BIOSPEOLOGIA SPATIULUI ROMANESC 1. ROMANIA VASILE Decu†, CRISTIAN JUBERTHIE†, SANDA IEPURE, VICTOR Gheorghiu, OANA moldovan, ALEXANDRU PETCULESCU,… [302233]

CENTENAR I.S.E.R (1920-2020)

BIOSPEOLOGIA SPATIULUI ROMANESC

1. ROMANIA

VASILE Decu†, CRISTIAN JUBERTHIE†,

[anonimizat], [anonimizat], [anonimizat], [anonimizat]

I – History

I. 1 – 1856-1920

The studies on subterranean fauna of Romania started in the second half of the 18[anonimizat]-Hungarian occupation. [anonimizat]. The oldest works are those of Miller and Hampe that describe two Bathysciinae beetles of the Apuseni Mountains, a Drimeotus kovacsi Miller, 1856 from the Igrița Cave and a Pholeuon angusticolle Hampe, 1856 of the Zmeilor Cave from Onceasa. [anonimizat]: the Trechinae beetle Duvalius redtenbacheri (E. & J. Frivaldszky, 1857) and the spider Nesticus biroi (Kulczynski, 1895). The discovery of these two species is linked to the archeological and paleontological prospections in those two caves at that time.

[anonimizat] (J. Frivaldszky, 1880) and S. reitteri (J. Frivaldszky, 1884), [anonimizat] (Cave) [anonimizat] J. Frivaldszky in 1880 and 1884, respectively. [anonimizat], 1898.  was described from the Hoților Cave in Băile Herculane.

[anonimizat], 2006, Csiki 1932 [anonimizat]. Consequently, the inventory of troglobitic beetles in the Carpathian Mountains was represented by only about fifteen species before 1911.

However, from 1911 and up to the First World War, a considerable increase of intrest for the “rarity” of the subterranean world was noticed, a [anonimizat], Moczarsky, Mihok, Knirsch, [anonimizat]. [anonimizat] 83 in 1914 (Jeannel, 1923).

Unfortunately, some of the descriptions were too hasty to resist thorough revisions and most of the “new” species have been synonymized; [anonimizat] ([anonimizat], 1912, Duvalius redtenbacheri biroi (Csiki, 1905)., Anophthalmus csatoi Csiki, 1913. and Duvalius sziladyi Csiki, 1905. Moreover, [anonimizat].

I. 1 – 1856-1920

After the publication of E. G. Racoviță (1907), of the famous "Essai sur les problemèmes biospéologiques", C. N. lonescu, a [anonimizat]. Inaugurating his activity as biospeleologist with the work "Faune des grottes dans Ies Carpathes de Roumanie" (Ann. Sci. Univ. Jassy, ​​t. VII, f. 3, 1912, p. 235-251, 3 graphs), in his studies, C. N. lonescu will permanently follow the problem of adapting the taxa to the underground environment.

A synthesis of its speleological results had given C. N. lonescu in his well-known work "Biospeology of the Southern Carpathians" (Bul. Soc. R. Rom. Of geogr. T. XXXIV, f. II, Bucharest, 1913, p. 74-98, with an excellent color map.

C. N. Ionescu was the first Romanian researcher of the Carpathian caves. He made his first biospeological observations eight years before the arrival in Romania of E. G. Racoviță and R. Jeannel and before the foundation of the Speleological Institute in Cluj (Motaș, 1974)

The manner of faunistic researches in caves before 1920 has taken to even more fragmentary knowledge of other groups. Nevertheless, some systematicians took care to gather data in regional synthesis. Can be mentioned from this point of view the works of Chyzer and Kulczynsky (1895) on araneids, of Thalhammer (1899, 1902) on dipters, of Daday (1885, 1886) on myriapods of Verhoeff (1898, 1899, 1908), on diplpods and isopods, of Bielz and Mehely (1900) on chiropters, etc (see Wolff, 1938).

I. 2 – 1920-1949

After more or less hesitating start, the study of subterranean fauna has known an unprecedented development beginning with 1920, when the Institute of Speleology was created at the University of Cluj. Due to the eminent Romanian scientist Émile Racovitza, this Institute founded in the same time with the reorganization of the University in Transylvania, which came as an accomplishment of the territorial unity of Romania in the 1st of December 1918.

This Institute, the first that studied the subterranean domain in the world, had as fundament the well-known publication from 1907 of Émile Racovitza “Essai sur les problèmes biospéologiques”, published when he acted as deputy director of the Arago Laboratories in France. This is the work that founded a new scientific discipline, Biospeleology (Biospéologie in original).

From the beginning Émile Racovitza invited the French biologist René Jeannel as deputy director of the Institut, who became the known entomologist and biogeographer. In 1922 he also invited Pierre-Alfred Chappuis who became vice director, and also the assistants Valeriu Pușcariu and Radu Codreanu. Émile Racovitza started his research programme with the collaboration of an increasing number of specialists and organizing the international initiative known under the name of “Biospeologica”. The exploration of 800 caves in Europe (Romania, France, Spain including Baleares, ex-Yugoslavia) and Africa (Algeria) had as result a colection with 20,000 samples and the publication of 41 thick memories in the Archives de Zoologie expérimentale et générale, under the common title “Biospeologica”. The works of Racovitza on isopods, Jeannel on beetles, Chappuis on copepods and aquatic isopods, Louis Fage on spiders, Pierre-Joseph de Beauchamp on triclads and hirudins, Roewer (1935) on opilions, Bezzi on collembolans, Brölemann (1913) on diplopods, Matic (1966-1972) on chilopods and Ceuca (1956-1964) on diplopods, Feider (1970) and Mironescu (1970) on ixods, Botoșăneanu (1955-1986) on trichopters, Borda et al., on bats etc. can be mentioned. Other works of the Institute members and their collaborators have been gathered by É. Racovitza in nine volumes of “Travaux de l’Institut de Speologie de Cluj” (1926-1948). In Romania, the biospeleological campaigns started in 1921 and took part until 1931 in the most important regions: Apuseni Mountains and Southern Carpathians. About 160 caves were explored in the first region by Racovitza, Jeannel, Chappuis, Winkler, Pușcariu, Cheveresanu and Roth, and 90 caves in the second unit (Banat, Oltenia and Hunedoara) by the first five researcers mentioned above and Mallasz (Jeannel & Racovitza, 1929; Chappuis & Jeannel, 1951). Outside these regions, in 1926, Chappuis collected fauna from Limanu Cave in Dobrogea and in 1925 Pușcariu collected from Peștera Mare de la Merești in the Eastern Carpathians. They also must be mentioned as pioneers of fauna researches in caves of the Southern Carpathians (Oltenia).

Fig. 1. Map of the karst regions of Romania. a = limestones and dolomites; b = karst developed on salt and gypsum;
c = volcanic rock karst (After Bleahu, Decu and Rusu, 1963, 1965; Bleahu, 1972; modified).

The Institute of Speleology in Cluj kept its international character with the stage of the Austrian entomologist Winkler, the eminent French prehistorian H. Breuil who discovered for the first time remains of the Paleolithic culture in Transylvania (Breuil, 1925), and the Belgian biospeleologist R. Leruth (1939). With the material gathered by the last one, several works were published: P. de Beauchamp, 1940; Boettger, 1940; Collart, 1940, 1941; Cooreman, 1951; Lengersdorf & Leruth, 1940; Leruth, 1939, 1941; Motaș & Șoarec, 1939; Tollet, 1955 etc.

It is justified to assert that this Institute represented before the 2nd World War one of the international centres in Biospeleology.

After É. Racovitza passed away in 1947, P.-A. Chappuis assured the direction of the Institute until 1949, before moving to Toulouse as a deputy director of the Laboratoire souterrain du C.N.R.S. in Moulis. With him, “Biospeologica” returned to France where it will be directed by Jeannel and Chappuis.

1. 3 – The period 1949-1956

The Institute of Speleology continued the researches with a new generation of scientists. In Cluj, a team composed by Șerban, Coman, Givulescu and Pop started the study in the Ice Cave of Scărișoara.

A second group under the direction of Motaș, together with Tanasachi and Orghidan started the researches on the water mites discovered in the phreatic environment and the new interstitial biotope which have been described by Chappuis from the Apuseni Mountains (1939, 1946 and 1947).

A third team formed by Pușcariu, Tanasachi, Dumitrescu and Orghidan undertook biospeleological researches in almost all karstic areas of the country.

1. 4 – 1956-2019

In 21st of June 1956, the Institute of Speleology is reorganized with the main headquater in Bucharest and a branch in Cluj. Professor C. Motaș, freed after a long and arbitrary detention, was named director of the Institute until 1963 that became the “Emil Racovitza” Institute of Speleology. Traian Orghidan succeded as director until 1985, followed by Constantin Rădulescu until 2002 and Ioan Povara until present. From 1990, the Institut is part of the Romanian Academy.

After 1956, the exploration of caves and the study of their fauna continued. Among the numerous published papers, the contribution of Viehmann, M. Șerban, Dumitrescu, Orghidan, Tanasachi, Avram, Georgescu, E. Șerban, Negrea, A. Negrea, Botoșăneanu, Dancău, Sencu, Decu, A. Decu, Racovitza, Rusu, Moldovan, etc. (see references).

The knowledge on the structure and functioning of the aquatic communities in caves and hyporheic zone of surface rivers were deepened with the studies of Orghidan, Motaș, Botea, Botoșăneanu, Danielopol, Pleșa, Iepure, G. Racovitza, Moldovan etc., while those on terrestrial subterranean communities by the researches of Dumitrescu, A. Decu, V. Decu, Motaș, Tăbăcaru, Negrea A., Negrea S., Racovitza G., Gruia, Tufescu, Rușdea etc.

The morphology, anatomy, sensorial and exocrine equipment, cytology, genetics, as much as reproduction and development have been part of the works of A. and V. Decu, Racovitza, Juberthie, Tăbacaru, Juberthie-Jupeau, Giurginca, Avram, Pleșa, Georgescu, Buzila, Bucur, Moldovan, Nitzu.

Studies of zoogeography on subterranean fauna in Romania have been undertaken by Dancău, Decu, Gruia, Negrea, Nitzu, Tăbacaru, Giurginca, Nae, Moldovan, Popa, Serban, Gheorghiu etc. Studies on the mesoshallow subterranean substratum (MSS, milieu souterrain superficiel in original) have been started by Juberthie, Delay, Decu and Racovitza in 1981, and continued especially by Racovitza et al. in Transylvania, Decu et al. in Oltenia and Dobrogea, Nitzu, Gheorghiu et al. in the Carpathians and Dobrogea. The transition environment between the subterranean environment and the surface, the superficial lithoclasic environment, was discovered in Dobrogea in 1964 by Orghidan and Dumitrescu, and studied together with their collaborators.

The study on the life conditions in the subterranean habitats were realized as follows: the cave climate was studied by Racovitza, measurements of condensation by Decu et al. and Racovitza et al., measurements of solar radiation by Decu et al. (1980) and (1982) on the limestone conductivity by Suciu and groundwater chemistry by Marin.

The protection and conservation of caves and of subterranean ecosystems have been studied by Racovitza, Decu, Lascu, Meleg, Iepure, Moldovan, Gheorghiu, Petculescu et al., (1995–2019) together with the reorganisation and the functioning of ecosystems developed on forested or deforested limestones (Decu et al., (1982) Racovitza. et al. (1978).

In 1986, the discovery of the first chemoautotrophic cave in the world, the Movile Cave in Dobrogea (Lascu, Popa, (1994, 1995), Sârbu, Sârbu et al., (1994) Sârbu & Popa (1992) , Popa & Sârbu, (1991), led to a series of works on its fauna, origin of resources and functioning of its ecosystem, its hydrogeology and geological context and biotic by Bernasconi (1991), Boghean(1989), Boghean & Racovitza (1989), Pleșa, & Curcic(2004) et al,Decu & Georgescu(1994), Georgescu & Sârbu (1992), Giurginca et al. (2009), Gruia (1996 and 1998), Decu & Juberthie (1994), Manoleli et al (1998)., Tabacaru & Boghean (1989) etc.

Biospeleological expeditions. Numerous members of the Institute of Speleology took part in biospeleological expeditions in Europe, America and Middle East. In Bulgaria (Botoșăneanu, Decu and Rusu, 1963; Orghidan and Burghele, 1966; Dancău, 1975); in the former-Yugoslavia (Căpușe, Dancău, Danielopol, Dumitrescu, Juvara-Balș, Orghidan and Terzea, 1967); in Cuba (Botoșăneanu, Decu, Negrea, 1969, 1973; Orghidan, 1970, 1973; G. Racovitza, 1969; Coman, 1973); in Mallorca (Dumitrescu, Georgescu, Orghidan and Tabacaru, 1971); in Venezuela (Orghidan, 1975; Decu and Orghidan, 1982); in Israel (Căpușe, Decu, A. and S. Negrea, 1990; Decu, Iavorschi, Nitzu and Gheorghiu, 1995).

The results were published under the following titles: "Résultats des expéditions biospéologiques cubano-roumaines à Cuba" (Tomes I – IV; 1973-1983, 1254 pp.) "Fauna hipogea y hemiedáfica de Venezuela y de otros paises de América del Sur" (Tome I; 1987, 219 pp.), ‘’Soil Fauna of Israel’’ (1995, 156 pp.).

The Institute of Speleology maintained strong scientific relationships with the Laboratoire souterraine du CNRS in Moulis (France) during four decades. Exchanges of scientists, common works, programmes and missions have been undertaken during the collaboration.

In the same frame the editing of the “Encyclopaedia Biospeologica” by C. Juberthie (Moulis) and V. Decu (București) was achieved with the help of more than one hundred fifty collaborators from the entire world. Three volumes appeared: Volume I in 1994, Volume II in 1998, Volume III in 2001 (2294 pages in total). The Institute of Speleology edited four journals: "Travaux de l'Institut de Spéologie Emile Racovitza" (1963-present: I-LII); "Theoretical and Applied Karstology (1983-2004: 1-11); "Miscellanea Speologica Romanica" (1989, 1990); "EcoCarst" (1999-2005).

Fig. 2. Map of biospeological zones (1-25, in black; see fig. 15) with significant caves for different criteria and the largest karstic spring (1-39, in red). (After Lascu, 1996, completed). 1 – Peștera Igrita: 350 m; archaeological and paleontological remains; one of the two troglobiont animals discovered for the first time (1856) in Romania: Drimeotus kovacsi Miller; 2 – Sistemul Ciur-Ponor-Toplita de Rosia: 20.150 m: the longest explored stream-cave: 16 km; 2 – Avenul Stanul Foncii: -339 m; 2 – Peștera Rece: the deepest undergroud lake ~ -20 m; 3 – Peștera de la Vadul Crișului: 1.000 m; very important biospeological researches and biospeological reservation; 4 – Peștera Vântului: the longest cave (42.165 m); 4 – Peștera Ungurului: 554 m; touristic cave; 5 – Peștera din Valea Rea: 16.357 m/-372 m; sulphate speleothemes; 6 – Peștera Meziad: 475 m; touristic cave; historic and archaeological significance; 7 – Peștera Zmeilor de la Onceasa: 310 m; paleontological remains; the second troglobiont animal discovered (1856) in Romania: Pholeuon angusticolle Hampe; 7 – Sistemul Humpleu-Poienita: 36.600/-314 m; the largest hall (”Halasi Hall”): 310/103/35 m; 7 – Peștera Altarului: rich cave in speleothemes; the oldest ritual artifact in a cave: 75.000 years; 8 – Sistemul Vărășoaia: 19.250/-653 m; 8 – Sistemul Zăpodie – Peștera Neagra: 12.048 m; hydrological significance; 9 – Peștera Coliboaia: 750 m; paleolithic black drawings (bisons, rhinoceros, etc.); 23.000 – 35.000 years; 9 – Avenul din Dealul Secăturii: -366 m; 9 – Peștera Ursilor de la Chișcau: 1.500 m; touristic cave, the best arrangement; cave bear (Ursus spelaeus) remains; 10 – Cetațile Ponorului: 3.800 m; the highest cave entrance (70 m) and the highest gallery (126 m); 10 – Peștera din Pârâul Hodobanei: 22.142 m; 11 – Ghețarul de la Scărișoara: 700/-105 m; the cave hosts an perrenial ice block of ca. 100.000 m3; meteorological and biospeological significance (see Chap. III.2.1); 11 – Ghețarul de la Zgurăști: 5.200 m; the highest underground lake: ca. 20 m / ca. 10 mill. liters; 11 – Izvorul de la Cotețul Dobreștilor: the deepest syphon: 75,5 m; 12 – Peștera Huda lui Papara: 5.200 m; the largest disk: 75 m; biological researches; 13 – Peștera cu Oase: 35 m; the oldest fossils of an european modern human dated ca. 3.500 B.P.y.; cave bear remains (see Chap. VIII); 14 – Peștera Chindiei II: 18 m; about 18 signs and drawings from the mesolithic, neolithic and the iron ages; 15 – Peștera Gaura Porcariului: 152 m; the only cave with the troglobiont beetle Banatiola vandeli Decu; 16 – Galeria de explorare hidrologica de la Hotelul Roman: the hotest explored karstic passage (48,8 oC); 16 – Peștera lui Adam de la Băile Herculane: 169/-27 m; thermal cave; biocenosis of tropical type into the temperate zone developed; very important biospeological researches (see Chap. III.2.2); 17 – Peștera Soroniște: 153/-96 m; biospeological significance; 18 – Complexul subteran Topolnita: 20.500 m; hydrological and biospeological significance: many habitats and rich fauna; 19 – Bazinul Zaton-Bulba: 5.900 m; with a impressive structural morphology and many limestone rafts; 20 – Peștera Isverna: 1.500 m; hydrological significance; large spring: 0,301 m3/sec. Q mean (after Orașanu et al., 2010); the longest syphon: 420 m; 21 – Peștera Cloșani: 1.100 m; biospeological significance; subterranean laboratory and museum; the fastest calcite deposition: 90 gr./year; 22 – Peștera Cioarei: the oldest and longest habitation: 80.000 – 120.000 years ago; 23 – Izvorul Cernei (Cerna spring): the biggest karstic spring 1,985 m3/sec Q mean. (after Orasanu et al., 2010); 24 – Peștera Cioclovina Uscata: 763 m; one skull of Homo sapiens dated 28.000-29.000 14C B.P.; a bats colony rehabilitated; minerological significance; economic exploitation (~7.000-30.000 tons) of guano phosphate deposits between 1912-1918 and 1924-1941; 24 – Sura Mare: 11.123/-425 m; with water course; the flow: 0,378 m3/sec. Q mean (after Orasanu et al., 2010); the highest cave waterfall: 100 m; the biggest limestone dam terraces; the single hibernation colony of Pipistrellus pygmaeus and Pipistrellus pipistrellus (40.000 individuals) known in Palaeartic; 25 – Peștera Muierii de la Baia de Fier (Parang Mts.): 3.566 m; one skull of Homo sapiens dated 29.000 – 30.000 B.P.; partial touristic; 26 – Peștera din Varful Lespezi (Fagaras Mts.): 155 m; the longest cave in metamorphic rocks developed at the highest altitude: 2517m; 27 – Peștera 6S de la Mânzalesti (Buzau Mts.): the second longest salt cave in the world: 3.234 m (Malham cave, Israel, 5.685 m); 28 – Avenul de sub Coltii Grindului (Piatra Craiului Mts.): 2.020 m alt.; the deepst cave: -530 m; a hibernation colony of Myotis myotis and Myotis blythii; 29 – Peștera Pucioasa din Turia (Bodoc Mts.): 14 m; the highest CO2 content in a cave: 92,4%; 2000 m3 CO2 emission daily; 30 – Peștera Gaura Vulpii (Gurghiu Mts.): 86 m; the longest cave in igneous rocks; 31 – Peștera de la Izvorul Tausoarelor (Rodnei Mts.): 18.107/-470 m; 31- Peștera Jgheabul lui Zalion (Rodnei Mts.): -303 m; 32 – Peștera Ponorul Jitelor (Țibleș Mts.): 1.020 m; the longest cave in sandstone; 33 – Peștera din Cariera Cuciulat (Preluca Mf.): 1.070 m; the oldest paleolithic drawing (the „little horse”); 10.000 years; 34 – Peștera de la Piatra: cave at the lowest altitude: +2 m; the oldest dated speleotheme: 200.000 years; 35 – Peștera de la Gura Dobrogei: 500 m; biospeological, archaeological and paleontological significance; the oldest fossil in a cave sediment: an association of the upper Jurassic mollusc: 180-150 mill. years; 36 – Peștera Rapana: the only underwater cave (-9 m), near Costinesti; 37 – Peștera de la Movile: +3,5 m alt.; thermal cave with chemoautotrophic primary production; hot-spot of subterranean biodiversity; very important biospeological researches (see Chap. III.2.4); 38 – Peștera de la Limanu: 3.200 m; morphological significance: a labyrinth of tabular limestone with rectangular galleries; 39 – Peștera din Valea lui Moș Stoian: 102 m; the longest cave in loess.

II – Karst areas

Limestone rocks are distributed in Romania and are spreaded on a surface of only 4435 km2, which represents 1.4% of the country total surface (Bleahu & Rusu, 1965; Orghidan et al., 1965), generally covered on plateaus and plains by Pliocene and Quaternary sediments. Limestone is visible mainly in the Southern Carpathians (1597 km2) and the Apuseni Mountains (1074 km2), but also in the Eastern Carpathians (776 km2) and Dobrogea (953 km2). Limestone outcrops also in the plateaus of Transylvania and Moldova under isolated shreds (Fig. 1).

