbochargerthesetwoportsrunseparatelyfromeachotheruptotheturbine.TheTwinScroll
exhaustturbochargerdiffersfromaconventionalexhaustturbochargerinthattheturbinehousing
separatesintwoformingaringchannelaroundtheturbine.
N20Engine
5.AirIntake/ExhaustEmissionSystems
1085.4.Exhaustemissionsystem
5.4.1.Exhaustmanifold
TheexhaustmanifoldisidenticalindesigntothatoftheN55engine.Itisair-gap-insulatedand
weldedtotheturbocharger.TheexhaustmanifoldintheN20engineisafour-into-twotype,which
isnecessaryforthespecialfunctionoftheTwinScrollturbocharger.Heretheexhaustoutletpipesof
cylinders1and4and2and3arecombinedineachcaseintooneportaspreviouslydiscussed.
N20engine,exhaustmanifoldwithexhaustturbocharger
Index Explanation
1 Exhaustports,cylinders1and4
2 Exhaustports,cylinders2and3
3 Exhaustturbocharger
5.4.2.Catalyticconverter
TheN20enginehasanupstreamcatalyticconverterwithtwoceramicmonoliths.
N20Engine
5.AirIntake/ExhaustEmissionSystems
109
Cutawayviewofcatalyticconverter
Index Explanation
1 Connectiontoexhaustsystem
2 De-couplingelement
3 Monitoringsensor
4 Controlsensor
5 Connectiontoturbine
6 Ceramicmonolith1
7 Ceramicmonolith2
Volume Diameter Numberofcells
Ceramicmonolith1 0.75 118.4 600
Ceramicmonolith2 0.99 125 400
Oxygensensors
TheBoschoxygensensorsusedarefamiliarfrompreviousengines:
• Preoxygensensor:LSUADV
• Postoxygensensor:LSF4.2.
Thepreoxygensensorislocatedaheadoftheprimarycatalyticconverter,ascloseaspossibletothe
turbineoutlet.Itspositionhasbeenchosensothatallthecylinderscanberecordedseparately.The
postoxygensensorispositionedbetweenthefirstandsecondceramicmonoliths.
N20Engine
6.VacuumSystem
110ThevacuumsystemoftheN20engineiscomparablewiththatoftheN55engine.Aswellassupplying
thebrakeservo,itisneededprimarilytoactivatethewastegatevalveontheturbocharger.Inaddition,
theexhaustflapisactuatedbyvacuumintheN20engine.
N20engine,vacuumsystem
Index Explanation
1 Connection,brakeservo
2 Vacuumpump
3 Connection,exhaustflap
4 Vacuumreservoir
5 Electro-pneumaticpressureconverterforwastegatevalve
6 Vacuumunit,wastegatevalve
N20Engine
6.VacuumSystem
111Thevacuumpumpasusualisdesignedtohavetwostagessothatthemajorityofthegenerated
vacuumismadeavailabletothebrakeservo.Avacuumreservoirisusedtoprovidesufficientvacuum
foractuatingthewastegatevalve.Thisreservoirisbuiltintotheenginecover.
Disconnectthevacuumlinebeforeremovingtheenginecover,asotherwisethereisariskofdamage.
N20Engine
7.FuelPreparation
112TheN20engineuseshigh-pressureinjection,whichwasintroducedintheN55engine.Itdiffersfrom
high-precisioninjection(HPI)inthatitusessolenoidvalveinjectorswithmulti-holenozzlesinsteadof
thepiezoelectrictype.
7.1.Overview
ThefollowingoverviewshowsthefuelpreparationsystemoftheN20engine.Itessentially
correspondstothesystemswithdirectfuelinjectionfamiliarinBMWmodels.
N20engine,fuelpreparation
N20Engine
7.FuelPreparation
113Index Explanation
1 Connection,quantitycontrolvalve
2 High-pressurepump
3 Low-pressureline
4 High-pressureline,rail-injector
5 High-pressureline,high-pressurepump-rail
6 Rail
7 Solenoidvalveinjector
Boschhigh-pressurefuelinjectorswiththedesignationHDEV5.2areused.Thehighpressurepumpis
alreadyknownfromthe8and12cylinderengines.AninnovationintheN20engineisthefactthatthe
high-pressurelinesfromrailtoinjectorarenownolongerscrewedattherailend,butwelded.Another
featurewhencomparedwithestablishedBMWfuelsystemsistheomissionofthefuellow-pressure
sensor.
Workonthefuelsystemisonlypermittedaftertheenginehascooleddown.Thecoolant
temperaturemustbebelow40°C/104°F,toavoidriskofinjuryduetospraybackfrom
residualpressureinthehigh-pressurefuelsystem.