Most of the limestone is Jurassic (Dogger and Malm) and Cretaceous (especially Neocomian) (2085 km2); they predominate especially in the Southern Carpathians (1227 km2). In descending order of their frequency, there are also limestones and crystalline dolomites from Paleozoic (797 km2), Triassic (779 km2), Neozoic limestone (739 km2), the last concentrated mostly in Dobrogea (673 km2). Beside their large distribution, Jurassic and Cretaceous formations have the highest degree of karstification and are represented in the thickest layers.

In this heterogeneous condition of limestone geographic distribution, the development of endokarst in the country’s most important orogenic units is highly unequal. The main elements of a statistical synthesis was produced on 6816 caves known in 1981, which remained significant even if the number of caves exceeds 12,000 at present. More than 70% of the inventoried caves are less than 50 m long and have, thus, a reduced importance.

Almost half of the caves are located in the Southern Carpathians, which results not only from the larger sufaces represented here by limestones, but also from the density of endokarstic forms (1.92 caves / km2 for a country average of 1.52 caves/km2). If only the last parameter is taken into consideration the first place belongs to the Apuseni Mountains (2.32 caves/km2), with the leading of Bihor Mountains (4.85 caves/km2). The density is lower to 1.22 caves/km2 in the Eastern Carpathians and 0.09 caves/km2. The hierarchy of big karst regions is the same if established on the density of subterranean systems, and is of 260.6 m/km2 for the Apuseni Mountains, 155.8 m/km2 for the Southern Carpathians, 76.1 m/km2 for the Eastern Carpathians and 5.9 m/km2 for Dobrogea (Goran, 1982, 1989).

From the total of 12,000 Romanian caves, those with a particular geological, morphological, hydrological, archeological, paleontological, and biospeoleological interest are given in Fig. 2.

Twenty-four karstic springs have more than 300 l/sec. mean annual discharge; between these five have more than 1m3/sec: Cerna spring (Cerna Mts.) Q mean 1.985; Barza spring (Mehedinți Mts.) Q mean 1.755; Isvarna spring (Vâlcan Mts.) Q mean 1.571; Patrunsa spring (Vâlcan Mts.) Q mean 1.493; Vâlceaua spring (Vâlcan Mts.) Q mean 1.181. (After Orășanu & Jurkiewicz, 2010).

From evolutionary point of view, in the geological history of Romania three periods of karsification can be distinguished, in Upper Triassic, Late Cretaceous and Cenozoic, with the first two represented in the present by a covered, thus fossil, relief. The development of karst forms during the third phase depended mainly by the uplift movement characterizing the Carpathians during the end of Oligocene – beginning of Miocene (the Savian phase) and Pliocene – Lower Pleistocene (the Rhodano – Walachian phase) (Bleahu & Rusu, 1965).

III. Ecological data

III. 1 – Generalities

The life conditions in the subterranean domain are marked by variability due to the significant heterogeneity of the Romanian karst. Considered as a whole, the country surface is characterized by continental temperate climate, between the southern 11˚C isotherm and the northern 8˚C isotherm, with an annual average of 640 mm precipitations. The proximity of the Adriatic Sea to the south-west and of the Black Sea to the south-east damp the continental character of the climate in South Banat and Dobrogea. In these regions the climate has sub-mediterranean and litoral, respectively, influences with the raise of the mean temperature and the decrease of precipitations. The Mediterranean influences are felt up to the Timis and Crișul Alb corridor, which are replaced to the north by the dominant Atlantic air masses.

The caves are distributed at different altitudes (from the Peștera de la Piatra which opens at 2 m altitude in Dobrogea to the Peștera de la Varful Lespezi from Ciortea at 2424 m in the Fagaras Mountains), with, nevertheless, certain discontinuities. In fact, the statistical analysis emphasize three levels of densities for fossil caves, between 300 and 800 m (75% of cases), between 900 and 1100 m and between 1250 and 1500 m in altitude, together with the concentration of active caves between 300 and 800 m altitude. Further, is appears that the caves in the Apuseni Mountains (especially in the Bihor Mountains) are at higher altitude than those at the western side of the Southern Carpathians.

More than 70% of the caves develop in the beech forest subzone (or beech-oak), on brown, redzins and degraded redzins soils, very rich in terricole and endogean fauna.

As a consequence, the temperature has different values. The general rule of the cave temperature equals the thermic average of the annual suface temperature where the cave is located can be accepted with a 1-2˚C error and if caves with bidirectional intermitant ventilation are excluded (Racovitza, 1975). At the country scale, the mean value of the subterranean temperature is of 8˚C for a variation range of 7-8˚C. For example, at Peștera Limanu the temperature is 13.5˚C, but only 4.5-6.5˚C in the caves of the Scărișoara Plateau, in the Bihor Mountains, at 1100 m altitude.

The submediterranean climatic influence in the south-west of the country (Oltenia and Banat) and the Southern Dobrogea, which decrease from west to the east, is amplified by the presence of limestone at the surface, playing the role of thermic reservoir and influencing the subterranean temperature and fauna evolution.

Measures of solar radiation on limestones in the northern part of the Mehedinți Mountains have shown that no matter which are the adiatherm rocks, the limestones have a high capacity of adsorbtion of the radiativ solar flux (0.7-1.7 cal.cm2 min.); they have an elevated albedo (25-28%), but a low conductivity (0.0040 cal.cm.s˚C) (E. Decu, et al., 1979, 1980).

The quantity of condensation water was measured in two caves of the Cloșani area at 800 ml/m2/year; in the Scărișoara Ice Cave it reached 160 cm3/m2/48h (Decu et al., 1982; Racovitza et al., 1985).

III. 2 – Peculiar subterranean systems

Four subterranean systems offer peculiar biotic conditions:

Measurements in Cloșani area were done in two caves with different morphologies: Cloșani cave, with almost horizontal galleries, and Cioaca cu Brebenei cave, with a pronounced vertical development. A significant exponential decay of condensation water was found in both cases, with decay exponents of 0.1 m-1, for the decay over the length of the gallery at Cloșani, and 0.4 m-1, for the decay with the depth at Cioaca cu Brebenei. While correlations with air pressure and humidity were negligible, the essential influence of the outdoor climate on the cave micro-climate was found to be the temperature difference between the air and the substratum, as indicated by a significant, positive correlation coefficient of 0.6. Thus, the condensation process significantly influences the water dynamics in caves and is, in turn, strongly influenced by the heat exchange with the exterior.

The heat exchange is governed by various factors, such as the air circulation and the thermal flux through fractured limestone rocks above the cave. In absence of strong air circulation, the heat transported through the cave ceiling dominates, since the bulk thermal conductivity and caloric capacity of the fractured limestones are several order of magnitude higher than the corresponding values for air. Measurements done at Cioaca cu Brebenei cave, systematically conducted “in situ” over one year (1979-1980), completed by laboratory determination of thermal properties for rock samples, were interpreted by using a simplified mathematical model for the vertical heat transfer. The model accounts for the composite stratified structure of the limestone rock, with almost horizontal layers and vertical fractures, partially saturated with water (Decu, et al. 1982). It was found that thermal waves of one year period propagate, similarly to the measured air temperature contrast, with a delay a few months. The estimated bulk thermal capacity of 0.62 cal/cm3/˚C was a bit smaller than the mean value for compact limestones (0.66 cal/cm3/˚C) and a bit larger than that for granite (0.54 cal/cm3/˚C). The thermal conductivity of 0.0032 cal/cm/˚C was smaller than for compact rocks (0.0040 cal/cm/˚C for limestone and 0.0060 cal/cm/˚C for granite).

III. 2.1 – The Ice Cave “Ghețarul de la Scărișoara”(Aurel Perșoiu)

Scărișoara Ice Cave (700 m long, 105 m deep, 1165 m above sea level) is located in the Apuseni Mountains (Fig. 1), a massive, steep-sided mountain range in East-Central Europe, bordered by the flat lowlands of the Pannonian basin to the west, and the low-altitude plateaus of the Transylvanian Basin to the east. The entrance of the cave is positioned on the edge of the Scărișoara Plateau; a middle-altitude (~1000 m asl) karst plateau in the innermost part of the mountains, surrounded by two deeply incised valleys, Gârda Seacă and Ordâncușa. The plateau consists of alternated rounded limestone ridges and doline alignments.

The cave is carved in thickly bedded Upper-Jurassic limestones its entrance being located on the western wall of a circular shaft 60 m in diameter and 47 m deep, the bottom of which is covered by a perennial layer of snow. Beyond the entrance, the ice block, with a volume of 100.000 m3 and areal extent of 3.000 m2, forms the floor of the Great Hall, its vertical sides delimiting three distinct sectors of the cave: Church (towards NW, at the base of an 8 m ice cliff, hosting tens of permanent ice stalagmites), Little Reservation (on the northern side of the Great Hall, entered by descending a 18 m vertical cliff, along which the ice stratification is visible) and Great Reservation (the entrance is located on the southern side of the Great Hall, at the base of a 43 m descent). This section hosts the largest voids of the cave (20 x 45 m), free of ice and richly decorated with calcite speleothems. The cave ends with a ~50 m long passage, leading to the deepest (-105 m) and also the warmest section of the cave (The Coman Passage).

The climate of Scărișoara Ice Cave and the presence of the ice block within are the direct consequence of the external and underground climatic conditions, linked to the presence of a single entrance and mainly descendent passages. This peculiar morphology leads to cold air inflow inside the cave during winter months, triggered by the higher density of the cold external air masses compared to the warmer ones inside, while in summer, the same density difference prevents the exchange of air masses between the two environments.

The climate of the region is continental temperate, showing a strong influence of the westerlies. The mean annual temperature in the vicinity of the cave is ~6.5 °C, with the temperature of the coldest month (January), and warmest (July) being around -9 șC, and 8.5 șC, respectively (Perșoiu et al., 2011). The prevailingly western circulation of the air in the Apuseni Mountains causes very large precipitation amounts (over 1600 mm per year at Stâna de Vale, some 30 km to the NW) to fall on their western slopes, whereas on the eastern slopes the annual amounts are reduced by half (below 850 mm at Băișoara, ca. 35 km to the NE). In the area surrounding the cave, the mean annual precipitation varies around 1200 mm, with the highest values in spring and early summer months and the lowest values in October.

The air temperature inside the cave is 0C in the area occupied by the ice block, increasing to 4.2C towards the inner, non-glaciated parts of the cave. Within the cave, Racoviță (1984) distinguished four climatic zones: a transitional zone in the entrance shaft, a glacial zone comprising the area occupied by the ice block (Great Hall, The Church), a periglacial zone (Little and Great Reservation), and a warm climate zone in the non-glaciated parts of the cave (Coman Passage and Sânziana’s Palace). The spatial repartition of these climatic zones is reflected by the thermal pattern of the cave: while in Great Hall the mean annual temperature is around – 0.9 șC, it increases to -0.2 șC in the Great Reservation and 4.3 șC in the Coman Passage. The air temperature has the greatest variations in the glacial meroclimate. During the periods with cold air inflow in winter (extending from late October to early April), the temperature follows closely the external climate evolution and may decrease below -15 °C. During summer, when aerodynamic exchanges with the surface cease, the underground temperature is independent from external variations, being influenced only by the thermal inertia of the ice block and the overcooled walls of the cave, rarely increasing above +0.5 °C (Perșoiu et al., 2011).

As a direct consequence of the peculiar climate inside the cave, the water inside the cave freezes and layers of ice accumulate to build up a large deposit of perennial ice (fig. 2). The main sources that feed the ice are a) rainwater infiltrating through fissures in the limestone or reaching the surface of the ice through the entrance shaft and b) melt water derived from the partial thawing of the surface ice layer from the Great Hall floor and the snow accumulated at the bottom of the entrance shaft. The ice block has complex dynamics influenced by external and internal factors. Dripping water and heat transfer through convection during summer time causes melting of the upper layers of ice. The base and the sides of the ice block are also slowly melted by the geothermic heat flux. Thus the sides of the block continuously retreat, leading to the development of vertical ablation walls. In summer, the high dripping rates bring large quantities of warm water (5 to 6 șC) into the cave that determines the melting of ice. A temporary lake (10 to 15 cm in depth) develops in the Great Hall, formed by both infiltrating waters and melted ice. In early winter, the main process is the rapid freezing of the shallow lake from the Great Hall. As this lake freezes, a layer of ice up to 15 cm thick is added to the ice block, showing a typical structure for a downwards freezing pond, with large hexagonal crystals. In winter, temperatures bellow 0 °C lead to the overcooling and freezing of the walls and thus the dripping of water stops. Inflow of cold and dry air (humidity less than 85 %) leads to intensive ablation of ice, while on the overcooled walls of the Great Hall large hoarfrost deposits emerge, generated by the warm air exiting the lower parts of the cave. The growing process of the ice block slows down after autumn, taking place only in periods of mild weather, when the infiltrating water is rapidly freezing. In spring, negative temperatures are preserved in the cave, while outside, rising air temperatures and increased precipitation causes the melting of snow and the infiltration of larger amounts of water into the cave. The dripping water arrives in a cool cave environment, thus leading to a rapid accumulation of ice. When temperature in the cave rises above 0 șC the heat induced by dripping water is higher than the cooling effect of ice and melting of ice begins.

In one year, the level of ice in the cave reaches a maximum in late spring and a minimum in late summer/autumn. Measurements spanning the last 40 years show alternation of melting intervals with intervals of ice accumulation (Perșoiu and Pazdur, 2011).

The ice deposit consists of a sequence of annually laminated layers, each layer containing a couplet of clear ice and sediment strata (organic matter, calcite, soil, and pollen), visible on the lateral, ablation walls of the block (Fig. 3). During melting, more than one annual layer could be melted away, leaving a combined, thicker layer of sediments. In this case, the thickness of sediment layers could be an indicator of the “intensity” of melting (and thus of increased precipitation, higher temperatures etc). Accumulation patterns differ, forming both organic-rich and calcite-rich layers (Fig. 3). Organic, impurity-rich layers are generated by influx of material from the outside, which was washed inside the cave during heavy or prolonged rains. Calcite-rich layers form during autumn and winter, as a result of rapid CO2 degassing during water freezing. Cryogenic calcite with high δ13C values (Žák et al., 2008) is deposited on the surface of ice in the Great Hall. Periods of enhanced melting might have acted in the past, so that the annual layering of the ice is not preserved (Perșoiu & Pazdur 2011, Perșoiu et al. 2011).

Samples of organic matter from the exposed wall were radiocarbon dated (Perșoiu & Pazdur 2011), allowing for the reconstruction of past dynamics of ice and vegetation changes in the surrounding area (Feurdean et al., 2011). Out of the 22.5 m total thickness of the ice block, the upper 12 m accumulated during the last ~900 years, between the onset of the medieval Warm Period and the end of the Little Ice Age. The last ca. 60 years witnessed an rapid melting of the ice, especially between AD 1947 and 1982 and after AD 2010, possibly linked to an increase of summer precipitation, leading to enhanced ablation of the ice. Analysis of pollen trapped in the ice showed that Fagus sylvatica dominated between ca. AD 1200 and 1500 and Picea abies between ca. AD 1000 and 1200 and from AD 1550 onwards. On the same ice layers, Hillebrand-Voiculescu et al (2014) have found both prokaryotic and eukaryotic microorganisms, thriving in both organic-rich ice and clear ice layers.

The cave is rather poor in underground fauna; the only species founds so far being Nesticus racovitzai Dumitrescu, 1979, Troglohypanthes racovitzai, Dumitrescu & Georgescu, 1970. Oncopodura crassicornis, Shoebotham, 1911, Onychiurus spp., Tomocerus minor (Lubbock, 1862 and Pholeuon knirschi glaciale Jeannel, 1923, (Racoviță and Onac, 2000). The later has the largest populations, their dynamics being strictly linked to the seasonal oscillations of the underground climate. It seems that this beetle lives in Scărișoara Ice Cave at the ecological limit of its area of distribution. (Feurdean et al, 2011; Perșoiu, 2011; Persoiu & Pazdur, 2011; Pop & Ciobanu, 1950; Racovitza, E., 1927; Racovitza, Gh., 1967, 1970, 1980; Rusu et al., 1970; Șerban et al., 1948; Viehmann, 1958; Viehmann et al., 1963) (Fig. 3, A and B).

This cave was formed in Upper Jurasic limestones at the altitude of 1165 m and has a length of 700 m. Its opening is a pit 105 m long which functions as a trap of cold air which permits the conservation of a perennial ice deposit of approx. 100,000 m3 (the third in Europe; Feurdean et al., 2011) with the age of 3,500 years. The ice forms mainly in the big chamber during the winter-spring seasons. The temperature of the iced sector never exceeds 0˚C. The deeper sectors of the cave are almost deprived or completely deprived of ice stalagmites and the air temperature has positive values all the year long.

A research program on the climate evolution in Scărișoara area started in 1950 and continued in 2003, with isotopic analysis, pollen and macrofossils identification, etc. The results are published in Persoiu, 2011; Persoiu et al., 2011; Persoiu & Pazdur, 2011, Feurdean et al, 2011.

The non-iced sector has a biological community dominated by the troglobiont Leptodirine Pholeuon knirschi glaciale  Jeannel, 1923 whose population has fluctuation strictly linked to the seasonal oscilllations of the glaciated zone. It seems that this beetle lives in the Cave of Scărișoara at the ecological limit of its area of distribution (Racovitza, 1980).

Fig. 3. A – Cross section of Scărișoara ice cave with meroclimatic zones (after Rusu et al., 1970, modified);

B – The bottom of the shaft with a perennial layer of snow; C – Thermoindicatory stalagmites in the Great Reservation.

(B & C, photo I. Viehmann, in Racovitza et. al., 2003).

III. 2.2 – Adam Cave from Băile Herculane

(Carbonnel et al., 1996, 1999, 2000; Decu et al., 1974, 1976; Decu & Gheorghiu, 2007; Povara, 2012, Povara et al., 1972; Tufescu & Decu, 1977) (Figs. 4 et 5)

This cave is 168 m long and reproduces the morphology and climate traits of the tropical caves with pockets of warm air, type known from Cuba. It represents a tropical subterranean oasis in a temperate region, rare phenomenon in the European karst and of great ecological interest.

The cave is in Jurassic-Cretaceous limestones, at 295 m altitude and has two passages (Fig. 4). One of them is covered by a 2.5–3 m thick layer of bat guano and the other is filled with hot air (46-55˚C) with vapours of hydrothermal origin rich in CO2, SO2 and radon, with a pocket of warm air at 28-30˚C in the first passage. Its topoclimate is also influenced by a big colony of Chiroptera, dominated by Rhinolophus euryale Blasius, 1853.

The emanation of warm air consists of pulsations and can be interrupted for variable time intervals by abundant precipitations that fill the passages which are the source of vapours.

On the ceiling of the “Vapour Passage” a biofilm of crusts and gelatinous stalactites of microbial origin was developed.

The biological community has a guanophilous thermophile component with fauna groups largely distributed in tropical region caves (such as Uropodidae, Cryptopidae or Histeridae). The community is dominatd by two thermophilous, saprophagous and guanophagous Uropodidae mites that represent 99.4% (mean) of the cave subterranean population: Chiropturopoda cavernicola, Hutzu, 1997, troglobiont, endemic and relictual, related to C. coprophila Sellnick, 1958:  of South Africa with an abundance of 97.6%, and Trichouropoda orbicularis (C.L. Koch, 1839);  (2.4%).

The abundance of other codominant taxa is 0.6% and the index of diversity is, by consequence, very reduced, of 0.443 bits.

Fig. 4. Peștera lui Adam (Adam Cave), plan (After Povara, Diaconu & Goran, 1972; Povara, 2012; modified).

Fig. 5. Organisation of the bat guano biocenosis in the temperate zone; generating factors. A: Peștera lui Adam, a thermal cave of “tropical type”; B: a non-thermal cave of “temperate type”. (After Decu & Tufescu, 1976; Decu, et al. 2003; modified).

During winter, October/November – April/May, in the absence of bats, the abundance of C. cavernicola declines to 78% and of T. orbicularis increases to 21%.

The thermalism and bats colony are the base of the development of the “second” community, very simplified (limit situation for the 2nd principle of Thienemann (1925), which replaces the initial (primary) community and has the features similar of guano communities in temperate caves of the region (8-9˚C), non-influenced by the hydrothermalism. Components of the primary community are represented in the cave, among others, by two troglobionts with larger distribution in the subterranean domain of the region (Trichoniscus inferus and Nesticus cernensis), that find refuge at the base of the entrance pit where the temperature is lower and guano is mixed with clay and organic debris.

It is important to emphasize that the installment of a new biological community in the cave sustains the hypothesis that Peștera lui Adam has been formed by water flow and thermalism manifested subsequently, maybe at the end of Pleistocene-beginning of Holocene (Carbonnel et al., 1996; Povara, 2012).

Two radiocarbon datings of guano (the first dated in Europe, 1996), sampled at 2.5 m depth, fixed the onset of the guano deposition at 7600+80 years BP (14C ka). The bats colony installed in Boreal (temperate warm and dry climate), in the same time as Chiropturopoda cavernicola. For this last species, the temperate humid and fresh climate of the Sub-Atlantic period, at 2.5 ka, has probably forced the isolation inside the cave.

Also the age of the pollen sampled at 1,65 m depth, correspond to time scale of Adam guano deposit (~4500 years BP) (Carbonnel et al., 1999; Farkas et al., 2000-2001).

The natural and artificial radioelements 222Rn and 137Cs in the guano passage had high values, between 1754 and 5514 Bq/m3 (the value outside the cave was 42 Bq/m3) and 267 Bq/kg-1, respectively in dry guano. The value of radon is proving that the region is still submitted to important tectonic constraints.

Values ​​of 137Cs in the guano from other 10 caves in Banat and Oltenia differs depending on diet of bats; between 90-295 Bq/kg-1 for species of Myotis genus and 18-48 Bq/kg-1 for Rhinolophus (Carbonnel et al., 2000).

The big quantities of guano in Peștera lui Adam and in other caves, influenced or not by hydrothermal emanations, represent not only important tropical features, but also true subterranean archives for climatic, zoological, noxologic, palynologic, paleontologic and seismologic informations accumulated in thousands of years. For example, the limestone debris accumulated at different depths in the guano deposit attest periods of strong seismicity at 4300 years BC and between 2000 and 3000 years BC (see Carbonnel et al.1999.

III. 2.3 – The mesoshallow subterranean substratum (Le Milieu Souterrain Superficial, M.S.S.)

(Decu et al., 1991, 2004-2005; Giurginca, 2009; Giurginca et al., 2000, 2003, 2009; Gruia, 2000; Gruia et al., 2000-2001; Ilie, 2007; Ilie et al., 2002; Juberthie et al., 1981; Nae, 2010; Negrea et al, 2004; Nitzu, 2001; Nitzu et al., 2002-2003, 2007, 2010, 2011; Racoviță, 1983, 1984; Racoviță et al., 1981, 1982) (Fig. 6)

It was studied for the first time in Romania, in 1981, by Juberthie, Delay, Decu & Racovitza on the slopes of several valleys of the Southern Carpathians and the Apuseni Mountains. Both M.S.S. types described from the Pyrenees (Fig. 6) were found in Romania and named by Decu & Racovitza (1983, 1991) colluvic (from the Latin colluvium) and cleithric (from the Greek kleithria). Typical subterranean invertebrates were discovered there, including Leptodirinae and Trechinae beetles, Trichoniscidae and Mesoniscidae Isopoda, and Linyphiidae Araneae.

In 1982, Juberthie, Decu & Suciu and after Racovitza have conducted studies in the valleys of Garda and Ordancusa (Apuseni Mountains), where they collected, apart from tens of representatives of Duvalius, Drimeotus and Mesoniscus, also individuals of the cave inhabitant Pholeuon knirschi proserpinae (Racovitza, 1984).

Fig. 6. A: M.S.S. of cleitric or fractured type is a M.S.S. developed into superficial (epikarstic) cracks of the karstifiable rocks covered by soil; B: M.S.S. of colluvial type is composed of a network of small voids developed in a detrital material of different origins (scree): it is developed at the bottom of the versants of valley through the action of the gravitation and the water. (See also "Introduction" of this tome).

In 1982 Racovitza & Șerban studied both composition and seasonal variation of subterranean representatives (Drimeotus, Duvalius and Mesoniscus) in four M.S.S. stations of Iadei and Lesului valleys and from Peștera din Valea Lesului (Apuseni Mountains).

Between 1998 and 2001, Decu, Georgescu, Iavorschi & Gheorghiu made drillings ​​in calcareous and non- calcareous colluvial deposits from the Southern-Western Carpathians: valleys of Cerna, Tismana and Motru at Băile Herculane, Baia de Arama and Cloșani localities, and Tismana monastery. Among them, only the traps with biospeological significance for the M.S.S. were selected, where colluvicol troglobionts have been found among others: Mehadiella paveli, Sophrochaeta globosa, S. mihoki, Sophrochaeta sp., Duvalius hegedusi, and other characteristic species with colluvicol and cave populations: Trichoniscus inferus, Mesoniscus graniger, Troglohyphantes herculanus, Sophrochaeta insignis, that were also collected in 1981. The most abundant species in these stations were the Leptodirinae Coleoptera. Excepting T. inferus and T. herculanus that have eyes, all other taxa are eyeless.

In 1994, two drills of 22 and 25 m in depth were made by the Institute of Geological Survey of Bucharest, at the request of V. Decu, near the artificial opening of the Movile Cave from where cleithricol fauna was collected up in the year 2000 (see Chap. III.2.4.).

For ten years (1998-2008), Nitzu, Giurginca, Ilie, Nae & Popa have done dozens of boreholes in five karst areas of South Dobrogea and the Carpathians (Varghisului Gorges, Motru Mare basin, Banat and Piatra Craiului Mts.) for the identification of M.S.S. stations. They collected and identified over 400 invertebrates, mostly carabids and staphylinids. Almost all are terricolous (sensu Paulian, 1988) and endogeous and were analyzed from diversity, zoogeographical (about 70% have European distribution and ~ 50% Palaearctic] and ecological (frequency and abundance) perspectives (Nitzu et al., 2010, 2011). They also proposed a list of about eight species (besides those mentioned by us above and others listed in Table III) as characteristic for the Carpathoeuxinic M.S.S.: Carabidae: Laemostenus euxinicus Nitzu and Platynus glacialis Reitter; Cholevidae: Catops subfuscus Kellner and Catops tristis (Panzer); Endomychidae: Hylaia rubricollis (Germar) and Mycetaea subterranea (F.); Bothrideridae: Anommatus oltenicus Nitzu; Arrhopalitidae: Pygmarrhopalites ornatus (Stach). It remains to be seen from chorological and morphological point of views whether any of these species can be assigned to the troglobiont colluvicol or troglobiont cleithricol status.

A few notes:

1. In 1994 Juberthie and Decu developed an exhaustive definition of the underground environment, taking into account all of the new acquired data:

“Any cavity whatever its size (natural and artificial cavity, lava tunnel, network of cracks and drains, micro-spaces of scree from slopes of valleys or cliffs, interstitial type fillings and volcanic flows), is a potential habitat for underground terrestrial, fresh water or marine species, if it contains food resources and short trophic chains with dominant detritivores, and the characteristics of the underground climate: absence of light, annual amplitude of moderate temperature and relative humidity close to saturation for its terrestrial”.

It was considered that Biospeology (Biospeleology, Speleobiology) studies terrestrial subterranean habitats and Stygobiology groundwater habitats. These are the two biological branches of Subterranean Biology.

According to the above mentioned definition, the cave is only part of the underground ecosystem, which consists of voids and natural or artificial passages accesible for humans, and the M.S.S., colluvic or cleithric covered with soil and vegetation, is another part of the extensive subterranean ecosystem.

The ecological status of the characteristic cave fauna is the troglobitic fauna (troglobiont). In 1982, Juberthie, Delay & Bouillon proposed that the characteristic fauna of the M.S.S. can be also considered troglobitic from the ecological point of view. In fact, they suggested that troglobite (troglobiont) is the general term for the fauna characteristic of voids and natural and artificial passages and the M.S.S. We adopted this proposal and used it in all the volumes of "Encyclopaedia Biospeologica" and in all the published papers.

2. For the names of physical and biotic components of different categories of M.S.S., Decu & Racovitza in 1983, and then Decu, Racovitza & Váczy in 1991, proposed and adopted terms using the endings -al / -ic, and -colous (-al and -on were proposed by Steffan in 1965);

– the habitat : colluvial (colluvic) and cleithral (cleithric);

– for the community: colluvion and cleithron;

-for the organism or community in M.S.S.: colluvicolous and cleithricolous (lat. culluvium / gr. kleithria + lat. colo -ere).

This nomenclature is used at present by us and other Romanian biospeologists in papers on the MSS.

– For a species (or fauna) characteristic of M.S.S. we proposed and adopted (Decu et al., 2004-2005) colluvic troglobiont (=colluviotroglobiont) and cleithric troglobiont (=cleithrotroglobiont). To avoid incorrect expresions, such as “troglobiont cave species (fauna)” we added two other terms, colluviobiont and cleithrobiont having the same meaning. In this case, the ecological status of characteristic animals for subterranean terrestrial habitats would be: troglobiont for natural caves and passages and nearby voids; colluviobiont for the colluvial M.S.S.; cleithrobiont for the cleithral M.S.S. (network of voids in the epikarstic zone); and fodinobiont for artificial subterranean passages and the nearby voids.

3. The characteristic fauna of the M.S.S. belongs, mainly, to the same major taxa present in caves: the Leptodirinae (Cholevidae), Trechinae (Carabidae), Trichoniscidae and Mesoniscidae (Isopoda) and Linyphiidae (Araneae), in the Carpathians (especially south-west from the Olt valley and Western Carpathians) and Staphylinidae and Carabidae Coleoptera, Trichoniscidae and other families of Isopoda, and Linyphiidae and other families of Araneae, in South Dobrogea.

These major taxa have several species with populations in the M.S.S. or both in M.S.S. and caves.

4. Typical localities for the M.S.S. are mainly in the same regions with troglobionts [Southern Carpathians west from the Olt valley, the Western Carpathians (Banat and Apuseni Mts.) and South Dobrogea] and at same altitudes: 300-750 m (Southern Carpathians) , 300-1300 m (Apuseni Mountains) and from 50 to 3.5 m (Central and Southern Dobrogea).

These last two points (3 and 4) explain: – the close historical relationship between the two habitats (caves and M.S.S.), – the presence of large number of cave species in the M.S.S. (including cleithric) with seasonal variations of individuals abundance, – and that the M.S.S. represents one of the main ways of colonizing the passages and subterranean voids.

5. The M.S.S. is an ecotone populated by a mixture of troglobionts with soil-dwelling species. As a zone of interaction and exchange between two environments, the M.S.S. is one of the most complex and important zones of the globe, but difficult to identify and analyze. The M.S.S. and the hyporheic zone have discontinuous, fragmentary distribution connected or not with the subterranean voids. This means that the M.S.S. does not match all scree deposits or networks of voids in rocks; it is only the scree stations or networks of voids with optimal physical and biotic components, whith one or more species whose characteristics match the chorologic, historical, morphological, ecological and physiological troglobite criteriums (see Ginet & Decu 1977; Matile, 1994).

6. Studies conducted in stabilized scree (usually Pleistocene in age) or non- stabilized scree reach the depth of 40-100 cm. In the case of cleithric M.S.S. (which practically corresponds to the epikarstic zone) (see Decu et al., 2004-2005), the depths can reach a few meters or more (about 12-14 m), as in the case of the upper Sarmatian limestones in Dobrogea, very friable and highly porous.

The best results of investigations in M.S.S. stations were obtained in limestone, shale and granite, in the spring or autumn, after periods of heavy rainfall that promote the rise of colluviobiont or cleithrobiont species from the deeper voids or microspaces.

III. 2.4 – The hyporheic zone (Sanda Iepure)

The earliest contributions to research on interstitial aquatic fauna from the hyporheic zone in Romania were made by Pierre Alfred Chappuis. Chappuis was a Swiss professor of hydrobiology and speleology, who specialized in the systematics of groundwater crustaceans in the groups Copepoda and Syncarida. He was brought into Romania by Emil Racoviță in 1922 at the newly established Institute of Speleology in Cluj, where he performed extensive research on groundwater fauna from caves and interstitial sediments of streams and rivers.

Chappuis's first pioneering study on interstitial aquatic fauna dates back to the 1920. Stanko Karaman, a Macedonian naturalist, sent him material collected from the interstitial water filling the sediments deposited along streams and rivers. Karaman used a very simple method (nowadays bearing the name Karaman–Chappuis) to collect this interstitial fauna, whereby a hole is drilled into the gravel bank of a stream or river, water is allowed to accumulate in the bottom of the hole and then the water is filtered to separate out the organisms in it (Karaman, 1935). Analysing the material sent by Karaman, Chappuis discovered that the fauna comprised a mixture of typical epigean species usually found in benthic river layers, but also species with certain adaptations to groundwater. Chappuis was fascinated by these later species that, at a closer view, showed distinctive morphology with those he had previously collected from caves (Chappuis, 1939, 1942a).

With the discovery of this new habitat for the subterranean aquatic fauna that he termed the “subsurface stream under the epigean stream”, Chappuis embarked on an outstanding, extensive exploration of riverbank sediments of stream and rivers in Romania that lasted for more than 20 years (from 1922 to 1949). His early studies performed in streams and rivers from Transylvania were primarily focused on the taxonomic aspects of the subterranean fauna (Chappuis, 1927, 1939, 1943a,b, 1944, 1946). Chappuis described several new species of Bathynella (Syncarida) and Elaphoidella (Harpacticoida Copepoda) from the interstitial sediments of the Crișul Repede Valley in Transylvania. The most remarkable discoveries were the protozoan Tokophrya bathynellae (Chappuis, 1947) and two ancient isopods showing primitive characters, Stygasellus phreaticus and Microcharon acherontis (a marine originated species) (Chappuis, 1942b, 1948; Chappuis and Delamare-Debouteville, 1958). These early attempts into the research of interstitial sediment fauna provided the first empirical observations on the distribution of subterranean species, which appear to live not only in deep aquifers, but also in sediments close to surface waters together with epigean species (Chappuis, 1942).

Chappuis worked at the Institute of Speleology in Cluj until 1949 (as a researcher and sub-director). After the ending of World War II, Chappuis moved to France and became sub-director of a new underground laboratory established in Moulis, Ariege (in 1957). The departure of Chappuis at the same time as the closure of the Institute of Speleology in Cluj (and its move to Timisoara) brought to a halt for several years the research on the subterranean domain in Romania.

The exploration of the hyporheic zone fauna was revitalized after the reopening of the Institute of Speleology on 21 June 1956 by Constantin Motaș (who led the institute until 1964). Motaș was one of the most remarkable Romanian limnologists, his research building on the legacy of the investigations initiated by Emil Racoviță on the subterranean realm. Motaș had a wide range of scientific interest from zoology and ecology to hydrobiology and was a specialist in Hydracarina (Motaș and Șerban, 1961; Motaș and Botea, 1961, 1962; Motaș et al., 1962). He described more than 100 Hydracarina species from interstitial sediments of streams and rivers in Romania, of which at least 63 are hyporheobitic (characteristic of the hyporheic environment), i.e. Kawamuracarus, Wandesia, Konsbergia, Atractides, Chappuisides, Mideopsis and Bogatia (Motaș and Tanasachi, 1946, 1962a; Motaș and Șerban, 1965; Motaș et al., 1947, 1957, 1958; Motaș, Botoșăneanu and Negrea, 1962). His most remarkable contribution to the development of studies into interstitial and groundwater fauna in Romania was the foundation of phreatobiology as a science (Motaș, 1958; 1962a,b, 1963). Motaș described phreatobiology as the branch of limnology relating to the study of the systematics, ecology and biogeography of organisms living in the upper part of the phreatic and parafluvial nappes.

Traian Orghidan was a student of Motaș and the third prominent Romanian scientist to make a remarkable contribution to the advance of research on this transitional ecotone zone in surface and groundwater. As a disciple of Motaș, Orghidan was a specialist in the taxonomy and systematics of Hydracarina. Orghidan performed the most intensive explorations of interstitial sediments from streams and rivers across Romania, making remarkable discoveries of new aquatic groups previously not found by Chappuis (Orghidan et al., 1979). He discovered 10 new genera and 80 new species of invertebrates, the large majority being represented by crustaceans, insects and water mites. Of these, he described six new genera and 28 new species of Hydracarina – more than half the number found by Chappuis up to 1942. Together with Jana Tanasache (also a student of Motaș), Orghidan described a new species of Hydracarina from Hunedoara and named it after his mentor, Phreatohydracarus mosticus (Tanasache and Orghidan, 1955).

With Orghidan, there commenced a new period of exploration and investigation of the aquatic fauna inhabiting the interstitial sediments in Romania. The research approach shifted from initial descriptive aspects to more ecological perspectives. Orghidan was the first to emphasize that the interstitial sediments of streams and rivers form a unique biotope with physico-chemical conditions that are distinct from those adjacent to surface and ground waters (Orghidan, 1953, 1955, 1959). He recognized several aspects related to the ecology and hydrological functioning of the hyporheic zone and its implications for river ecosystems. Orghidan found evidence that the interstitial communities comprise a mixture of stygobiont and benthic species, heterogeneously distributed at a spatial scale, as previously perceived by Chappuis as well. Orghidan also remarked that the diversity, distribution and spatial and temporal heterogeneity of the hyporheic fauna is considerably influenced by both water and sediment characteristics (i.e. physico-chemical parameters, sediment pore volume, temperature variations, detritus presence) as well as biotic interactions among distinct groups of organisms (abundance of bacteria), this also indicating the active influence of surface/groundwater exchanges in hyporheic biota movements.

Orghidan was the first to introduce the term hyporheic and named the permanent inhabitants of this river compartment hyporheos, from the combination of Greek root words, hypo (bellow) and rheos (flow) (Orghidan, 1953). He published, in 1955, the first comprehensive description of the hyporheic zone as a habitat formed by the interstitial sediments accompanying the streams and rivers. In this article, Orghidan established several terms to define the distinct types of interstitial water existing in mobile sediments; however, not all researchers agreed and followed his nomenclature (translated to English by Kaser, 2010). Orghidan recognized several types of interstitial waters underground, and he included not only those accompanying the surface streams and rivers but also the interstitial waters of subterranean rivers from caves: 1) interstitial waters accompanying the flowing waters from streams and rivers, now known as hyporheic waters s. str. (Orghidan, 1953, 1955, 1959); 2) hyporheic waters from caves, these being interstitial waters accompanying the subterranean courses, named troglorhitrostygal (gr. trogle = cave, rhithron = that flows); 3) interstitial waters from sediments on the bank and from stagnant freshwater, known under distinct names, i.e. limnostygal (gr. limne = lake, pool), hygropsammon (gr. hydros = wet, psammos = sand), eupsamon (gr. eu = good), limnopsammal (gr. limne = lake, pool) etc.; 4) interstitial waters from sand and gravel artificial filters for extracting drinking water (now known as parafluvial hyporheic); 5) interstitial waters of sea beaches, known as thalassopsammal (gr. thalassa = sea), a term created by Remane (1951) for the sea sediments located between the surface (epipsamal) and profundal sediments (endopsammal); 6) interstitial waters from sea sublittoral, which are permanently submerged; 7) interstitial waters from sediments of the banks of salty and brackish lakes (still poorly studied to date); 8) waters trickling from colluvial and eluvial “nappes”, including what it is now known as epikarst waters (synonyms for this term including pedostygal (gr. pedon = soil) and hypotehlminorheic (gr. hypo = under, thelminos = mud, rheo = flow) described later on by Mestrov (1962); 9) groundwater from anthropic installations, for exampledrinking water from pipes, tanks and reservoirs, coming mainly from phreatic sources; and 10) springs,including limnocrene, rheocrene and helocrene springs supplied by karstic aquifers and thermomineral springs.

The article by Orghidan on the hyporheic zone had a great international impact. August Thienemann, the famous German limnologist, accepted the Orghidan view on the hyporheic zone, a term adopted later by Schwoerbel (1961) and Ruffo (1961). However, Orghidan’s mentor, Motaș, did not agree with the Orghidan view and in 1962 he published a critical article about the hyporheic zone in which he argued that this zone is part of the phreatic nappe and should be considered accordingly (Motaș, 1962). The two divergent opinions on the hyporheic zone contributed to a division of the researchers from Bucharest into two groups, one following the Motaș view and another group following Orghidan.

Knowledge of the hyporheic zone fauna in Romania was also advanced by taxonomists, former students and collaborators of Chappuis, Motaș and Orghidan. In Bucharest, a large group of researchers dedicated their work to the study of the taxonomy and systematics of various aquatic groups present in the hyporheic zone.

Francisc Botea, a specialist in Oligochaeta, performed investigations in the hyporheic zone of Prahova and Doftana Valleys (southern Romania) and in Crișul Repede Valley (Transylvania) (Botea, 1973b). Botea described several stygophile species from interstitial sediments, among them Fridericiastriata and Dendrobaenarubia (Botea, 1966, 1969, 1973a, 1975, 1979; Botea and Pleșa, 1968).

Eugen Șerban was a specialist in Amphipoda, Isopoda Microparasellidae and Podophalocarida: Bathynellacea (Șerban, 1963). Șerban described several new species of Bathynellacea, among them Bathynellaparanatans from Crișul Repede Valley (collected by Dancău) and B. boteai from Drăgan Valley, both in Transylvania, B. motrensis from Motru River in southern Romania (Șerban, 1971, 1975, 1976) and Parabathynella motași Dancau, Serban, 1963, from the interstitial river sediments in front of Izverna Cave (Dancău and Șerban, 1963). He also described two endemic isopods, Microcharon motași from Nera basin (Banat) and M. oltenicus from the interstitial sediments of Motru Mare River (Oltenia) (Șerban, 1964).

Iosif Capușe explored the hyporheic zone of Bela Reca Valley (Banat) with Motaș and the Danube River and the Iron Gates with Orghidan and Dancău (Căpușe, 1965; Orghidan et al., 1979). Dan Dancău was a researcher and co-director of the Institute of Speleology in Bucharest. Dancău was a specialist in Amphipoda and described new species of Niphargopsis and Bogidiella skopljensis from the hyporheic zone of Olt and Cerna Valleys in Oltenia and Banat, Bogidiella albertigmani from the hyporheic zone of Cerna Valley, and several Niphargus species based on the material provided by Orghidan from Sighiștel Valley in Transylvania (Dancău, 1964, 1970, 1971, 1972; Dancău and Șerban,1965). Dan Danielopol, a specialist in Ostracoda, described new species of Mixtacandona and Pseudocandona from rivers in southern Romania (Danielopol and Cvetkov, 1979; Danielopol, 1982), two ostracod species from the hyporheic zone of Motru (Mehedinți Plateau), Kovalevskiella phreaticola from Bogata and Misid Valleys (in the Apuseni), and Darwinula boteai from the hyporheic of Mraconia River in Banat (Danielopol, 1970a, b). Danielopol left Romania in 1972, but he represents one of the leading researchers of hyporheic zone ecology, significantly contributing to the advances in knowledge of this ecotone area in surface and groundwater.