Whenworkingonthehigh-pressurefuelsystem,itisessentialtoadheretoconditionsof
absolutecleanlinessandtoobservetheworksequencesdescribedintherepairinstructions.
Eventheslightestcontaminationanddamagetothethreadedfittingsofthehigh-pressure
linescancauseleaks.
WhenworkingonthefuelsystemoftheN20engine,itisimportanttoensurethattheignitioncoils
arenotwetwithfuel.Theresistanceoftheinsulatingsiliconematerialisgreatlyreducedbysustained
contactwithfuel.Thismayresultinarcingonthesparkplugconnectionandthusinmisfires.
• Beforemakinganymodificationstothefuelsystem,removetheignitioncoilsandprotectthe
sparkplugsbycoveringwithacloth
• Beforereinstallingthesolenoidvalveinjectors,removetheignitioncoilsandensurethatthe
cleanestpossibleconditionsaremaintained.
• Ignitioncoilsheavilysaturatedbyfuelmustbereplaced.
7.2.Fuelpumpcontrol
Asalreadymentioned,thereisnofuellow-pressuresensorintheN20engine.Thefuelpressureis
calculatedbymonitoringpumpspeedandload.
7.3.High-pressurepump
TheBoschhigh-pressurepump,familiarfromtheN63andN74isused.Thisisasingle-plungerpump
whichisdrivenfromtheexhaustcamshaftviaatriplelobeonthecam.
N20Engine
7.FuelPreparation
114Forfurtherinformationonthehigh-pressurepump,pleaserefertotheN63andN74enginetraining
informationavailableonTISandICP.
7.4.Injectors
TheBoschHDEV5.2solenoidvalveinjectorisaninward-openingmulti-holevalveunliketheoutward-
openingpiezoinjectorusedinHPIengines.TheHDEV5.2isalsocharacterizedbyhighvariabilitywith
regardtosprayangleandspraypattern,andisconfiguredforasystempressureofupto200bar.
TheseinjectorsarealreadyusedintheN55engine.However,theiroperatingprincipleisthesameas
thatoftheinjectorsusedintheN73engines.
Note:TheN73HDEVcontrolmodulescontainpulsewidthmodulatedfinaloutputstages
withhighperformancecapacitorstotransformthesystemvoltageupto85to100volts.See
ST042E65CompleteVehicle/N73enginetrainingmaterialavailableonTISandICP.
N20Engine
7.FuelPreparation
115
Index Explanation
1Fuellineconnection
2Electricalconnection
3Stem
4Compressionspring
5Solenoidcoil
6Armature
7Nozzlepintle
86-holenozzle
Amagneticfieldisgeneratedwhenthecoilisenergized.Thismagneticfieldliftsthenozzlepintle
againstspringpressureoffthevalveseatandopensthedischargeholesoftheinjectornozzle.The
highpressureintherailforcesthefuelthroughdischargeholesathighspeedintothecylinder.To
terminateinjection,currentisshutoff,thenozzlepintleisforcedclosedbyspringforcebackontothe
valveseat.
N20Engine
7.FuelPreparation
116Thevalveopensandclosesatveryhighspeedandensuresaconstantopeningcross-sectionduring
theopeningperiod.Theinjectedfuelquantityisdependentontherailpressure,thebackpressurein
thecombustionchamberandtheopeningperiodoftheinjector.
Forfurtherinformationoninjectoractivation,refertothesectionentitledEngineElectricalSystemof
thistrainingmaterial.
Unliketheinjectorspreviouslyused,thesolenoidvalveinjectorsoftheN55andN20engineshave
longandrelativelysensitivestemsmadenecessarybytheshapeofthecylinderhead.Eachstemis
madeofplasticontheoutsidebutontheinsidethereisametaltubeservesasafuelline.
Thestemsofthesolenoidvalveinjectorscanonlywithstand6Nmoftorquewhichtranslates
to2000Noftensileforce.Itisessentialwhenremovingandinstallingtheinjectorstofollow
thespecificproceduresetoutintherepairinstructions,alongwiththeuseofspecialtool#0
496885forinjectorremoval.Ifthistoolisnotusedtheinjectorswillbedamaged .
N20Engine
8.FuelSupply
117Thefuelsupplyisvehicle-specific.Hardlyanychangeshavebeenmadetothealreadyexisting
models.Thereforeonlythetankventilationsystemontheenginewillbedescribedingreaterdetail
here.