Lazar Botoșăneanu, the famous zoologist and specialist in the systematics, biogeography and ecology of Trichoptera and the author of the book Stygofauna Mundi (published in 1986), performed a few hyporheic surveys in streams and rivers in Banat, while he was working at the Institute of Speleology in Bucharest.

The impressive material collected from the hyporheic zone by the above researchers was later on described by several taxonomists from Bucharest. Among them we mention Doina Zincenco, 1971 (Copepoda), Sergiu Carausu, Ecaterina Dobreanu and Constantin Manolache (Amphipoda), and Stefan Negrea (Cladocera). Radu Codreanu worked on hyporheic Planaria in collaboration with Doina Balcescu (Codreanu and Bălcescu, 1970), and on Isopoda Asselidae using the material collected by Eugen Șerban and Dan Dancău.

In Cluj, the departure of Chappuis to France (in 1949) left the institute team with only one specialist working on subterranean aquatic fauna, Mihai Șerban. Joining Șerban in 1956 were Corneliu Pleșa and Dan Coman. Șerban was the only researcher from the time of Emil Racoviță. He was a specialist in Copepoda Harpacticoida, being a student and collaborator of Chappuis. Șerban collaborated with Chappuis on the study of the sand interstitial fauna of the Black Sea, describing several new species of Harpacticoida, i.e. Pontocyclops bacescui, Parastenocaris chappuisi and Paramesochra pontica (Șerban 1953, 1956, 1968).

Dan Coman, a specialist in Nematoda Mermitidae, was first an assistant in the Faculty of Biology at the Babes-Bolyai University and then moved to the Institute of Speleology, Cluj branch. Coman’s findings in the hyporheic zone pointed to several unique species, such as the hyporheophilic species Discomermis motași discovered in streams from Banat (Coman, 1961).

Corneliu Pleșa, a specialist in Copepoda Cyclopoida and Harpacticoida, was one of the most prolific researchers on hyporheic zone fauna at the Institute of Speleology, Cluj branch. In 1954, Pleșa worked as a research assistant at the Institute of Speleology (at that time under the auspices of the Babes-Bolyai University) and, in 1956, became scientific researcher at the newly established branch of the institute at Cluj. Pleșa performed extensive studies on the fauna of interstitial sediments in streams and rivers (usually adopting the term psammal instead of hyporheic) especially in north-western Romania, but he also participated in research campaigns in the south (Banat, Dobrogea and the Mehedinți Plateau) organized by colleagues from Bucharest (Pleșa et al., 1964; Pleșa,1995; Pleșa and Chintăuan-Mihuț, 1996; Pleșa et al., 1999; Pleșa and Buzila, 2000). One of his most outstanding explorations was the investigation of the fauna from the subterranean watercourse in Vadu Crișului Cave, Apuseni Mountains (Fig. 1d). Although, not a real hyporheic zone, his study of the subterranean aquatic fauna from subterranean water courses was considered ground-breaking at the time (Pleșa, 1996). Pleșa published a comprehensive article on the ecology of a new member of the Microcerberidae discovered by Chappuis and Delamare-Debouteville (1958) at Vadu Crișului, Microcerberus pleșai. He also worked on the aquatic fauna from sandy sediments of the Black Sea, describing three cyclopoid species of marine origin, i.e. Halicyclops brevispinosus psammophilus, Neocyclops affinis and Halicyclops (H.) gauldi (Pleșa, 1959, 1961). Occasionally, he worked on Isopoda Microcerberidae and Archiannelida, providing new data on ecology and distribution of Troglochaetus beranecki Delachaux, 1921 collected from Crișul Repede Valley (Pleșa, 1977).

After 1990 the research on hyporheic zone fauna in Romania turned from the traditional faunistic and taxonomic perspectives, to a more modern ecological approach. At the beginning of 2000, a group of young researchers joined the Institute of Speleology, Cluj branch. They were specialized in distinct aquatic groups, i.e. S. Iepure (Ostracoda, Cyclopoida), T. Brad (Amphipoda), I. Meleg (Harpacticoida). Sporadic research on the hyporheic zone was also performed in the 1990 by Claudiu Tudorancea, professor at the Faculty of Biology, Babes-Bolyai University in Cluj. New species of ostracods were described from the hyporheic zone of Apuseni Mountain streams (T. eremitas) and the Transylvanian Plain (Pseudocandona serfozoi) (Iepure et al., 2007, 2008; Gido, 2010). The latest studies also provide new faunistic and biogeographic information on the distribution of species previously known only from springs and caves, such as Bryocampthus and Elaphoidella found in the interstitial waters of surface rivers in the Apuseni Mountains (Meleg et al., 2009), and Acanthocyclops kieferi found in interstitial sediments of surface and subterranean cave rivers from the Apuseni (Iepure, 2007). For several species of Niphargus, the research enlarged the spatial distribution at regional and country level (Brad, 1999). Aspects related to hyporheic zone ecology and human impacts on hyporheic biota have recently been approached by S. Iepure (Iepure and Selescu, 2009) and O. Moldovan (Moldovan et al., 2002, 2005, 2011, 2013; Moldovan and Levei, 2015). These studies have increased knowledge of the distribution and structural pattern of hyporheic communities at a small scale and have revealed the impacts of heavy-metal river pollution (in a mining polluted river in north-western Romania) on hyporheic biota.

Currently, the hyporheic zone and it’s fauna is still being explored in Romania from new and modern perspectives. The article of Orghidan was a source of inspiration for the latest generations of Romanian biologists working on the hyporheic zone that have subsequently made considerable progress in understanding the functional role of this river compartment situated at the interface between surface and groundwater. Hyporheic zone ecology is now a well-recognized area of research and represents a ground-breaking approach in the ecological study of river ecosystems, thanks to the pioneering works of Chappuis, Motaș and Orghidan.

A

B

C

Figure 7.A, B – Permeable valley floor; hyporheic water comes both from the stream and the phreatic groundwater; C – Impermeable valley floor (s – excavation site). Hyporheic water comes only from the stream (original drawings of the hyporheic zone from Orghidan, 1955); D – Corneliu Pleșa sampling the interstitial sediments of the subterranean river in the Vadu Crișului Cave (northwestern Romania).

III. 2.5 – The Movile Cave chemoautotrophically based underground ecosystem.

(Șerban Sârbu, Cristian Lascu)

(Bernasconi, 1991; Boghean, 1989; Boghean & Racovitza, 1989; Condé, 1993, 1996; Constantinescu, 1989, 1995, 2002-2003; Curcic et al., 1993; Decu et al., , b; Decu & Juberthie, 1994; Diaconu, 2002-2003; Feru & Capota, 1991; Farkas et al., 2005; Georgescu, 1989, 1994; Georgescu et al., 1992, 1994; Giurginca et al., 2009; Grossu & Negrea, 1989; Gruia, 1989; Gruia et al., 1994, 1996; Gruia & Giurginca, 1998; Gruia & Popa, 2005; Iavorschi, 1992; Ivan & Vasiliu, 2010; Karaman & Sârbu, 1993, 1995; Lascu, 2003, Lascu et al., 1994, 1995, 2000; Manoleli et al., 1998; Marin & Nicolescu, 1993; Negoescu, 1989; Negrea 1993; Nitzu, 1997, 2000, 2001; Nitzu & Decu, 1998; Pleșa, 1989; Poggi, 1994, 2013; Poinar & Sârbu, 1994; Brad et al., 2015; Gido, 2010; Moldovan et al., 2015; Nae, 2013 ; Sârbu & Kane, 1995; Sârbu & Popa, 1992; Sârbu et al., 1991, 1994, 1995, 1996, 2000 (important general view); Știucă & Ilinca, 1995; Tabacaru & Boghean, 1989; Turk et al., 1996; Weiss & Sârbu, 1994, 1996) (fig. 7-10; table. i-iii).

The ecosystem is located one km from the city of Mangalia and three km west from the shore of the Black Sea and belongs to the South Dobrogean Plateau and littoral zone of Dobrogea (Figs. 7 and 8). Its physical features include the large sinkholes (named "Obane") and the small sinkholes, as well as the impenetrable voids and passages and caves (fossil or active), with more than 40 troglobiont and stygobiont species in different stages of troglobitization, of thermophily and thiophily.

Fig. 8. Movile cave: location in southern Dobrogea.

The karst is of "Movile type" with some peculiarities: the presence of the Sarmatian lumachellic and oolithic limestone, ascending mesothermal sulfidic waters, the position of the plateau very close to the Black Sea, the dry climate (Constantinescu, 1995, 2000-2003). The limestone in which the exo-and endokarst developed are of Sarmatian age and its thickness is about 100 m; below it there are 400 m thick Eocene, Cretaceous and Jurassic limestones.

The large sinkholes exceeding 250/300 m in surface are: Obanul Mare, Obanul Mic and Obanul Blebea. These depressions are at present in different stages of filling. Three evolutionary stages were distinguished by Constantinescu, 2000: lake, swamp and dry ‘Oban’.

The Obanul Mare (the Great Sinkhole ) is in the last stage, with 400/300 m wide and 10-14 m depth , the thickness of the loess and clay filling is of about 70 m. During storms rainfall water is quickly lost in the voids at the NE limestone base of the Oban.

The Obanul Mic (the Little Sinkhole) (250/200 sqm surface and 7 -10 m deep) is in the stage of swamp – lake, fed by a small permanent water source. The thickness of the filling exceeds 40 m.

The Obanul Blebea (600/450m surface and 12 – 16 m deep) is in the stage of lake-swamp being fed by mesothermal springs.

Small sinkholes (5 – 30 m and 3 – 10 m deep) which are found in large numbers on the edge of Obane alternating with conical limestone hills (10 – 40 m and 3 – 8m) height also represent collapse depressions, negative exokarst, epikarst components, which reveal the existence of caves deep underground with which they communicate through more or less open voids.

Sediments that accumulate on the bottom of these sinkholes representing a 2 – 3 m layer of loess, clay and limestone pebbles are wet and rich in organic matter; herbaceous and shrubby vegetation (with Paliurus spina-christi and Crataegus monogyna, xerophile, thermophile and calciphile elements) and a rich endogean fauna developed here. Sinkholes are among the main areas of pre-adaptation of animals lineages that can adapt subsequently in subterranean habitats and significant colonization ways for colonization of hypogean habitats. It is also possible that many of these small sinkholes represent cleithric M.S.S. with typical or common fauna.

In two of these sinkholes V. Decu managed to drill, in October 1994, together with the Institute of Geological Prospections, two boreholes with a diameter of 13 cm, and 22 m and 24 m of depth, located at ~40 m N and ~10 m S of the artificial shaft opening in the cave, in order to collect fauna from the limestone microspaces (Figs. 8A, 1 and 2). At the base of the boreholes, there is water with ~22oC temperature, variable level and air temperature ~21oC. Warm (21oC) sulfidic water was found at the bottom of the boreholes. In both wells, perforated plastic pipes (ᴓ 11 cm) were inserted and the space between the tubes and the holes were filled with limestone fragments. Attractant traps filled with saturated solution of NaCl or ethyleneglycol solution were suspended along the tubes at every 3 meters and fauna collected monthly for six years (1995-2000).

To collect fauna in limestone microspaces perforated plastic tubes (20 cm long and 6 cm in diameter) were placed in the access shaft wall with wet moss inside. The endokarst ecosystem is the network of passages and fossil or active caves of the Movile system. This is the first cave in the world where we discovered and demonstrated the functioning of the subterranean biological community based on chemoautotrophy sulfur-oxidizing bacteria (Thiobacillus, Beggiatoa, etc) as well as methanotrophs and nitrifiers fix carbon underground, independently of the photoautotrophic carbon fixation by green plants at the surface of the ground. This is the first known example of a subterranean community based on in situ primary production by bacterial chemosynthesis, in the absence of photosynthesis, similar to oceanic hydrothermal vents. There are differences between the vents and Movile system. The vents are exclusively aquatic while the system in Movile has aquatic and terrestrial components: the bacterial mat, the interface between thermal water and the air in the air-bells allows the survival of both types of animal communities. Then, the biomass is considerable around the vents thanks to endosymbiotic bacteria present in most animals of the community, while it is low in Movile Cave where animals lack such bacteria.

Also, marine species have developed mechanisms for detoxification and oxygen transport that have not yet been detected in Movile Cave species. Finally, the system of Movile Cave is recent (at least Sarmatian) compared to that of vents related to the general phenomenon of oceanic ridges (Decu & Juberthie, 1994).Since the discovery of Movile Cave, of special interest, other caves of this type have been discovered, particularly in Italy near Ancona (the Grotta di Frasassi and Aquasanta Terme), Israel (Ayyalon cave), the Mexico (Cueva del Azufre), the USA (Cesspool and Parker caves), etc.

Fig. 9. A. Position of the Movile cave in comparison with the Great doline, Mangalia city and the two drillings (1▲ and 2▲) (Google maps, satellite view); – B. General view of the Great doline (Obanul Mare) with the edge of hillocks and little dolines covered by Paliurus spina-christi a submediterranean bush; – C. North-East sector of the Great doline and the metallic gate at the entrance of the artifical shaft (Photos B, C, by V. Gheorghiu). – D. The entrance of the Upper dry gallery (Photo by S. Sârbu & C. Lascu).

Movile Cave was discovered by chance in 1986 when drilling for a thermal power plant. The project was abandoned after the discovery of the cave by Cristian Lascu from the “Emil Racovitza” Institute of Speleology from Bucharest.

Formed after the lower Paleo – Euxinic (Middle Pleistocene), the cave has been isolated from the outside after the Neo – Euxinic until the drilling in 1986. The remains of small mammals (jaws of Microtus epiroticus and Lagurus lagurus) near the filling that isolates the large sinkhole dates between 24,000 and 12,000 years ago, demonstrating that the Upper dry gallery was open and dry during this period (the Neo – euxinic) ( Stiuca et al., 1995).

The cave develops at -18 m, below the topographic surface in lumachellic and oolithic Kersonian limestone of the upper Sarmatian, very brittle and porous, 8- 20 m thick, dated between 14 and 16 Ma (Diaconu, 2000-2003). Today it is accessed by an artificial well closed by a concrete slab (Fig. 9) and a double lock. The ISPIF (1986) and the Institute of Geological Prospections (1994) drillings in the Movile area have intercepted underground voids with heights of 0.3 -1.5 m and even 2.5 m, all approximately at the same level as the cave. In the borehole no. 1 at norh of the cave opening at a depth of ~ 14.5 m a void of ~0.5 m height was intercepted. Also, on the surface between Movile and the Western edge of the town of Mangalia, represent surface reflections of subterranean collapses.

Fig. 10. Cross section of the Movile Cave (chemical and physical factors, after Marin & Nicolescu, 1993; Sârbu, 2000).

The cave consists of two levels of narrow and low galleries without speleothems (Fig. 8D and 10) (in the proximity of the water level, the cave walls are covered by crusts of gypsum Criștals) The Upper dry passage is 200 m long (Fig. 9), arguably developed in the Middle and Upper Pleistocene [Uzunlarian (0.2 Ma) and Karangatian (0.15 Ma)] (Diaconu, 2002-2003), and is closed by a mix of limestone, loess and clay, which forms the insulating cap of the large sinkhole (Obanul Mare) near the cave. The Lower 40 m long passage (Fig. 9), possibly of pre – Würm age IV (Neo-Euxinic, possible Post-Karangatian, 0.1 Ma) (Diaconu, 2002-2003), is partially flooded by sulfidic thermomineral water (20 °C), leaving air pockets with low oxygen and high concentrations of H2S, CH4 and CO2 in the ceiling of the passage, where many troglobites gather to feed on the microbial biofilms (see Table I).The underground network and implicitly the caves were generated essentially by buoyant sulfidic water (Constantinescu, 1995, 2002-2003). The process of karstification is active. Sulfuric acid corrosion in the Lower passage and the condensation corrosion by acidic vapors in the Upper passage are affecting the walls and are the two limestone dissolution processes currently shaping the morphology of the Movile Cave ( Sârbu, 2000).These sulfidic waters are part of a broader sulfidic aquifer accessible through wells and springs near the Black Sea shore, known since the Greek and Roman times, and extending fifteen kilometres to the North and fifty to the South of Mangalia, including Bulgaria. The chemical characteristics of its waters are identical to those of Movile Cave (Lascu et al., 1993). These sulfidic waters come from a confined aquifer in the Jurassic and Cretaceous limestones at depth of 400 m. A very important feature is the presence at the water surface and floating in the water of a microbial biofilm represented by a network of Oomycetes fungi hyphae with abundant populations of sulfur-oxidizing thiobacteria (Thiobacillus , Beggiatoa, etc.).

The endokarst of Movile contains diversified and original biotic communities that may have developed thanks to the Sarmatians limestone properties, climate influenced due to the proximity of the Black Sea and hydrothermal activity in the region, and to the zoogeographical position in South Dobrogea; it is a subterranean environment in the Ponto-euxinic refuge.

Table I. Abundance of selected fauna in Air Bells 1, 2 and 3. (After Sârbu, 2000; completed).

Population abundance of most species are reduced which suggests that most troglobionts live in the limestone microspaces.

The colonization of Movile endokarst and the deep cleithric was possible after Upper Sarmatian or, more precisely, after Upper Paleo – Euxinic [most probably at the end of the Uzunlarian (0.2 Ma)], when the level of the Black Sea lowered below the topographic surface of the region (Diaconu, 2002-2003). The cold and dry Pleistocene (especially the Upper Pleistocene) and Holocene climate periods represent the main factors which influenced the understanding of the fauna in the underground of Sarmation limestones. During the Würm glacial period the periglacial climate dominated, and during the Sub-Atlantic period, a secondary anthropeic steppe installed in South Dobrogea. (Pers. inform. S. Farkas et al 2004-,2005). At the present the annual average precipitation is about 350 mm and 750 mm the evapotranspiration.

The superficial cleithric network could have been colonized since the Pliocene.

Many taxa are eyeless or depigmented (Caucasonethes, Hahnia, Lepthyphantes, Pontoniphargus, Trachelipus, etc.), Others have eyes at immature stages that reduce or disappear in adults (Agraecina), others have slightly reduced eyes (Armadillidium, Clivina, Carniella, Medon, Nepa) This suggests a mixture of old and recent troglobitic and stygobitic fauna, and the succession of several phases of colonization in different periods.

Movile Cave is a hot-spot of subterranean biodiversity. Among the peculiar species: – Chronogaster troglodytes, the only stygobiont nematod of Romania, – the leech Haemopis caeca, the only stygobiont species of the genus, – Nepa anophthalma, the only stygobiont Heteroptera, (preferable Hemiptera – Decu et al 1994l.)- the isopod Trachelipus troglobius, the only troglobitic species of the genus, – the spider Hahnia caeca, the only troglobiont of the family, – Lepthyphantes constantinesui and – Nesticus sp., the only troglobitic anophthamic species of the genera, etc.

Fig. 11. Movile cave: the lake room with microbial mats floating on the thermal sulfidic water surface (Photo C. Lascu).

Similarly, the presence of common species in the cave and the water table, such as Pontoniphargus racovitzai endemic for Dobrogea, and stygobitic populations of Asellus aquaticus infernus, widespread species in Europe show that the aquatic population of Movile should be considered at the level of the sulfidic aquifer of South Dobrogea, and the colonization of Movile was done by groundwater species that have adapted to a high concentration of hydrogen sulfide.

The other stygobionts originate from surface species, more or less thiophilic and thermophile, such as Nepa or Haemopis, and colonized the water-filled voids on the edge of the sinkhole and the aquifer during the periods when the large sinkhole (Obanul Mare) was a lake-swamp or swamp fed by buoyant mesothermal springs.

Both drillings carried out in 1994 and the traps installed in the access pit walls, partly identified (over 70 species mostly from subsurface voids) and analyzed, led among other results in the discovery of a significant number of troglobiont species, described (or currently being described) of the cave, which also inhabit the deep and superficial limestone voids (see Tables II and III) including: Haplophthalmus movilae, Armadillidium tabacarui, Caucasonethes n. sp., Archiboreoiulus n. sp., Agraecina cristiani (which, together with Archiboreoiulus were sampled also in the abandoned dry wells of the city of Mangalia), Chthonius monicae, Clivina subterranea or Medon dobrogicus; – we include also species that have cleithricolous populations in Romania collected only in two boreholes: Chaetophiloscia sicula (Mediterranean species), Chaetophiloscia hastata (Eastern Mediterranean), Kithironiscus dobrogicus (endemic), Limnastis galilaeus (Mediterranean); – the species with epigean and subterranean populations (cleithricolous and cavernicolous): Cryptops anomalans (Mediterranean, Eastern Europe), Heteromurus nitidus (Holarctic), Porotachys bisulcatus (Palaearctic);

– the epigean species with a wide distribution, with significant cleithricolous populations [some with high relative abundance (Chaetophiloscia sicula or Dysdera crocata), collected throughout the year and at all depths in drillings]: Dysdera crocata (cosmopolitan), Palliduphantes byzantinus (Balkan), P. insignis (Europe), Trachelipus arcuatus (Balkan – Central Europe), Trachelipus nodulosus (Balkan – Central Europe), Platyarthrus coronatus (endemic) or Parazuphium chevrolati (Mediterranean – Caucasian), etc. (see Nitzu et al., 2010; Giurginca et al., 2009, Tables II and III).

Table II. Possible depth repartition of elected Isopoda, Diplopoda, Aranea, Pseudoscorpiones, Acari, Collembola and Coleoptera from Movile Drillings 1 and 2. (Partly after Giurginca et al., 2009; modified).

Collecting and analyzing fauna of this biospeleological oasis, part of the Ponto-euxinic refuge, will continue and we are confident that new important taxonomical, biogeographical and ecological subterranean elements will be recorded.

Table III. A: Stygobiont and troglobiont taxa, specifics and probables, inhabiting the sarmatian karstic ecosystem of Movile. Note: ●● = specific taxa with troglobiont and cleithrobiont populations; ?●?● = probable troglobiont and cleithrobiont taxa; B: Taxons with cavernicolous (o) and cleithricolous (o) populations (oo = troglophiles and cleithrophiles). Excepting the taxons with asterisk (*), all the others are endemics.

____________________________________________________________________________________

Turbellaria

Dendrocoelidae

Dendrocoelum ? n. sp.

Nematoda

Rhabditidae

Protorhabditis ? n. sp.

Panagrolaimidae

Panagrolaimus ? n. sp.

Chronogasteridae

Chronogaster troglodytes Poinar & Sârbu, 1994

Hirudinea

Haemopidae

Haemopis caeca Manoleli, Klemm & Sârbu, 1998 (Pl. I, C; III, B)

Gastropoda

Moitessieriidae

Heleobia dobrogica (Grossu & Negrea, 1989) (Pl. I, B; III, D)

Ostracoda

Candonidae

Pseudocandona cf. eremita (Vejdovsky, 1882)

Copepoda

Cyclopidae

Eucyclops subterraneus scythicus Pleșa, 1989 (Pl. I, D)

Ameiridae

Parapseudoleptomesochra italica Pesce & Petkovski, 1980 *

Isopoda

Asellidae

Asellus aquaticus infernus Turk-Prevorcnik & Blejec, 1998

Amphipoda

Niphargidae

Niphargus decui Karaman & Sârbu, 1995

Niphargus Dancăui Brad, Fišer, Flot & Sârbu, 2015

Pontoniphargus racovitzai Dancău, 1970

Heteroptera

Nepidae

Nepa anophthalma Decu, Gruia, Keffer & Sârbu, 1994

(Pl. I, A; XIV, D)

Isopoda

Armadillidiidae

●● Armadillidium tabacarui Gruia, Iavorschi & Sârbu, 1994 (Pl. II, A; VII, C)

Platyarthridae

o Platyarthrus coronatus Radu, 1959 *

Philosciidae

?o Chaetophiloscia sicula Verhoeff, 1908 *

o Chaetophiloscia hastata Verhoeff, 1929 *

Scleropactidae

● Kithironicus dobrogicus Tabacaru & Giurginca, 2003

Trachelipodidae

o Trachelipus arcuatus (Budde-Lund, 1885) *

o Trachelipus nodulosus (C. L. Koch, 1838) *

Trachelipus troglobius Tabacaru & Boghean, 1989 (Pl. VII, D)

Trichoniscidae

●● Caucasonethes n.sp.

●● Haplophthalmus movile Gruia & Giurginca, 1998

Pseudoscorpiones

Chthoniidae

?● Chthonius decui Georgescu & Căpușe, 1994

●● Chthonius monicae Boghean, 1989 (Pl. VIII, D)

?● Chthonius scyticus Georgescu & Căpușe, 1994

Neobisiidae

●?● Roncus dragobete Curcic, Poinar & Sârbu, 1993 (Pl. II, C)

●?● Roncus ciobanmos Curcic, Poinar & Sârbu, 1993

Araneae

Dysderidae

o Dysdera crocata C. L. Koch, 1838 *

Hahniidae

Hahnia caeca (Georgescu & Sârbu, 1992) (Pl. X, B)

Linyphiidae

Lepthyphantes constantinescui Georgescu, 1989

o Palliduphantes byzantinus Fage, 1931 *

o Palliduphantes insignis (O.P.-Cambridge, 1913) *

Liocranidae

●● Agraecina Criștiani (Georgescu, 1989) (Pl. II, B, X, D)

Nesticidae

Nesticus n. sp.

Theridiidae

Carniella brignolii Thaler & Steinberger, 1988

Acari

Hermanniellidae

?● Hermanniella multipora Sitnikova, 1973 *

Labidostomidae

?● Labidostoma Motași Iavorschi, 1992

Lohmanniidae

?● Papillacarus ondriasi Mahunka, 1974 *

Oppiidae

●?● Lasiobelba pontica Vasiliu & Ivan, 2011 (Pl. XII, D)

?● Multioppia callatisiana Vasiliu & Ivan, 2011

Chilopoda

Cryptopidae

o o Cryptops anomalans Newport, 1844 (Pl. II, F; XIII, E) *

Diplopoda

Iulidae

Apfelbeckiella dobrogica Tăbacaru, 1966

●● Archiboreoiulus n. sp.

o Strongylosoma stigmatosum (Eichwald, 1830)

Collembola

Entomobryidae

o o Heteromurus nitidus (Templeton, 1835) *

Oncopoduridae

●?● Oncopodura vioreli Gruia, 1989 (Pl. II, E)

Onychiuridae

Onychiurus movile Gruia, 1989

Diplura

Campodeidae

●?● Campodea neuherzi Condé, 1996

●?● Plusiocampa euxina Condé, 1996

●?● Plusiocampa isterina Condé, 1996

Coleoptera

Carabidae

●● Clivina subterranea Decu, Nitzu & Juberthie, 1994 (Pl. II, D; XX, A)

o Limnastis galilaeus Brullé, 1875 *

o Parazuphium chevrolati (Castelnau, 1833)*

o o Porotachys bisulcatus (Nicolai, 1822)

Staphylinidae

Bryaxis dolosus Poggi & Sârbu, 2013 (Pl. XX, E)

Decumarellus sarbui Poggi, 1994 (Pl. XX, C)

●● Medon dobrogicus Decu & Georgescu, 1994 (Pl. XX, F)

o Medon fuscus (Mannerheim, 1830) *

?● Medon paradobrogicus Decu & Georgescu, 1994

Tychobythinus sulphidricus Poggi & Sârbu, 2013 (Pl. XX, B)

Pl. I. Movile Cave: stygobiotic taxa. A – Nepa anophthalma Decu et al., 1994; B – Heleobia dobrogica (Grossu & Negrea, 1989); C – Haemopis caeca Manoleli et al., 1998; D – Eucyclops subterraneus scythicus Pleșa, 1989 (Aquarelles Violeta Berlescu).

Pl. II. Movile Cave troglobiotic taxa. A – Armadillidium tabacarui Gruia & al., 1994; B – Argaecina Criștiani (Georgescu, 1989); C – Roncus dragobete Curcic & al., 1993; D – Clivina subterranea Decu & al., 1994; E – Oncopodura vioreli Gruia, 1989; F – Cryptops anomalans Newport, 1884 (Aquarelles Violeta Berlescu).

IV. Subterranean fauna

IV. 1 – Groundwater fauna

About 243 stigobiont taxa have been mentioned until present from Romania. They belong to the following groups.

Tricladida

(Beauchamp de, 1929, 1940 ; Codreanu & Balcescu, 1967a,b, 1968, 1970 ; Gourbault, 1971 et in Botoșăneanu, 1986)

21 species were described, almost all endemic for Romania, except Dendrocoelum album and A. racovitzai.

The triclades have a regional distribution and a very marked endemism.

Dendrocoelidae

Dendrocoelum is represented by 20 species, blind and depigmented, except Dendrocoelum (Polycladodes) album of springs (South Dobrogea), depigmented but with normal eyes. (See Table IV).

Dendrocoelum brachyphallus, Apuseni Mts. caves; D. lipophallus, Iara spring (Turda); D. alexandrinae, river spring in Buzău, Urlătoarea resurgence; D. atricostrictum, Reșița, Carașova, springs; D, banaticum, Oravița spring, Brădulețul de Jos; D. chappuisi, wells, Babadag (Dobrogea); D. clujanum, wells, Cluj; D. debeauchampianum, Orșova spring; D. orghidani, Duțu cave, Banat; D. polymorphum, wells, Central and Meridional Dobrogea; D. racovitzai, Lazului cave, Oltenia; D. sophaerophallus, caves, Hunedoara; D. stenophallus, Mehedinți and Valcanului Mts. caves; D. tismanae, Monastery Tismana cave; D. Botoșăneanui, caves, Banat; D. geticum, phreatic near București; D. romanodanubiale, Danube Gorges, ponto-caspian relict; D. affine, hyporheic of Argeș river; D. album, springs, South Dobrogea; D. voinovi, springs Meridional Carpathians.

Planariidae

– Atrioplanaria racovitzai (de Beauchamp) has been sampled in caves (Apuseni Mts.), springs and the phreatic of Romania, Austria, ex-Yugoslavia and Spain. The species is depigmented, with small eyes.

OLIgochaeta

(Botea, 1968, 1970a, 1973a, b, 1977; Botea & Botoșăneanu, 1966; Botea & Pleșa, 1968; Cîmpean & Pavelescu, 2002-2003; Juget & Dumnicka in Botoșăneanu, 1986 ; Meleg et al., 2009; Pop, in Godeanu (red.), 2011)

Haplotaxidae

Among the three stygobiont species found until present, Delaya bureschi (Michaelsen) is the most important. The species is known from few caves in Banat where it lives in the silty bottom of the water basins and also from Bulgaria and ex-Yougoslavia. Haplotaxis gordioides Hartman is Holarctic and stygophile.

Lumbriculidae

It is a typical aquatic family. The two stygobiont species are: – Lamprodrilus michaelseni carpaticus Botea,1878 of springs; – Trichodrilus pragaensis (Vejdovsky, 1876), of the interstitial of the River Somes basin.

Archiannelida

(Pleșa, 1957, 1977)

Nerillidae

The single species of the genus, relict of Tertiary seas, Troglochaetus beranecki Delachaux, was sampled in subterranean rivers of Bihor and Pădurea Craiului Mountains in Transylvania, and in the interstitial of several rivers of Southern and Eastern Carpathians and of Moldova; large distribution in Europe.

NEMATODA

Chronogasteridae

(Altherr, 1971; Coman, 1961, 1969; Eder, 1994; Poinar & Sârbu, 1994; Popovici, 2012, in godeanu (red.), 2011)

– Chronogaster troglodytes Poinar & Sârbu described of Movile is the first stygobiont Nematoda of Romania. It lives in the floating fungae matt and the thermomineral sulfurous water. The population is composed of hermaphrodite females that feed on bacteria associated to fungae. Two other new species belonging to Protorhabditis and Panagrolaimus were found in the same habitat.

Other nematods, frequent in caves, are stygophiles found also in soils, detritus, guano, corpses and surface freshwaters. For example: Anatonchidae – Anatonchus filicaudatus Altherr, of the interstitial of subterranean rivers of the Vadu Crișului and Vîntului caves and surface rivers (Misid Valley), and Trypilidae – Tripyla glomerans Bastian, Trischistoma monohystera De Man.

NEMERTINA

In 1965, Motaș & Șerban, and in 1979 Botoșăneanu sampled an important number of individuals of Nemertina, eyeless and depigmentes flushed from the epikarstic zone by the storm waters. Unfortunately the material remained undeterminated. According to Botoșăneanu it can be Prostoma hercegovinensis Tarman known from the caves in Bosnia-Herzegovina.

Hirudinea

(Manoleli, 1994; Manoleli, Klemm & Sârbu, 1998)

Haemopidae

A new eyeless species, Haemopis caeca Manoleli, Klemm & Sârbu, with depigmented tegument (coloured in red by a pigment probably with hemoglobine) was discovered in the Movile Cave in Dobrogea. It was also found in a sulfurous spring 4 km north of the cave. In Movile, it feeds on the oligochet Allolobophora.

Before this discovery, Haemopis had nine species, of which eight typical Nearctic, and one single, H. sanguisuga, in the Palearctic.

Gastropoda

(Bernasconi, 1991; Bole & Velkovrh, Botoșăneanu, 1986; Grossu & Negrea, 1968, 1989, Loosjes & Negrea, 1968; Negrea, 1974, 1979, 1994; Negrea & Riedel, 1968)

Hydrobiidae

Three stygobiont species of Paladilhia (Paladilhiopsis); – P. carpathica (Soós); – P. leruthi (Boettger); – P. transsylvanica (Rotarides) were sampled in caves of the Apuseni Mountains.

Moitessieridae

– Heleobia (Semisalsa) dobrogica (Grossu and Negrea, 1968) depigmented, eyeless from Movile Cave; it looks for food in the sediments under the water or the surface of the mesothermal sulfurous water.

Ostracoda

(Danielopol, 1965, 1978, 1980a, 1982; Danielopol & Cvetkov, 1979; Danielopol & Hartmann-Schröder in Botoșăneanu, 1986; Iepure, 2007; Iepure et al., 2007, 2008; Pleșa et al., 1996)

Forteen representatives of Candonidae, one Cyprididae, one Limnocytheridae and one Darwinulidae are known from Romania. They were collected in wells, interstitial and springs in several places in the country. The valves of these species are transparent and the eyes lack.

Pl. III. – A. Archiannelida Nerillidae. Troglochaetus beranecki Delachaux, 1921; Hirudinea Haemopidae. – B. Haemopis caeca Manoleli et al., 1998; – C. Nematoda Chronogasteridae. Chronogaster troglodytes Poinar et Sârbu, 1994; – D. Gastropoda Moitessieridae. Heleobia dobrogica Grossu et Negrea, 1989; – E. Ostracoda Candonidae. Cryptocandona vavrai Kaufman, 1900; – F. Candonidae. Phreatocandona motasi Danielopol, 1978; – G. Limnocytheridae. Kovalevskiella phreaticola (Danielopol, 1965); – H. Copepoda Cyclopidae. Acanthocyclops reductus propinquus (Pleșa, 1957); I – Harpacticidae Moraria poppei (Mrazek, 1893) (After Damian-Georgescu, 1970).

Candonida – Cryptocandona kieferi (Klie), vast distribution in the Rhine and Danube bassins; – C. matris (Sywula), wells and interstitial, also known from Poland; – C. vavrai Kaufman (Pl.III, E);

– Fabaeformiscandona breuili (Paris); – F. brisiaca (Klie), known also from wells near Rhine in Germany;

– Mixtacandona botosaneanui Danielopol, Zamonitza Cave and wells in Banat; – M. chappuisi (Klie), wells and interstitial in the valleys of Criș and Drăgan, Transylvania; – M. pietrosanii Danielopol & Cvetkov, wells in Petroșani near Giurgiu, and at Lumina near Constanța, Dobrogea; – M. loffleri Danielopol, wells in the SW of the Danube at Vârciorova, Moldova Noua and the Ada Kaleh Island; – M. tabacarui (Danielopol & Cvetkov), wells near Mangalia, Dobrogea;

– Nannocandona afinis fabra Ekman, interstitial;

– Phreatocandona motasi Danielopol, wells in the valley of Olt;

– Pseudocandona eremita (Vejdovsky), vast distribution in central and meridional Europe; – P. serbani Danielopol, wells in southern Romania; – P. zschokkei (Wolf), several mentioning in central and meridional Europe, wells and interstitial.

Cyprididae

– Cavernocypris subterranean (Wolf), rare in Romania.

Limnocytheridae

– Kovalevskiella phreaticola (Danielopol) hyporheic and phreatic in several sites in Pădurea Craiului Mountains and Vadu-Crișului cave, in Transylvania.

Darwinulidae

– Vestalenula boteai Danielopol, hyporheic in Banat.

Cladocera

(Dumont & Negrea, 1996; Negrea, 1994b, 2003b) Macrothricidae

– Macrothrix bialatus Motaș & Orghidan, eyed species known only from the type-locality, hyporheic of the Bogata river. It is probably a stygobiont.

Chydoridae

Seven species, mostly belonging to Alona, are stygophiles.

Copepoda

(Botoșăneanu & Damian, 1955b; Chappuis, 1925; Damian-Georgescu, 1963, 1970; Iepure, 2000, 2001; Iepure & Defaye, 2008; Fiers & Moldovan, 2008; Lescher-Moutoué, Rouch, in Botoșăneanu, 1986; Meleg et al., 2009; Pleșa, 1958, 1967, 1969b, 1987; Pleșa et al., 1964, 1996, etc.)

Of the 66 mentioned species from the Romanian subterranean environment, 52 represent stygobionts, of which many are endemic. 32 belong to Harpacticoida and 20 to Cyclopoida.

Cyclopidae

Parmi les Cyclopides stygobies :

Among the stygobiontic cyclopoids the following species can be mentioned:

– Acanthocyclops includes 8 species and 2 subspecies: – A. balcanicus bisaetosus Iepure, caves, Apuseni Mts.; – A. phreaticus (Chappuis), wells in Babadag, Dobrogea; – A. kieferi (Chappuis), hyporheic of Apuseni Mts, large distribution; – A. milotai Iepure & Defaye; – A. plesai Iepure, caves, Apuseni Mts.; – A. reductus reductus (Chappuis), caves and phreatic in Transylvania and Bulgaria, reproductive activity with a maximum end autumn and a minimum during summer (Pleșa, 1969); – A. reductus propinquus Pleșa, Magura cave, Sighiștel valley; – A. stygius deminutus (Chappuis), caves and phreatic, endemic for the Apuseni Mts.; – A. transylvanicus Iepure & Oarga; – Acanthocyclops stygius stygius (Chappuis), caves and phreatic, Transylvania Plateau and Serbia;

– Diacyclops: – D. languidoides clandestinus, caves and wells, and D. l. hypnicola, large distribution in Europe;

– Eucyclops: – E. graeteri (Chappuis), caves and springs in Banat, and also in the Jura and the phreatic of the Rhine; – E. macrurus damianae (Petkovski), springs, Banat; – E. m. intermedius Damian, springs, Transylvania Plateau, Banat, and also Bulgaria and Italy; – E. subterraneus subterraneus Graeter, caves; – E. s. scythicus Pleșa, springs;

– Graeteriella : – G. unisetigera (Graeter), large distribution in Europe;

– Speocyclops: – S. lindbergi Damian, Hoților Cave in Băile Herculane, Banat; – S. troglodytes (Chappuis), caves in Apuseni Mts. and also in Bulgaria.

Harpacticoida

Ameiridae

Three stygobitic taxa: – Nitocrella calcaripes Damian & Botoșăneanu, tap water in București; – N. hirta Chappuis, large distribution in Balkans; – N. h. bucarestiensis Damian & Botoșăneanu 1955b, tap water in București.

Canthocamptidae

– Bryocamptus unisaetosus Kiefer, numerous caves in Romania and tap water in Cluj; – B. spinulosus Borutzky, mosses and springs in mountain areas;

– Ceuthonectes serbicus Chappuis, caves and springs, large distribution in Europe;

– Elaphoidella with 9 stygobionts and one possible stygobiont: – E. damianae Kiefer, tap water in București; – E. elaphoides (Chappuis), large distribution in Europe, probably stygobiont; – E. gracilis serrulata (Damian & Botoșăneanu), tap water in București;

– E. juxtaputealis (Damian & Botoșăneanu), tap water in București; – E. phreatica (Chappuis), caves in Banat, Bihor Mts., tap water in Cluj, phreatic of Dobrogea; – E. pseudophreatica (Chappuis), caves in Banat; – E. putealis (Chappuis), tap water in Cluj; – E. romanica Kulhavy, Buhui and Gaura Porcariului caves, Banat; – E. simplex Chappuis, wells and hyporheic on the Criș Valley; – E. winkleri (Chappuis, 1928), Peștera de Sus de la Corbești, Bihor Mts;

– Maraenobiotus bruccei carpathicus Chappuis, caves, large distribution in Europe;

– Moraria poppei (Mrazek), stygophile, large distribution in Europe (Pl. III. I);

– Spelaeocamptus spelaeus (Chappuis), numerous caves in the Apuseni Mts., one spring on the Criș valley, tap water in Cluj.

Chappuisidae

– Chappuisius inopinus Kiefer, tap water in București and Budapest, known also from Germany.

Parastenocarididae

– Parastenocaris includes 12 species all stygobionts: – P. aquaeductus Chappuis, tap water in Cluj and interstitial; – P. banaticus Damian, Hoților Cave in Băile Herculane, Banat; – P. chappuisi Șerban, Dobrogea, hyporheic; – P. clujensis Chappuis, tap water in Cluj; – P. jeanneli Chappuis, tap water in București; – P. karamani brevicauda Damian, tap water in București; – P. latisetosus Damian & Botoșăneanu, tap water in București; – P. minuta Chappuis, tap water in Cluj; – P. nana Chappuis, phreatic of Dobrogea, tap water in Cluj; – P. pannonica Török, Dobrogea and in Hungary and tap water in București and Constanța; – P. phreatica Chappuis, large distribution in Romania and ex Yougoslavia; – P. subterranea Damian, tap water in București; – P. uncinatus Damian & Botoșăneanu, tap water in București.

Syncarida

(Botoșăneanu (ed.), 1986; Dancău & Șerban, 1963; Schminke in Botoșăneanu, 1986; Botoșăneanu & Damian, 1955b; Pleșa, 1969; Șerban, 1965, 1966, 1971, 1972, 1975, 1976, 1989)

The groundwater syncarids belong to two families (Bathynellidae et Parabathynellidae) with stygobionts, eyeless and depigmented taxa.

Bathynellidae

– Bathynella has eight endemic species: – B. boteai Șerban; B. paranatans Șerban; and B. vaducrisensis Șerban from interstitial of the Crișul Repede basin; – B. plesai Șerban, Cloșani Cave; – B. motrensis Șerban, interstitial of Motru River; – B. orghidani Șerban, hyporheic of Cheia River; – B. scythica Botoșăneanu & Damian, București and Constanța.

– Antrobathynella, avec A. stammeri (Jakobi), caves, phreatic, interstitial, largely distributed in Europe.

Parabathynellidae

Represented by Parabathynella with two species: – P. Motași Dancău & Șerban, endemic in Tismana cave; – P. stygia Chappuis, caves, springs, phreatic, interstitial, distributed in Europe.