8.1.Tankventilation
SimilartotheN55
8.1.1.Two-stagetankventilation
Thetwo-stagetankventingisusedontheN20engine.Thissophisticatedsystemismadenecessary
bytheTVDItechnology,becauseinthiscasesufficientvacuumintheintakemanifoldismuchless
common.ThiswasintroducedwiththeN55engine.
N20Engine
8.FuelSupply
118
N20engine,tankventilation
Index Explanation
1 Intakesilencer
2 Chargeairpipe(fromchargeaircoolertothrottlevalve)
3 T-connectorwithsuctionjetpump
4 Cleanairpipe(fromintakesilencertoexhaustturbocharger)
5 Connectionofpurgeairline,crankcaseventilation
N20Engine
8.FuelSupply
119Index Explanation
6 Connectionoftankventilationtocleanairpipe
7 Intakemanifold
8 Linefromcarboncanisteroftankventilationsystem
9 Tankventvalvewithshutoffvalve
10 Throttlevalve
11 Connectionbeforethrottlevalvefordrivingsuctionjetpump
However,asuctionjetpumpisadditionallyusedinviewofthefactthatsufficientvacuumcannot
alwaysbeguaranteedinthecleanairpipe.Inordertodrivethispump,thelinetothesuctionjetpump
isconnectedbeforethethrottlevalve.Thiscreatesaconnectionbetweenthechargeairpipeandthe
cleanairpipe.Inturbochargedmodethepressureinthechargeairpipeisalwayshigherthaninthe
cleanairpipe,whichgeneratesinthislineaflowtothecleanairpipe.
N20engine,T-connectorwithsuctionjetpumpfortankventilation
Index Explanation
1 Linetocleanairpipe
2 Linefromtankventvalve
3 T-connectorwithsuctionjetpump
4 Linefromchargeairpipe
Thelinefromthetankventvalveisconnectedtothissuctionjetpump.Theventurieffectensuresthat
thecarboncanisterissafelypurged.
Non-returnvalvesonbothlinesfromthetankventvalveensurethatthereisnoreturnflowintothe
tankventvalveintheeventofexcesspressureintheselines.
8.1.2.Two-stagetankventilationwithshutoffvalve
Thetwostagetankventilationhasasecondelectricalvalvewhichisverysimilarindesigntothetank
ventvalve.Thisisknownasashutoffvalve.
N20Engine
8.FuelSupply
120Theshutoffvalveservestodiagnosethesecondpointofadmissionandisdesignedtocloseoffthe
firstadmissionintotheintakemanifoldundercertainconditions.
N20engine,tankventvalve
Index Explanation
1 Connectionafterthrottlevalve
2 Lineforconnectiontocleanairpipe
3 Tankventvalve
4 Connectionfromcarboncanister
5 Shutoffvalve
Itismounteddirectlybelowthetankventvalveandisabletosealoffthelinetothethrottlevalve.
N20Engine
8.FuelSupply
121
N20engine,overview,two-stageversionoftankventilationwithsecondvalve
Index Explanation
1 Intakesilencer
2 Exhaustturbocharger
3 T-connectorwithsuctionjetpump
4 Throttlevalve
5 Non-returnvalveforconnectiontocleanairpipe
6 Tankventvalve
7 Non-returnvalveforconnectionafterthrottlevalve
8 Shutoffvalve
Theshutoffvalveispoweredclosedandspringloadedopenatzerocurrent.
N20Engine
9.EngineElectricalSystem
1229.1.Overview
N20engine,systemwiringdiagramMEVD17.2.4
N20Engine
9.EngineElectricalSystem
123Index Explanation
1 EngineelectronicsValvetronicdirectfuelinjectionMEVD17.2.4
2 Ambientpressuresensor
3 Temperaturesensor
4 A/Ccompressor
5 Junctionboxelectronics
6 Refrigerantpressuresensor
7 Electronicfuelpumpcontrol
8 Electricfuelpump
9 CarAccessSystemCAS
10 Brakelightswitch
11 Startermotor
12 DMEmainrelay
13 Clutchmodule
14 Relay,Valvetronic
15 Relay,ignitionandinjectors
16 Relay,terminal30switched
17 Diagnosismodule,tankventilation
18 Relayforelectricfan
19 Electricfan
20 Mapthermostat
21 Blowoffvalve
22 Tankventvalve
23 VANOSsolenoidactuator,intakecamshaft
24 VANOSsolenoidactuator,exhaustcamshaft
25 Switchableenginesoundsystem
26 Mapcontrolvalve
27 Electro-pneumaticpressureconverterforwastegatevalve
28 Quantitycontrolvalve
29–32 Injectors
33–36 Ignitioncoils
37 Engineventilationheating
38 Groundconnections
39 Oxygensensoraftercatalyticconverter(monitoringsensor)
40 Oxygensensorbeforecatalyticconverter(controlsensor)
41 Diagnosticsocket
N20Engine
9.EngineElectricalSystem
124Index Explanation
42 Intakemanifoldpressuresensor
43 Railpressuresensor
44 Chargeairtemperatureandpressuresensor
45 Knocksensor1–2
46 Knocksensor3–4
47 Hot-filmairmassmeter
48 Camshaftsensor,intakecamshaft
49 Camshaftsensor,exhaustcamshaft
50 Crankshaftsensor
51 Acceleratorpedalmodule
52 Throttlevalve
53 Coolanttemperaturesensor
54 Oilpressureandtemperaturesensor
55 Thermaloillevelsensor
56 Valvetronicservomotor
57 DynamicStabilityControlDSC
58 IntelligentbatterysensorIBS
59 Alternator
60 Coolantpump
9.2.Enginecontrolunit
TheN20enginefeaturesDigitalEngineElectronicsfromBoschwiththedesignationMEVD17.2.4.It
iscloselyrelatedtotheDMEoftheN55engine(MEVD17.2)andisalsoengine-mountedontheintake
manifold.