Isopoda

(M. & R. Codreanu, in Motaș et al., 1962a, 1962b, 1964; Henry et al. in Botoșăneanu, 1986; Negoescu, 1989; Pleșa, 1969, 1996; Turk, Sket & Sârbu, 1996; Tabacaru in Godeanu (red), 2011; Turk et al., 1998)

The ten species found in different subterranean environments belong to Asellidae (Asellus, Proasellus et Stygasellus), Microparasellidae (Microcharon) and Microcerberidae (Microcerberus).

Asellidae

Proasellus is represented by three species: – P. basnosanui R. et M. Codreanu, wells, springs, hyporheic; – P. danubialis R. et M. Codreanu; – P. elegans R. et M. Codreanu, hyporheic and wells, Băile Herculane.

– Stygasellus phreaticus (Chappuis), hyporheic of the Crișul Repede River.

There is a stygobiotic population of Asellus aquaticus (L.), blind and depigmented, with the subspecies status (A. a. infernus Turk et al., 1998) in the groundwater of meridional Dobrogea. It is not surprising given the fact that this species has frequently blind populations in central Europe. Several crenic ecotones of Mangalia area are populated by a mixture of epigean and hypogean Asellus.

Microparasellidae

Microcharon are well represented with four species in phreatic and interstitial habitats: – M. acherontis Chappuis, phreatic of the Criș River and its tributaries in Transylvania; – M. motasi Șerban, interstitial of Poneasca and Nera rivers (Banat); – M. oltenicus Șerban, interstitial of Motru Mare River in Oltenia; – M. orghidani Șerban, wells in the Ponor village of Ponor, Hațeg region.

Microcerberidae

– Microcerberus plesai Chappuis & Delamare, Tertiary relict discovered in the interstitial of the subterranean stream of Peștera de la Vadu-Crișului in the Pădurea Craiului Mts. The species is adapted to interstitial as follows: the pereiopods 1 to 5 are directed anteriorily for forward movements and the pereiopodes 6 and 7 are directed posteriorily for backwards movements. It reproduces all year long (Pleșa, 1969, 1996).

Amphipoda

(Cărăușu, Dobreanu & Manolache, 1955; Dancău, 1964, 1970, 1971, 1972; Dancău & E. Șerban, 1963; Carausu, Dobreanu, M, 1955,. Karaman & Ruffo in Botoșăneanu, 1986; Karaman & Sârbu, 1993, 1995)

Amphipods are also well represented in Romania groundwater as Hydracarians and Copepods: 45 taxa are listed, 26 of which are endemic.

Niphargidae

They are represented by 37 species of Niphargus, 2 species of Pontoniphargus, 1 species of Niphargopsis and 1 species of Karamaniella:

Pl. IV. Isopoda aquatica. Asellidae. A – Asellus aquaticus infernus Turk-Prevorcnick et Blejec, 1998; B – Proasellus baznosanui (R. et M. Codreanu, 1962); Microcerberidae. C – Microcerberus pleșai Chappuis et Delamare, 1958 (drawing C. Pleșa).

– Niphargus alutensis Dancău, the smallest in the genus, hyporheic on the Olt River; – N. ablaskiri romanicus Dobreanu & Manolache, wells in Făget-Târnave, E. Romania; – N. a. variabilis Dobreanu et al., caves in the regions of Craiova and Oradea; in Cloșani cave this Niphargus lives in water bassins and in clay in a dry passages covered by a tiny layer of guano which becomes crowded during rainy seasons when the passage is flooded and individuals come out of the clay or other hiding habitats; – N. andropus Schellenberg, caves in Bihor Mts.; – N. aquilex Schiödte, large distribution in Europe; – N. bajuvaricus Schellenberg, caves, wells, hyporheic in Vâlcea region, known also from Germany, Austria, Slovakia; – N. bihorensis Schellenberg, caves in Bihor Mts., known also from Italy; – N. carpathicus Dobreanu & Manolache, described from the regions of Ploiești and Suceava, with 3 subspecies (N. c. affinis, N. c. cavernicolus, N. c. meridionalis); – N. dacicus Dancău, interstitial in Bărbat River; – N. decui Karaman & Sârbu, wells south of Mangalia, Dobrogea; – N. dobrogicus Dancău, wells near Schitu, 2 Mai, South Dobrogea, – N. effosus Dudich, hyporheic in the regions of Cluj and Oradea; – N. foreli Humbert, known from the bottom of alpine lakes; – N. gallicus Schellenberg, wells in Dobrogea and Oltenia, known also from southern France; – N. hrabei S. Karaman, regions of București, Galați and southern Dobrogea; – N. illidzensis pannonicus S. Karaman, wells; – N. incertus Dobreanu et al., hyporheic of the Plaiului and Sighiștelului valleys, Bihor Mts.; – N. kochianus petrosani Dobreanu & Manolache, wells at Petroșani, near the Danube; – N. korosensis Dudich, hyporheic of Crișul Repede River, Oradea region; – N. laticaudatus Schellenberg, caves, Bihor Mts.; – N. moldavicus Dobreanu et al., hyporheic of Suceava and Bârlad regions; – N. parapupetta Karaman; – N. phreaticolus Motaș et al., hyporheic in Bacău, Cluj, Pitești, Hunedoara and Baia Mare regions; – N. ponoricus Dancău, wells in the plain of Hațeg, Hunedoara; – N. pseudokochianus Dobreanu et al., cave near Fața, Roșcani, Hunedoara; – N. pupetta (Sket), phreatic and interstitial; – N. puteanus baloghi Dudich, springs in the region of Baia Mare, known from Ukraine; – N. puteanus banaticus Dobreanu & Manolache, wells in the regions of Timisoara, Brașov, Ploiești, București; – N. serbicus S. Karaman, wells at Clinceanca, South Prahova, large distribution in Balkans; – N. somesensis Motaș et al., hyporheic near Cluj (Someșul Rece River); – N. stygius Schiödte, known from Movile Cave and sulfurous water in wells in Mangalia region (South Dobrogea), with subspecies largely distributed in Balkans; – N. stygocharis Dudich, wells and hyporheic in the Vadul Crișului and Crișul Repede rivers; – N. tauri jurinaci Karaman, wells in the depression of Hațeg, Hunedoara; – N tenuicaudatus Schellenberg, caves and wells in Bihor Mts.; – N. transsylvanicus Schellenberg, alpine lakes in the Retezat Mts., Drăguș, Chițorani (Ploiești); – N. valachicus Dobreanu & Manolache, Baia Mare, Galați (Pl. V, B).

Other genera:

– Niphargopsis casparyi (Pratz), sampled in wells and hyporheic of the Olt and Cerna rivers;

– Pontoniphargus racovitzai Dancău, endemic in Mangalia region, known from Movile cave and sulfurous water in numerous wells in Mangalia; – Pontoniphargus ruffoi Karaman & Sârbu, described from a small sulfurous spring near the village Hagieni, 10 km from Mangalia and which does not seem connected to the aquifer of Movile Cave, which explains the presence of two different species;

– Karamaniella pupetta Sket, described from ex-Yougoslavie, found in wells in Banat.

Bogidiellidae

– Bogidiella albertimagni Hertzog, hyporheic, springs in Cerna Valley, large distribution in Europe; – B. skopljensis Karaman, hyporheic, Bihor Mts.

Crangonyctidae

– Synurella coeca Dobreanu et Manolache, endemic, found in groundwater of the northern Eastern Carpathians and Cluj region; – S. intermedia Dobreanu, Manolache et Pușcariu, sampled in the phreatic of the northern Eastern Carpathians.

HYDRACARINA

(Câmpean & Pavelescu, 2002-2003; Motaș, 1962; Motaș et al., 1939, 1946, 1947, 1958, 1962a,b; Schwoerbel in Botoșăneanu, 1986; Schwarz et al., 1998, in Juberthie & Decu 1994-2001; Tanasachi & T. Orghidan, 1955)

74 species belonging to 16 families are inventoried from caves, phreatic habitats, and hyporheic zone where they are very abundant.

The adaptation to subterranean life led to water mites to morphological changes, more marked at paleostygobionts (paléophréatics, Motaș, 1962): – the chitine is slightly coloured in yellow, orange, or with green shades, or is completely transparent, – the eyes are reduced or lack completely, – these water mites became burrowers and the number of natatory setae is very small or they are lacking, – the body is dorso-ventrally flattened or to some species elongated or very elongated.

All the hydrachnells and four species of Limnohalacaridae live in the hyporheic zone, except Phreatohydracarus mosticus and maybe Mideopsis fonticola found in the phreatic of the wells in Hunedoara. The Stygotrombiidae, on the contrary, populate different subterranean habitats.

The hydracarins are carnivorous, they feed on small cladocerans, copepods, ostracods and Diptera larvae.

Pl. V. Amphipoda. Niphargidae. A – Niphargopsis casparyi (Pratz, 1866) (after Karaman, 1982); B. – Niphargus valachicus (Dobreanau et Manolache, 1933); C – Bogidiellidae Bogidiella skopljensis (S. Karaman, 1933).

Among them some can be mentioned:

Anisitsiellidae – Bandakia corsica Angelier; hyporheic;

Arrenuridae – Arrenurus haplurus Viets, – Arrenurus lundbladianus Motaș et al., microphthalm, hyporheic of the rivers Argeș, Olt and Mureș;

Athienemanniidae, with three species: – Phreatohydracarus mosticus Tanasachi & Orghidan, reduced eyes, phreatobiont in wells of Huneodara; – Stygohydracarus subterraneus Walter; – Stygohydracarus troglobius Viets;

Aturidae: – Albanoxa lundbladi Motaș & Tanasachi; – Albaxona minuta Szalay; – Axonopsis inferorum (Motaș & Tanasachi); – Axonopsis vietsi Motaș & Tanasachi; – Aturus fontinalis Lundblad; – Aturus karamani (Viets); – Aturus paucisetus Motaș & Tanasachi; – Erebaxonopsis brevis Motaș & Tanasachi, hyporheic, springs; – Frontipodopsis reticulatifrons Szalay, very elongated body; – 7 species of Kongsbergia, of which: – K. bombifrons Szalay, endemic in the interstitial of the Apuseni Mts.; – K. d-motasi Motaș et al., rivers in Banat and Transylvania;

Stygothrombiidae: 2 species, of which Charonothrombium racovitzai Motaș & Tanasachi, endemic, depigmented, eyeless, very elongated body, interstitial of Crișul Repede River;

Mideopsidae: 3 species of Mideopsis, of which M. fonticola Tanasachi & Orghidan, eyeless;

Momoniidae: – Stygomomonia latipes Szalay, microphthalm, with a quite large distribution;

Limnohalacaridae. 4 species: – Lobohalacarus weberi quadriporus (Walter), – Parasoldanellonyx typhlops; – two species of Soldanellonyx, eyeless;

Limnesiidae – Kawamuracarus chappuisi Motaș & Tanasachi, hyporheic zone of Bihor Mts.;

Bogatiidae: – Bogatia maxilaris Motaș & Tanasachi, discovered in the interstitial of the Olt and Bogata rivers;

Chappuisididae: 2 species of Chappuisides of which Ch. hungaricus Szalay, microphthalm, swim setae absent;

Feltriidae: 3 species of Feltria of which F. pectinigera Szalay, interstitial of Iada stream;

Hungarohydracaridae: 2 species: – Balcanohydracarus alveolatus Motaș & Tanasachi, interstitial in Banat rivers; – Hungarohydracarus subterraneus Szalay, microphthalm, swim setae absent;

Hydryphantidae: – Tartarothyas fonticola (Motaș & Tanasachi), reduced eyes, interstitial of Banat and Transylvania; – T. micrommata Viets; – Wandesia stygophila Szalay; eyeless, interstitial of Prahova and Hațeg rivers; – Wandesia thori Schechtel; Hygrobatidae: sixteen species of which: – Atractides elegans (Motaș & Tanasachi); – Atractides latipalpis (Motaș & Tanasachi); – A. orghidani Motaș & Tansachi; – A. sokolovi (Motaș & Tanasachi); the three last species are endemic and were sampled in the interstitial of rivers in the Southern Carpathians.

Hygrobatidae: 16 species: – Atractides elegans (Motaș & Tanasachi); – Atractides latipalpis (Motaș & Tanasachi); – A. orghidani Motaș & Tansachi; – A. sokolovi (Motaș & Tanasachi); past three endemic species harvested interstitial rivers of the Southern Carpathians.

Torenticolidae: 6 species of Torenticola of which T. jeanneli Motaș & Tanasachi, depigmented and very flattened.

HETEROPTERA

(Decu et al., 1994; Polhemus et al., 1994)

Nepidae

– Nepa anophtalma Decu et al., 1994, described from Movile cave and the only stygobiont heteropteran. Its eyes are reduced with small specks of eye pigments, the optical nerves are present, the body is yellowish brown, and the semielytrae are reduced. Nepa comprises three species: – N. cinerea largely distributed in the Palearctic; – N. sardinesis of Sardinia and Corsica; – N. anophtalma endemic for the sulfurous aquifer of the Mangalia region, Dobrogea.

Pl. VI. Hydracarina. . A – Aturidae Axonopsis inferorum (Motaș et Tanasachi, 1947), male, ventral view, modified; B – Aturidae Erebaxonopsis brevis Motaș et Tanasachi, 1947, male, ventral view; C – Hungarohydracaridae Hungarohydracarus subterraneaus Szalay, 1943, female, ventral view; D – Stygotrombiidae Charonotrombium racovitzai Motaș et Tanasachi, 1946, ventral view; E – Aturidae Albanoxa lundbladi Motaș et Tanasachi, 1948, male, ventral view; F – Hygrobatidae Atractides orghidani Motaș & Tanasachi, 1948, male, ventral view.

DECAPODA

(Băcescu, 1967; Decu in Godeanu, 2011; Hobbs, 1998, in Juberthie & Decu, 1994-2001)

Astacidae

A single decapod, Austropotamobius torrentium (Schrank, 1803), is found in the aquifers of Romania. It is a stygophile, oxyphile and cryoresistant, largely distributed in Europe; it is known from several caves in Banat and Apuseni Mts.

IV. 2 – Terrestrial subterranean fauna

The number of specific and probable troglobionts is about 311 and their degree of endemism is also more pronounced than that of stygobionts; it reaches a level of more than 90% to 60% which is that of aquatic fauna. About 80% of troglobionts were found in only 1 to 3 caves.

The groups with troglobiontic representatives are presented here together with the significant troglophiles and subtroglophiles.

Oligochaeta

(Botea, 1970a, 1970b, 1973a).

The caves in Romania do not have troglobiotic representatives. There are only troglophiles, of which the Enchytraeidae can be mentioned: – Eiseniella tetraedra (Savigny); – Dendrobaena rubida Savigny; – Allolobophora rosea (Savigny); – Octolasium lacteum Orley; – Enchytraeus buchholzi Vejdovsky.

Gastropoda

(Grossu & Negrea, 1968 ; Loosjes & Negrea, 1968 ; Negrea, 1974, 1979, 1994)

Orculidae

Five endemic species belonging to Agardhiella: – A. crassilabris (Grossu & Negrea); – A. densicostata (Grosu & Negrea); – A. grossui (Zilch); – A. nana (Grossu & Negrea); – A. parreyssi armata (Clessin), were found in caves of Oltenia and are probably troglobionts.

Daudebardiidae

Of the same province (Oltenia) originates the sixth species, probably troglobiont, Daudebardia spelaea Grossu.

Several troglophile taxa can be found, of which the most frequent are as follows: – Laciniaria plicata (Draparnaud) with European distribution (Clausiliidae), Oxychilus glaber striarius (Westerlund) and Troglovitrea argintarui Negrea & Riedel, more frequently in caves than at the surface; (Zonitidae); – Spelaeodiscus triaria Rossmässler, in the Carpathian mountains (Spelaeodiscidae).

Isopoda

(Giurginca ,2001a, b, 2009; Giurginca & Curcic, 2003, Giurginca , Nae & Vanoaica 2009; Gruia, Iavorschi and Sarbu, 1994, Gruia & Giurginca, 1998; Radu et al 1955; Gruner & Tabacaru, 1963; Tabacaru, 1963a, 1969b, 1970c, 1973, 1991, 1993, 1994, 1996a, b; Tabacaru & Danielopol, 1996; Tabacaru & Boghian 1989; Tabacaru & Giurginca 2003, 2013; Verhoeff 1908).

18 troglobitic species are known and belong to Armadillidiidae, Mesoniscidae, Sleropactidae Trachelipodidae and Trichoniscidae.

Armadillidiidae

– Armadillidium tabacarui Gruia et al., reduced eyes, described from Movile cave and the M.S.S. where is rather abundant.

Trachelipodidae

– Trachelipus troglobius Tabacaru & Boghean, depigmented, extremely reduced and depigmented eyes, described from Movile cave; is a large species and the only troglobiontic representative of a largely distributed genus with more than 50 species.

It worth mentioning also Trachelipus trilobatus (Stein), troglophile and thermophile, which inhabits the Peștera lui Adam de la Băile Herculane.

Trichoniscidae

All are endemic, blind and depigmented. The troglobites are as follows:

– Banatoniscus karbani Tabacaru, cave in Banat; – Biharoniscus fericeus Tabacaru, Ferice cave, Apuseni Mts.; – Biharoniscus racovitzai Tabacaru, Câmpeneasca cave, Apuseni Mts.;

– Caucasonethes vandeli Tabacaru populates Peștera Liliecilor de la Gura Dobrogei in Dobrogea; Caucasonethes are part of a very ancient tribe of Laurasian origin, with the majority of taxa being troglobites; a new species of this genus, very small, inhabit the Movile cave and the M.S.S.;

– Haplophthalmus caecus Radu, Peștera din Valea Bibarțului, Ampoiu basin, Apuseni Mts.; – Haplophthalmus movilae Gruia & Giurginca, described from Movile Cave, where it is in large numbers, and in the M.S.S.; – Haplophthalmus tismanicus Tabacaru, Peștera de la Mănăstirea Tismana, Oltenia.

The caves and MSS of the Cerna Valley and valleys in Oltenia are populated by three species of Trichoniscus, blind and depigmented; – Trichoniscus racovitzai Tabacaru, in the cave system of Topolnița and numerous caves in the Southern Carpathians (Vâlcan Mts., Mehedinți Mts., Mehedinți Plateau); – Trichoniscus vandeli Tabacaru, caves in Vâlcan Mts.; – Trichoniscus tuberculatus Tabacaru, Cloșani Cave.

Another species, Trichoniscus inferus (Verhoeff), frequent in caves and M.S.S. between Cerna and Olt valleys has a variable coloration and ocelli; possible troglobiont; three ovigerous females were found in M.S.S.

A troglophilic species, with ocelli and slightly pigmented : – Trichoniscus dancaui, Tabacaru is known from Cloșani area caves.

Mesoniscidae

– Mesoniscus graniger (Frivaldszky), blind and depigmented is very common in caves of Banat and mostly in those of Apuseni Mts., mainly in active ones. The species and the subspecies M. g. dragani Giurginca are frequent in M.S.S. M. g. dragani was found in caves of the Sighiștel valley and Peștera de la Chișcău. M. graniger is the most frequent and abundant terrestrial isopod in caves and colluvic habitat of the country.

Scleropactidae

From the M.S.S. of Movile in Dobrogea Tabacaru & Giurginca descibed in 2003 Kithironiscus dobrogicus, the first species of Scleropactidae known from Romania. Another species, K. paragamiani Schmalfuss, 1995, is known from a cave in Kithire Island in Greece. The genus is troglobiont, anophthalm and depigmented and belong to a family with Gondwanian distribution.

Philosciidae

The drills in limestones near Movile cave and the Obanul Mare sinkhole gave a new species for Romania, Chaetophiloscia sicula ( Giurginca & Vănoaica in 2000).

Pseudoscorpions

(Beier, 1939; Boghean, 1989; Curcic et al., 1993, 2004-2005a, 2004-2005b, 2005, 2006; Dumitrescu & Orghidan, 1964, 1969a,1970; Georgescu & Căpușe, 1994)

The pseudoscorpions represent, together with opilions, the most important predators of Romanian caves. All the troglobionts are endemic, anophthalm or microphthalm, and depigmented. The troglobionts from caves and M.S.S. belong to Chthonius (4 species), Mundochthonius (1 species), Acanthocreagris (1 species), Neobisium (7 species), and Roncus (6 species).

Pl. VII. Syncarida. A – Antrobathynellla stammeri (Jakobi, 1954) (drawing E. Șerban); Isopoda terrestria. B – Haplophthalmus tismanicus Tabacaru, 1970; C – Armadillidium tabacarui Gruia, Iavorschi & Sârbu, 1998; D –Trachelipus troglobius Tabacaru & Boghean, 1989; E – Trichoniscus vandeli Tăbacaru, 1991; F – Mesoniscus graniger graniger Frivaldszky, 1865 (drawing M. Gruia).

Chthoniidae

Troglobiontic species are the following: – Chthonius decui Georgescu & Căpușe, in the M.S.S. of Movile; – C. monicae Boghean, depigmented, anophthalm, in Movile cave and the M.S.S. near the cave; – C. scyticus Georgescu & Căpușe, described from the M.S.S.; – C. vandeli Dumitrescu & Orghidan, the chitinous parts of the body are pinkish, small eyes anteriorily, posteriorily reduced eyes to depigmented spots, in the dark zone of the Peștera Liliecilor de la Gura Dobrogei, troglobiont that appears temporarily and in high number from the voids of the cave walls; – Mundochthonius decui Dumitrescu & Orghidan, posterior eyes absent and anterior eyes as ocular spots, described from the M.S.S. at the bottom of a sinkhole at Vârtoape, Oltenia.