N20Engine
9.EngineElectricalSystem
125
N20engine,DigitalEngineElectronics
Index Explanation
1 Intakemanifold
2 DigitalEngineElectronics
3 Throttlevalve
Donotattempttrialanderrorreplacementofcontrolunits.
Becauseoftheelectronicimmobilizer,atrialanderrorreplacementofcontrolunitsfromother
vehiclesmustnotbeattemptedunderanycircumstances.Animmobilizeradjustmentcannot
bereversed.
TheN20engineDME(MEVD17.2.4)isdesignedtobemountedontheengine'sintakemanifold
onanaluminiumheatsinkplate.TheDMEiscooledthroughtheheatsinkplatebytheairflowing
throughtheintakemanifold.ItisimportantfortheDMEtobecorrectlymountedontheheatsinkplate
(tighteningtorque,goodlevelcontact)soastoensureheattransfertotheplateandtherebycoolthe
DME.
TheconnectionconceptisidenticaltotheMEVD17.2intheN55engine.Thereisalogicaldivisioninto
sixmodules.
N20Engine
9.EngineElectricalSystem
126
N20engine,MEVD17.2.4connections
Index Explanation
1 Module100,vehicleconnection,48pins
2 Module200,sensorsandactuators1,58pins
3 Module300,sensorsandactuators2,58pins
4 Module400,Valvetronicservomotor,11pins
5 Module500,DMEsupply,12pins
6 Module600,fuelinjectionandignition,24pins
9.2.1.Overallfunction
TheDigitalEngineElectronics(DME)isthecomputingandswitchingcenteroftheengine
managementsystem.Sensorsontheengineandthevehicledelivertheinputsignals.Thesignals
foractivatingtheactuatorsarecalculatedfromtheinputsignals,thenominalvaluescalculatedusing
acomputingmodelintheDMEcontrolunitandthestoredprogrammaps.TheDMEcontrolunit
activatestheactuatorsdirectlyorviarelays.
TheDMEcontrolunitiswokenupviathewake-upline(terminal15Wakeup)bytheCarAccess
System(CAS).
N20Engine
9.EngineElectricalSystem
127Theafter-runstartsafterterminal15OFF.Theadaptationvaluesarestoredduringtheafter-run.The
DMEcontrolunitusesabussignaltosignalitsreadinessto“gotosleep”.Whenalltheparticipating
controlunitshavesignalledtheirreadinessto“gotosleep”,thebusmasteroutputsabussignaland
thecontrolunitsterminatecommunicationfivesecondslater.
TheprintedcircuitboardintheDMEcontrolunitaccommodatestwosensors:atemperaturesensor
andanambientpressuresensor.Thetemperaturesensorisusedtomonitorthetemperatureofthe
componentsintheDMEcontrolunit.Theambientpressureisrequiredforcalculatingthemixture
composition.
BayerischeMotorenwerkeAktiengesellschaft
QualifizierungundTraining
Röntgenstraße7
85716Unterschleißheim,Germany
Copyright Notice
© Licențiada.org respectă drepturile de proprietate intelectuală și așteaptă ca toți utilizatorii să facă același lucru. Dacă consideri că un conținut de pe site încalcă drepturile tale de autor, te rugăm să trimiți o notificare DMCA.
Acest articol: Technicaltraining. [608134] (ID: 608134)
Dacă considerați că acest conținut vă încalcă drepturile de autor, vă rugăm să depuneți o cerere pe pagina noastră Copyright Takedown.