Troglophile species are the following: – Chthonius motasi Dumitrescu & Orghidan, olive coloured body, anterior eyes well developed, posterior eyes reduced, in caves and lithoclases of the green schists in the central and northern part of Dobrogea, in small number on the humid layers of organic debris with clay and old guano; – C. tetrachelatus Dumitrescu & Orghidan, Dobrogea, from caves Limanu and Liliecilor de la Gura Dobrogei, but also lapidicol and in the lithoclases near the caves.

Neobisiidae

– Acanthocreagris callaticola Dumitrescu & Orghidan, probably troglobiont, described from Peștera de la Limanu in meridional Dobrogea.

– Three troglobiont species and subspecies of Neobisium populate the Apuseni Mts. : – N. brevipes (Frivaldszky); – N. brevipes montanum Beier (probably troglobiont); – N. leruthi Beier;

– Neobisium blothroides (Tömösvary), redescribed in 2005, with anterior eyes well developed, posterior eyes reduced to small spots, is a troglobiont probably endemic relict known from Cloșani Cave and the numerous caves in the Mehedinți Mts. localised at 600-800 m in altitude;

– Another species, Neobisium minutum (Tömösvary), troglobiont, is frequent in caves of Oltenia;

– Two other species are known also from the Southern Carpathians: – Neobisium maxbeieri Dumitrescu & Orghidan, cephalothorax brown-reddish, abdomen and legs depigmented, in Topolnița cave; – N. closanicus Dumitrescu & Orghidan, anophthalm adult, Cloșani cave and seven other caves.

– Six species of Roncus are inventoried, as follows: – R. ciobanmos, two eyes reduced at spots, and R. dragobete, eyes reduced at spots, described by Ćurčić, Poinar & Sârbu from Movile cave, were also found near the caves in the micro-voids of the limestone. They are blind and depigmented and can be considered troglobionts. It seems that R. dragobete populated the subterranean domain much later that its sympatric species R. ciobanmos.

– Other species of Roncus, troglobionts or possible troglobionts are inventoried, as follows: – R. babadochiae Curcic & Dimitrijevic, Lazului cave; – R. craciun Curcic & Dimitrijevic, a cave in Sebeș Mts.; – R. decui Curcic & Dimitrijevic, Peștera Gura Cetății in Hunedoara; – R. zeumos Curcic & Dimitrijevic, Topolnița cave.

Opiliones

(Avram, 1964, 1966, 1968, 1972, 1973,; Avram & Dumitrescu, 1969; Martens, 1978; Motaș et al., 1967)

In general, the most frequent species in caves are also found in humid forests of the mountain regions. They derive from strains that populated in Tertiary the mediterranean region, from where they migrated towards north to the Romanian Carpathians (Kratochvil, 1958). Three troglophile species are commonly found.

Phalangodidae

– Holoscotolemon granulatus (Roewer) (Pl. IX.A), depigmented, with reduced eyes, poulating caves in the Carpathians, especially the north-west of Oltenia, where they feed on Leptodirinae beetles. Adult males, females and young individuals can be found from the entrance to the most profound zone of caves, for example 1500 m deep in Topolnița cave. At the surface, it lives in mountain areas, under the stones, in mosses and litter. A spawning of 16 eggs, 0,75 mm in diameter were observed in a cave.

Nemastomatidae

– Paranemastoma sillii (Herman) (Pl. IX.C), pigmented and with eyes, frequent at the entrance and the intermediary zone of caves in the Southern Carpathians (mainly) and the Apuseni Mts. (observed in more than 70 caves). During winter, the subtroglophilic species gather at the lower part of the walls in some caves like some subtroglophile species. Clutches and youngs at all levels of development can be found in caves, which is original in comparison to other Nemastomatidae from European caves (Decu & Herdlicka, 1978). The embryonary and post-embryonary development was described by Avram (1973): 26 eggs for a cluth on average.

Ischyropsalidae

– Ischyropsalis dacica Roewer was sampled in caves of the Eastern Carpathians, Banat and Mehedinți Mts., quoted by Condé (1996) from Peștera cu Lapte de la Runcu; – I. manicata C. l. K (Pl.IX.D), troglophile, large distribution in the Carpathians and the Alps.

Phalangiidae

– Gyas annulatus Oliver (Pl.IX.B), sub-troglophile, at the entrance of twilight zone of caves, known from twenty caves (Carpathians, Alps, Pyrenees, Cantabric Mts).

AranEae

(Decu, 1998; Dumitrescu, 1979, 1980; Dumitrescu & Georgescu, 1970, 1977, 1980, 1981; Georgescu, 1989, 1994; Georgescu & Sârbu, 1992; Motaș et al, 1967; Nae, 2012; Negrea & Negrea, 1968, 1972)

33 troglobiont and neotroglobiont species are known, of which 25 inhabit the Carpathians and 5 Dobrogea.

Hahniidae

In Movile cave Iberina caeca (Georgescu & Sârbu) was discovered, renamed as Hahnia caeca, eyeless and depigmented species, with cephalothorax and legs coloured in light yellow and white abdomen.

Linyphiidae

Three genera of this family are very well represented:

– Centromerus. Two troglobitic and endemic species: – C. dacicus Dumitrescu & Georgescu, blind with yellow testaceous body, distributed in caves of Cloșani area in Oltenia; the clutch has 1 egg, rarely 2 or 3; – C. chappuisi Dumitrescu & Georgescu, depigmented and with small eyes finely borded in black, populating caves of the Apuseni Mts.

Two other species must be added, which are probbaly troglobionts: – C. albidus Simon and C. jacksoni Denis, present in many caves of Europe.

– Leptyphantes. One troglobitic species, L. constantinescui blind and depigmented from Movile cave and one recent troglobitic subspecies with eyes, L. bureschi carpaticus Dumitrescu & Georgescu from Fundata cave in Southern Carpathians;

– Troglohyphantes with 4 troglobitic and endemic species: – T. jeanneli Dumitrescu & Georgescu, eyes slightly reduced from a cave in Mehedinți Mts.; – T. orghidani Dumitrescu & Georgescu, median eyes absent and the others reduced, yelow testaceous body, Peștera de la Gura Plaiului (Southern Carpathians); – T. racovitzai Dumitrescu & Georgescu, depigmented but with eyes sorrounded in black, from several caves in the Apuseni Mts., north from the Mures valley; – T. herculanus Kulcz., species with eyes sorrounded in black, populates caves of the Southern Carpathians and the Banat Mts., found also in the M.S.S.;

– Porrhomma convexum (Westring) (Pl.XI.B) is present in the Carpathians (especially the Apuseni Mts.). The following species are considered troglobionts: – P. kolosvary Miller & Kratochvil, – P. microphthalmum (O. P. Cambridge). P. convexum and N. cellulans are the most frequent in caves of Europe.

Pl. VIII. Pseudoscorpiones Neobisiidae: A – Neobisium closanicus Dumitrescu & Orghidan, 1970; B – Neobisium biharicum Beier, 1939; C – Acanthocreagris callaticola (Dumitrescu & Orghidan, 1964) (A-C drawings M. Georgescu). Chthoniidae: D – Chthonius monicae Boghean, 1989.

Pl. IX. Opiliones. A – Phalangodidae: Holoscotolemon granulatus (Roewer, 1915); B – Phalangiidae: Gyas annulatus Oliver, 1791; C – Nemastomatidae: Paranemastoma sillii (Herman, 1871); D – Ischyropsalidae: Ischyropsalis manicata (C. L. Koch, 1865) (A-D drawings St. Avram).

Liocranidae

O troglobitic species, Agraecina cristiani (Georgescu), depigmented but with eyes at juveniles and some adults was described from Movile cave and from dry wells of Mangalia. It appears that A. cristiani is closely related to A. canariensis Wunderlich, a troglobiont species from the Canary Islands. It feeds with collembolans, young isopods and grigs; reaches maturity after 6-8 months; the cocoon has 5-8 eggs; the mortality of juveniles is high (Weiss et al., 1994).

Micryphantidae

From this family, a single representatives, Caviphantes dobrogica (Dumitrescu & Miller), is known from a cave in Central Dobrogea. It is a neotroglobiont, depigmented and with eyes.

Mysmenidae

A single trolgobitic species, Trogloneta granulum Simon, depigmented but with eyes, was collected in several caves of the Southern Carpathians and the Apuseni Mts. The species is widely distributed in Europe.

Nesticidae

Nesticus is represented in Romania by 18 species, found in more than 200 caves. 17 species are endemic troglobites in Southern Carpathians and the Apuseni Mts.; the 18th, Nesticus cellulanus (Olivier), is a troglophile, widely distributed in Europe, Asia and North America.

Forteen species, known only from caves have well deveoped eyes, the cephalothorax coloured from light yellow to rusty yellow, are recent troglobionts. The depigmentation variable at different species or different individuals may lead to the complete dissapearance of the melanic pigment and the abdominal spots.

The species of the Southern Carpathians are as follows:

– N. balacescui Dumitrescu, advanced pigmentation, testaceous yellow, eyes with black border, caves in Tatarului Gorges, massif of Bucegi, 1700 m a.d.s.l.; – N. carpaticus Dumitrescu, testaceous yellow, eyes with black border, described from Peștera lui Adam, Parâng Mts.; – N. cernensis Dumitrescu, cephalothorax testaceous yellow, eyes with black border, from caves of the downstream of the Cerna valley; – N. constantinescui Dumitrescu, advanced depigmentation, eyes with brown-reddish border, from caves of the Piatra Craiului Mts.; – N. diaconui Dumitrescu, cephalothorax rusty yellow, eyes with brown border, described from Peștera Muierii, in Căpăținii Mts.; – N. ionescui Dumitrescu, light rusty yellow cephalothorax, eyes with a brown-reddish border, Cloșani cave; – N. orghidani Dumitrescu, light rusty yellow cephalothorax, eyes with brown border, from two caves of the Oltet Gate, Căpăținii Mts.; – N. puteorum Kulczynski, depigmented or pigmented cephalothorax, from several caves of the Sebeș Mts. in Hunedoara; – N. simoni Fage, rusty yellow cephalothorax, eyes with black border, numerous individuals in caves of the Bistrița gate (Stogu-Vânturarița massif), and the Comarnicilor Gorges; – N. wiehlei Dumitrescu, testaceous yellow cephalothorax, eyes with brown border, caves of the Soci and Sușița Verde valleys.

Species of the Apuseni Mts.:

– N. biroi Dumitrescu, testaceous yellow cephalothorax, eyes with brown border, caves in Pădurea Craiului Mts.; – N. fodinarum Kulczynski, rusty yellow cephalothorax, eyes with black border, caves in Sighiștel valley (Bihor Mts.); – N. hungaricus Chyzer, testaceous yellow cephalothorax, eyes with light brown border hardly visible, caves in Trascău Mts.; – N. plesai Dumitrescu, rusty yellow cephalothorax, eyes with black border, described from Peștera Urșilor (Bihor Mts.); – N. racovitzai Dumitrescu, troglobitic species known from three caves from Trascău Mts. to Bihor Mts., and from a surface site, between limestone blocks; – N. spelaeus Szombathy, testaceous yellow cephalothorax, eyes with light brown-reddish border, probably troglobitic species from three caves in Bihor Mts., found also between limestone blocks at the surface.

Pl. XI. Araneae. A – Micryphantidae. Caviphantes dobrogica (Dumitrescu & Miller, 1962); B – Linyphiidae Porrhomma convexum (Westring, 1861); C – Troglohyphantes orghidani Dumitrescu & Georgescu, 1977. (Drawings M. Georgescu).

The geographic distribution shows the abundance of these species in the massifs of Bihor, Banat, Southern Carpathians from the Cerna valley to the , and their absence in the Eastern Carpathians from northen . Some of the species are known from a reduced number of caves: N. simoni and N. balacescui (three caves), N. constantinescui and N. orghidani (two caves), N. carpaticus and N. diaconui (one cave).

Species from Dobrogea:

– Nesticus sp., blind and depigmented troglobiont, known only from Movile cave; it is the species with most troglobiomorphic features of this genus.

Theridiidae

In this family belongs Carniella mihaili (Georgescu), troglobitic species lightly pigmented and with anterior eyes reduced, described from Movile cave.

Tetragnathidae

Troglophilic species. The most common are: – Meta menardi (Latreille), with a very wide distribution (Europe, Asia, Africa, North America), in Romania it is one of the main component of the parietal association and is lacking only in the Apuseni Mts.; – Metellina merianae (Scopoli), distributed in Europe, Middle East and Algeria, is less frequent in caves; – M. bourneti Simon, of egeidian origin, distributed in North Africa, south-east and south-west Europe, Crimea, and in Romania only in Dobrogea.

PalpigradiDA

(Condé, 1998; Georgescu & Decu, 1994; Orghidan, Georgescu & Sârbu, 1982)

Eukoeneniidae

Three species of d'Eukoenenia were found in Romanian caves: – E. cf. austriaca (Hansen), from a cave in Vâlcan Mts.; – E. condei Orghidan et al., from caves in the Jiu valley; – E. margaretae Orghidan et al., many caves in Mehedinți Mts. E. condei and E. margaretae were collected only in caves, at the surface of bassins with water and on humid flowstone.

Acari terrestria

(Cooreman, 1951; Decu et al., 1974; Feider, 1970; Hutzu, 1997; Iavorschi, 1992; Ivan & Vasiliu, 2010; Palacios-Vargas et al., 1998; Vasiliu & Ivan, 2011; Zacharda, 1978)

Several taxa, troglophile, guanophile were found in caves, but only a quite reduced number are eyeless and depigmented and can represent troglobionts.

Oribatida

– Lasiobelba pontica Vasiliu & Ivan, endemic relict, troglobiont, thermophile from the Movile cave and M.S.S.

Other oribatids were found in Romania and only in the two drills near Movile cave: Hermanniella multipora Sitnikova (Paleactic species), Multioppia callatisiana Vasiliu & Ivan (endemic), or Papillacarus ondriasi Mahunka (Greece, South-east China). The individuals of these taxa can be considered cleithrophiles or even cleithricol troglobionts; they are eyeless, but the lack of eyes in oribatids is phyletical (see also Chap. III.2.4).

Rhagidiidae

– Poecilophysis spelaea (Wankel), common in European caves, with populations that are considered, by some authors, as glaciar relicts; – Rhagidia longipes Trägardh; – Traegaardhia dalmatina (Willmann).

Uropodidae

– Chiropturopoda cavernicola Hutzu from Peștera lui Adam de la Băile Herculane, thermophile and guanophagous, relict, endemic, dominant population in the cave. One species is troglophile and guanophagous, – Trichouropoda orbicularis Koch, very abundant in the same cave at Băile Herculane (see Chap. III.2.3).

Among the guanophile and zoophagous gamasids, the following species can be mentioned: Pergamasus crassipes (Linné), Macrocheles penicilliger (Berlese), Euriparasitus emarginatus (Koch), Hypoaspis miles Berlese, etc; they feed on small arthropods, eggs and nematods.

ACARI PARASITI

(Dusbabek, 1998; Feider & Mironescu, 1970; Georgescu, 1968; Juvara, 1967)

Ixodidae

The most common ectoparasite is Ixodes vespertilionis Koch, at which the females are parasites on bats all over the country.

Spinturnicidae

Ectoparasites on bats are also: – Spinturnix myoti (Kolenati); – S. vespertilionis L.; – S. psi (Kolenati), found in Dobrogea, Oltenia and Banat.

Chilopoda

(Matic, 1966, 1968, 1972; Negrea, 1964, 1969, 1993, 1994a, 1997, 2003a ; Negrea & Minelli, 1994)

The chilopods present less interest for the biogeography of the subterranean domain than the diplopods.

Their cave representatives are much less numerous and less differentiated. In Romania the five species belong to Cryptopidae and Lithobiidae.

Cryptopidae

Subterranean populations of two species, Cryptops hortensis Leach and C. anomalans Newport (Pl. II.F; XIII.E) were found in two warm caves of Romania: Peștera lui Adam de la Băile Herculane and Peștera de la Movile. The two species have a wide distribution at surface.

The first (C. hortensis) is probably troglophile and was sampled in caves of Italy, France, Algeria and Romania. The second species (C. anomalans), with a pontic and mediterranean distribution, was found at the surface in the northern half of Dobrogea, while at the central part of this province a population inhabits the network of voids in limestone from where some individuals enter in the Movile cave. The individuals from Movile have no morphological difference from individuals inhabiting limestone voids or from the surface. The anophthalmy and depigmentation of Cryptopidae is phyletic.

Lithobiidae

Mentioning the three troglobitic species: – Lithobius dacicus Matic, endemic in Banat caves; – L. decapolitus Matic, Negrea & Prunescu, endemic in the Southern Carpathians;

– Harpolithobius oltenicus Negrea, endemic in the Southern Carpathians;

Two species are probably troglobionts: Harpolithobius dentatus Matic, from Banat and north-east of ex-Yougoslavia; – Monotarsobius spelaeus (Negrea) from Apuseni Mts.

Beside L. dacicus and H. oltenicus which are anophthalmous, the others have ocelli.

Diplopoda

(Broleman, 1914 ; Ceuca, 1956 1958, 1961, 1964, 1967, 1958; Juberthie-Jupeau & Tabacaru, 1968; Negrea & Tabacaru, 1958; Nitzu et al., 2011; Tabacaru, 1958, 1960, 1963b, 1965, 1966, 1968a, b, 1969a, 1970a, 1975, 1976, 1980, 1985, 1989, 1990; Tabacaru & Negrea, 1962 ; Tabacaru, Giurginca & Vanoaica 2003; Verhoeff, 1898, 1899)

It is the myriapods group with the most numerous troglobitic elements (25 taxa). All the troglobionts and the species possible troglobiontic are endemic, blind and depigmented, and belong to the following families: Anthroleucosomatidae, Trachysphaeridae, Polydesmidae, Trichopolydesmidae, Haaseidae, and Julidae.

The majority of troglobiontic diplopods from Dobrogea belong to lines with mediterranean and sub-mediterranean distribution. Only Arachiboreiulus has a boreo-alpine origin and Romanosoma an Alpine origin.

Pl. XII. Palpigradida (A), Acari (B-D). A – Eukoenenia margaretae Orghidan & al., 1982; B – Rhagidia longipes Trägardh, 1912 (drawing V. Iavorschi); C – Chiropturopoda cavernicola Hutzu, 1997; D – Lasiobelba pontica Vasiliu & Ivan, 2011, dorsal view.

Pl. XIII. Diplopoda. Trachysphaeridae. A – Trachysphaera orghidani (Tabacaru, 1958); B – Trachysphaera costata (Waga, 1857) (drawing Schubart, 1934); Polydesmidae. C – Polydesmus oltenicus Negrea et Tabacaru, 1958 (drawing Stefan Negrea); Chilopoda Lithobiidae. D – Lithobius decapolitus (Matic et al., 1962) drawing Ștefan Negrea; Cryptopidae. E – Cryptops anomalans , 1844 (drawing Ștefan Negrea).

Anthroleucosomidae

They are represented in the subterranean environment by four troglobitic species: – Anthroleucosoma banaticum Verhoeff from caves in Banat and northern Oltenia; – A. spelaea Ceuca, from the Cerna valley, northern Oltenia ; – Banatosoma ocellatum (Tabacaru) from caves of the Banat Mts, Southern Carpathians; – Dacosoma motasi Tabăcaru, caves in Căpățânii Mts., Southern Carpathians.

Haaseidae

– Romanosoma cavernicola Ceuca, described from caves of Eastern Carpathians (Rodnei Mts.) is considered troglobiontic; – we do not know if R. birtei Ceuca is a true troglobiont.

Another taxon, Hasea hungaricum orientale Tabacaru, from Banat and Oltenia, is a troglobiont very frequent in caves and M.S.S.

Julidae

Five troglobitic species and one subspecies are known: – Apfelbeckiella dobrogica Tabacaru, from Movile and Casian caves in Dobrogea, is known as the northest representative of the genus; – Archiboreoiulius sp. n. from Movile cave and dry wells of Mangalia; – Banatoiulus troglobius Tabacaru, caves of Banat; – Lamellotyphlus mehedintzensis (Tabacaru), Southern Carpathians, Cerna valley; – Typhloiulus Șerbani (Ceuca) from Vantului cave, Eastern Carpathians; Typhloiulus serbani unilineatus (Ceuca) from Apuseni Mts.

Probable migrations of the Diplopoda lineages into the Carpathians and Dobrogea: After Tabacaru, 1970, modified. I and II = North-Western Carpathians (II = Oriental Beskids); III = Eastern Carpathians; IV = ; V = Southern Carpathians; VI = ; VII = Carpathians from South of Danube (Stara Planina). Lineages with troblogionts: 1 = Anthroleucosomidae; 2 = Typhloiulini; 3 = North-east-alpine lineages (ex. Haaseidae, Orobainosoma hungaricum); 4 = Original North Carpathian lineages; 5 and 6 = Possible migrations of the original lineages of ; 7 = Original dinaric lineages (ex. Trachysphaeridae and Trichopolydesmidae); 8 = Pachyiulini (Apfelbeckiella).

Trachysphaeridae

They are represented by six species and two subspecies which belong to Trachysphaera. This genus, the most encountered in Romanian caves, is strongly linked to limestone areas:

– T. biharica (Ceuca) of Apuseni Mts.; – T. dobrogica (Tabacaru) of Dobrogea; – T. jonescui (Brölemann) of Southern Carpathians, with two subspecies, T. j. isvernae Tabacaru and T. j. tismanae Tăbacaru; – T. orghidani (Tabacaru) of Southern Carpathians and Cerna valley; – T. racovitzai (Tabacaru) caves in Căpaținii Mts.; – T. spelaea (Tabacaru) caves in Parâng and Capațânii mountains.

One possible trolgobiont species with pigmented ocelli of the same genus populates the whole Carpathians, T. costata (Waga, 1857).

Polydesmidae

There is a single troglobitic species of Polydesmidae: Polydesmus oltenicus Negrea et Tabacaru, of Southern Carpathians. Another species, P. microcomplanatus Negrea & Tabacaru, is a doubtful troglobiont.

Another genus, Brachydesmus, is present in the subterranean environment of Banat with the troglophile species B. troglobius Daday.

Trichopolydesmidae

Group of American origin, represented by three genera and three troglobitic species: – Banatodesmus jeanneli Tabacaru, caves in Banat; – Napocodesmus florentzae Tabacaru, of Oltenia; – Trichopolydesmus eremitis Verhoeff, of mediterranean origin, frequent in caves of north-western Oltenia and Cerna valley.

The origin and migrations of the subterranean Diplopoda are represented, by Tăbacaru, on the enclosed map.

Collembola

(Gruia, 1967, 1969, 1971, 1976, 1989, 1994, 1996, 1998, 2000; Gruia & Ilie, 2000-2001; Gruia & Popa, 2004-2005; Nitzu et al., 2010, 2011; Popa, 2010)

They are the best represented apterygots in the subterranean environment of Romania, with 109 species. Most of the stenohygrobiont collembolans are edaphic or gaunophile, and only 22 species are troglobionts.

Entomobryidae

They are represented by four troglobionts and one species with a troglobiontic population :

– Heteromurus noseki Mutt & Stomp, caves in Southern Carpathians; – H. nitidus, from Movile cave and the M.S.S., whose population is composed by individuals with the size half big of the size of individuals living at the surface;

– Pseudosinella problematica Gisin & da Gama; – P. racovitzai da Gama known only from the Ponorici-Cioclovina cave in Hunedoara.

Hypogastruridae

– Two Acherontides, one Acherontiella and one Mesogastrura, guanobionts, are known: – Acherontiella cassagnaui (Thibaud); – Acherontides spelaeus (Ionescu), caves from Balkans and Carpathians; – A. tanasachiae (Gruia), Peștera de la Dodoconi; – Mesogastrura ojcoviensis (Stach), depigmented and blind, very common in caves with guano from Banat and Oltenia.

Oncopoduridae

– Oncopodura pegyi Gruia, from caves of Apuseni Mts., blind and depigmented, claws and antennal organs elongated as adaptations to the subterranean environment;

– O. vioreli, blind and depigmented, described by Gruia in 1989 from Movile cave was subsequently found in the M.S.S around Movile.

Onychiuridae

14 troglobionts belong to this family:

– Bagnallaphorus orghidani (Gruia), endemic in caves of the Southern Carpathians;

– Deuteraphorura closanicus (Gruia), caves of Oltenia and the valleys of Jiu and Cerna, – D. traiani Gruia & Popa, caves of the Piatra Craiului Mts.;

– Heteronychiurus borzicus (Gruia), endemic in the Carpathians;

– Onychiuroides granulosus multisetis (Gruia), endemic in the Carpathians, – O. postumicus (Bonet), caves in Banat and Apuseni Mts.;

– Onychiurus is distributed in the Southern Carpathians, Banat and Apuseni Mts.: – O. ancae Gruia, endemic for the Carpathians; – O. banaticus Gruia, caves in Banat, – O. boldorii Denis, endemic for the Carpathians; – O. closanicus Gruia; – O. movilae Gruia endemic in Movile cave with the claws of the first legs reaching the length of the tibio-tarse; – O. meziadicus Gruia, endemic in the Carpathians; – O. romanicus Gruia, of the M.S.S. and caves in Banat and Crișul Repede basin;

– Paronychiurus is present with P. bogheani (Gruia), in caves of Apuseni Mts.

Tomoceridae

– Plutomurus unidentatus Börner, caves of Eastern Carpathians and Apuseni Mts., with pigmented eyes and body.

Note. Beside Onychiurus postumicus, O. boldorii and Plutomurus unidentatus, with large distribution, the other species are endemic with a extremely reduced distribution area.

At Onychiuroides granulosus multisetis and Paronychiurus bogheani the claws are elongated and these species live in cold caves or ice caves (+2 to + 4°C).

Troglophilic species:

These are the most largely distributed and most abundant species in Romanian caves and also in the M.S.S.

– The Entomobriidae – Heteromurus sexoculatus Brown, known in Romania from caves and deep voids in limestone in southern Dobrogea;

– The Onychiuridae, represented by 16 species. The followig species can be mentioned: – Oligaphorura multiperforatus Gruia from the ice Cave of Scărișoara and M.S.S. of Scărișoara Plateau; – Protaphorura armata Tulbb. known from caves all over the country; – Onychiuroides subgranulosus Gisin from caves of Retezat Mts., such as Alunii Negri at 4°C; while a population of O. pseudogranulosus Gisin lives on the wall at 25°C in Peștera lui Adam de la Băile Herculane.

Pl. XIV. Collembola. Hypogastruridae:

A – Acherontides cassagnaui (Thibaud, 1963);

B – Mesogastrura ojcoviensis (Stach, 1919); Onychiuridae : C – Deuteraphorura closanicus Gruia, 1965 (drawings M. Gruia).

The most interesting troglophile are in Dobrogea: – Entomobrya pasaristei Denis on the bat and bird guano the entrance of caves; – Oncopodura vioreli Gruia from Movile cave and voids in limestone; – Pseudosinella sexoculata Schott frequent in Movile cave, Limanu cave, M.S.S., voids in limestone and in soil.

There are also important guanophiles: – Pseudosinella crenelata Gruia; – Heteromurus nitidus margaritaria Wenkel, on guano in caves of Dobrogea; – Ceratophysella denticulata Bagnall; – Pseudosinella manuelae Gruia in caves of the Southern Carpathians.

M.S.S. A mixture of troglobiont, troglophilic and endogean collembolans are present in M.S.S. of the forrest areas in the Carpathians (Cerna, Motru, Lupșa, Albiilor valleys in Southern Carpathians, Plateau of Scărișoara, and Bihor Mts.): – Onychiurus romanicus (Gruia); – Heteromorus nitidis Stach; – Lepidocyrtus serbicus Denis, etc.

Diplura

(Conde, 1993, 1996; Ionescu, 1955; Sendra et al., 2012)

Groupe with depigmented, blind and hygrophilic species, most of them being edaphobionts; the diplurans can be also found in caves.

Campodeidae

Three troglobitic species or possible troglobionts are endemic for Movile cave and the M.S.S.: – Campodea neuherzi Condé; – Plusiocampa euxina Condé; – Plusiocampa isterina Condé. Two other species, probably troglobitic are: Campodea spelaea Ionescu, caves in Apuseni Mts.; Plusiocampa elongata Ionescu, caves in Banat;

Campodea suensoni Tuxen, troglophilic species from caves of the Southern Carpathians and the Apuseni Mts., is equally very frequent in soils.

Thysanura

(Decu, 1998; Hollinger, 1971, 1978; Motaș et al., 1967)

The species from Romanian caves belong in general to Machilidae. They are found in big number during winter, in the cave entrance, from October/November to March. They are attracted in caves by higher temperature during the winter; they can be considered as hibernating subtroglophiles. The two most frequent species are:

– Trigoniophthalmus banaticus (Verhoeff, 1910) the most frequent and abundant, and – T. alternatus (Silvestri, 1904).

Trichoptera

(Botoșăneanu, 1966; Bouvet, 1977; Decu, 1998; Decu & Negrea, 1969; Motaș et al., 1967)

Six subtroglophile species of Stenophylax (Limnephilidae) are summering in Romanian caves, except Dobrogea because of the more dry climate in this last province: – Stenophylax permistus (McLachlan, 1895) and S. vibex-meridionalis Malicky, 1980, are frequent in caves in most of the karst regions of the country (especially in the Southern Carpathians); – S. mitis (McLachlan, 1875) is the rarest species that populates caves in Banat and Oltenia; – S sequax (McLachlan, 1875) and S. testacea (Gmelin, 1788), are well represented in caves of the Apuseni Mts.

The males and females of tricopterans, with the abdomen full of fat body enter the cold and humid caves in March and leave them in October/November (Fig. 11) and lay eggs in the nearby streams. Copulation, diapause and maturation of ovules take place during the subterranean phase.

Lepidoptera

(Căpușe & Georgescu, 1962a and b; Căpușe & Georgescu 1963; Decu, 1998; Decu & Negrea, 1969; Georgescu, 1964; Motaș et al., 1967; Turquin, 1994, in Juberthie & Decu, 1994-2001)

A cosmopolite species of Tineidae, troglophile-guanophile, Monopis crocicapitella (Clemens, 1859) was mentioned from caves of Dobrogea. The species is parasited by Hemiteles flavigaster Schmiedeknecht (Hymenoptera).

Some subtroglophile species are found in caves during winter or during summer for hibernation or estivation, respectively. As in lepidopterans, hymenopterans and trichopterans cases they do not show adaptative traits. Among the most frequent species we can name : – Scoliopteryx libatrix (L., 1758) (Noctuidae) (Pl. XV, D), Holarctic element which is more abundant in winter; – Triphosa sabaudiata (Duponchel, 1830) (Pl. XV, A), with Palearctic distribution, – T. dubitata (L., 1758) (Geometridae) (Pl. XV, B), distributed in Europe and Middle East, – Digitivalva pulicariae (Klimesch, 1956) (Acrolepidae) (PL. XV, E), found in high number in Oltenia, mentioned also from ex-Yougoslavia. In dry and ventilated caves Aglais io (L., 1758) Nymphalidae (Pl. XV, C) estivate or hibernate.

Scoliopteryx libatrix (L.) is encountered in the deeper hibernal sleep than the other species, in general on the ceiling and the upper part of the passages, preferring warm and humid air currents. Triphosa sabaudiata and T. dubitata prefer the lower part of the cave walls, the first in warmer caves and the second in colder caves (see Fig. 11).

Pl. XV. Lepidoptera. A – Triphosa sabaudiata (Duponchel, 1830); B – Triphosa dubitata (Linnaeus, 1758); C – Aglais io (Linnaeus, 1758); D – Scoliopteryx libatrix (Linnaeus, 1758) (A-D photos George Nazareanu); E – Digitivalva (Inuliphila) pulicariae (Klimesch, 1956).

Pl. XVI. Diptera. A – Crumomyia absoloni (Bezzi, 1916, in Matile, 1994); B – Tarnania fenestralis (Meigen, 1878) (drawing M. Georgescu); C – Rhymosia fasciata (Meigen, 1804) (after Matile, 1970); D – Nycteribia biarticulata (Hermann, 1804); E – Limonia nubeculosa (Meigen,1803) (after Graham, 1966); F – Thelida atricornis ((Meigen, 1830) (drawing M. Georgescu).

Diptera

(Burghele-Bălacescu, 1965, 1966; Ursu & Gheorghiu, in Godeanu (red.). 2011; Collart, 1940, 1941; Decu-Burghele, 1963 a, b; Decu, 1973, 1998; Decu & Decu, 1961b; Decu & Herdlicka, 1978; Motaș et al., 1967; Matile, 1962, 1994; Gheorghiu, 2005; Gheorghiu, 2006; Ursu & Gheorghiu, 2011)

The images of dipterans, together with trichopterans, hymenopterans and lepidopterans represent the main component of the parietal association and populate the entrance of caves (the twilight zone). This fauna, attracted underground by the exiting air currents, has particular biological traits (for example, they do not feed) and play an improtant role in the transport of energy inside caves through the openings to the surface.

For the subtroglophiles, the subterranean ecophase corresponds to quiescence, or a diapause or a quiescence-diapause, by the stimulation of endocrine factors through environmental features [mainly by photo-period (length of the daily light), temperature or humidity]. This influences the ovules maturation at almost all subtroglophiles.

Inside caves, the subtroglophiles remain on the walls or ceiling in dependance of air currents circulation type which originate from the inside or the exterior of the caves, summer or winter, and in the zone of their mixture (see the scheme in Fig. 11 of air cirulation during sumer or winter in the twilight zone). As a result, the estivale species remain at the base of the walls and the hibernant species in the upper part of the walls or the ceiling, at the distance from the entrance that changes in relationship to the surface climate with the daily or seasonal influences.

From these four groups, the dipterans are the most abundant in caves and belong to trogloxenes, throglophiles and subtroglophiles (most of them).

A troglophile species, Speolepta leptogaster Winnertz (Bolithophilidae), widely distributed in European and North-American caves has larvae that spin web traps on the walls and, according to some specialists, they are predators.

Two others, Corynoptera ofenkaulis (Lngs.) and Neosciara forficulata Bezzi (Sciaridae) are distributed in caves of Europe. The tracheal system of C. ofenkaulis larvae is reduced, so that the cutaneous respiration is higher than the tracheal type.

Among the estival subtroglophiles the following can be mentioned: – Tarnania fenestralis (Meigen) (Mycetophilidae) (Pl. XVI, B); – Limonia nubeculosa Meigen (Limoniidae) (Pl. XVI, E) which during the subterranean ecophase is inactive and avoids light; – Eccoptomera emarginata Loew. (Helomyzidae).

The most frequent hibernants are: – Exechiopsis magnicauda (Lundström) (Mycetophilidae); – Culex pipiens L. (Culicidae) largely distributed and very often accompanied by another Culicidae, Theobaldia annulata Schrank; – Rhymosia fasciata (Meigen) (Pl. XVI, C); – Helomyza captiosa Gorodkov, the most frequent Helomyzidae in the subterranean environment of Europe where it prefers cold caves; – Tarnania fenestralis (Meig.) is a Mycetophilidae with predominant estivant and hibernant generations.

Exepting some individuals of Tarnania fenestralis, T. dziedzickii and Culex pipiens, none of the above mentioned species was found in Dobrogea.

The "guano fly", Thelida atricornis (Meigen) (Helomyzidae) (Pl. XVI, F), troglophile, guanophile, is frequent in caves of Europe sand North Africa and in all Romanian provinces. In caves, is less attracted by light, the muscles of its wings are reduced, its flight is short and resembles bonds (Decu, 1998).

The only possible troglobiont dipteran is Crumomyia hungarica (Duda) (Sphaeroceridae) which lives in caves of Apuseni Mts; Palearctic distribution.

Ectoparasitic dipterans. In caves with guano there are also ecotparasitic dipterans on different bat species belonging to Nycteribiidae (Nycteribia biarticulata Hermann, (PL. XVI, D); – N. schmidli Schiner; – Penicillidia dufouri Westwood, etc. to quote the most common).

HYMENOPTERA

(Collart, 1941; Constantineanu, 1959; Decu & V. Decu, 1962a; Decu et al., in Juberthie & Decu, 1994-2001; Motaș et al., 1967)

The most frequent and abundant cave hymenopterans belong to Ichneumonidae (Hemiteles and Amblyteles genera) and to Proctotrupidae (Exallonyx longicornis Ness) (Pl. XVII, B). Hemiteles is present with the species H. flavigaster Schmiedeknecht, troglophile, in caves with gunao from Dobrogea where it pests the lepidopteran Monopis crocicapitella (Clemens). The species of Exallonyx and Amblyteles [A. quadripunctorius Mueller, 1776 (Pl. XVII, A), A. armatorius (Forster, 1771) and A. palliatorius Gravenhorst, 1829] are subtroglophiles.

Pl. XVII. Hymenoptera. A – Ichneumonidae Amblyteles quadripunctorius Mueller, 1776 (after Constantineanu, 1959); B – Proctotrupidae Exallonyx longicornis Nees, female (Drawing H. Maneval, in Leruth, 1939).

The subterranean ecophase of subtroglophile hymenopterans has an estivale quiescence and a hibernale diapause (see Fig. 11). Only females enter caves and choose small horizontal cavities or the base of pits.

A. quadripunctorius (and also E. longicornis) populate the caves in the entire country with a maximum number of the first species in July and October. The two other species of Amblyteles are less frequent and populate especially caves in Transylvania.

PSOCOPTERA

(Badonnel & Lienhard, 1994)

The psocopterans are rare in caves of Romania. They inhabit preferentially old guano, relatively dry and covered with fungae. The most known species are Prionoglaris stygia (Prionoglarididae) and Psyllipsocus ramburii (Psyllipsocidae). The last one, a troglophile species, collected in caves from Dobrogea, is the only that presents adaptative features: the female has a pale body with reduced eyes, absent ocelli, rudimentary wings and reduced nervation.

SIPHONAPTERA

(Beaucournu et al., 1998, in Juberthie & Decu, 1994-2001; Prunescu C. et R. Prunescu, in Godeanu (ed.), 2011; Suciu, 1973)

Ischnopsyllidae

Ectoparasites of bats that lay in soil and guano of caves; larvae and nymphs develop in caves. Three species were collected in Romanian caves: – Ischnopsyllus hexactenus (Kolenati)/Barbastella, R. hipposideros; Nycteridopsylla eusarca (Dampf)/Nyctalus noctula, and Rhinolophopsylla unipectinata (Taschenberg), the most common on many bats, the most parasited is Rh. blasii.

Coleoptera

(Bucur, 2007; Buzilă et al., 2000-2001; Decu, 1959a, b, 1961a, b, 1962, 1963, 1964, 1967, 1980; Decu et al., 1963, 1969,1984, 1994; Ieniștea, 1955; Jeannel, 1923, 1924, 1928a, b, 1930a, b, 1931a, b; Moldovan, 1989, 1997a,b, 1998, 2000a,b, 2002, 2003, 2007, 2008; Mallasz, 1928; Moldovan et al., 1996, 2007; Nitzu, 1997, 1998, 2000; Nitzu et al., 1998, 2003, 2010, 2011, 2013; Pleșa et al., 1996; Poggi, 1994, 2013; Racovitza, 1971, 1984b, 1985, 1995, 1996, 1998-1999, 2004-2005, 2006-2007, 2009, 2010, 2011; Racovitza et al., 1975, 1982, 2002)

It is the best represented group, with 174 troglobitic species, of which 149 are endemic and another 30 are possible troglobionts. Most of them populate caves (see Table IV) but some populate only the M.S.S., with coluvic and cleithric populations. 113 taxa that represent 63% of the total belong to Leptodirinae (former Bathysciinae), and 52 (37%) to Trechinae. All Leptodirinae are blind and depigmented; among the Trechinae, some of the species still have pigmented ocular spots. The Trechinae are generally lapidicolous and riparian and develop large populations in the talus deposits at the base of sinkholes. The Leptodirinae are living especially on walls or are cleithricolous; they feed on the biofilm forming on the surface of the walls (incl. mondmilch), the floor and passages of caves, and on guano and corroded calcite.

The beetles populate all the five biospeological provinces.

Fig. 7. A: Diagram of the subterranean and epigeic ecophases (average length) of the main subtroglophiles from Oltenia (South-West Romania). B: General diagram of the air currents circulation in the vestibular area of the horizontal caves, summer and winter (ex. a. c. = exogenous air current; en. a. c. = endogenous air current; w. a. c. = warm air current; l. a. c. = lukewarm air current; c. a. c. = cool air current; c. z. a. c. = crossing zone of the air current ) (after Decu, 1998).

Pl. XVIII. Troglobiotic Coleoptera from Southern Carpathians. Leptodirinae: A – Cloșania orghidani Decu, 1959 (x 12); B – Tismanella chappuisi Jeannel, 1928 (x 13); C – Mehadiella paveli Fridvaldszky, 1880 (x 30); D -– Sophrochaeta oltenica Jeannel & Mallasz, 1930 (x 16). Trechinae: E – Duvalius spinifer Jeannel, 1928 (x 10) (Photos George Nazareanu).

Pl. XIX. Troglobitic Coleoptera. Leptodirinae (A-C) and Trechinae (D, E) from Apuseni (A-D) and Banat Mountains (E). A – Pholeuon leptoderum biroi Csiki, 1912 (~ x9); B – Pholeuon knirschi glaciale (Jeannel, 1923)

(~ x9); C – Drimeotus chyzeri Biro, 1897 (~ x14); D – Duvalius sziladyi Csiki, 1904 (~ x9); E – Duvalius milleri Frivaldszky, 1862 (~ x13) (Photos George Nazareanu).

Carabidae Trechinae

In Eastern and Southern Carpathians (east from the Olt valley) there is only Duvalius (Duvalidius) belonging to procerus group and Duvaliopsis. In the Duvalius procerus Pütz group belongs: – D. delamarei Decu in caves of the Stogu-Vânturarița massif and which is the only species of the group that crossed the Olt valley; – D. deubelianus Csiki of the Piatra Craiului Mts.; – D. onaci Moldovan of the Someșan Plateau. Duvaliopsis is represented by D. transylvanicus Csiki in caves of the massifs near Brașov and Vârghișului Gorges.

The caves in the Southern Carpathians between Olt and and the corridor formed by the Timiș – Cerna valleys are populated by 20 Trechinae of Duvalius (Duvaliotes) budai group (D. budai Kenderesy; – D. chicioarae Jeannel; – D. coiffaiti Decu; – D. hegedusi Frivaldszky; – D. herculis J. Frivaldszky; D. nanus Jeannel; – D. oltenicus Jeannel; – D. spiessi Jeannel; – D. spinifer Jeannel; – D. stilleri Reitter; – D. voitestii Jeannel), and two species of the group Duvalius (Duvalidius) (D. gaali Mallasz from caves of the Jiul de Vest, and D. poporogui Decu of the Parâng Mountain).

The Banat Mountains shelter only two troglobitic beetles: the Trechinae Duvalius (Duvaliotes) milleri Frivaldszky, and the Leptodirinae Banatiola vandeli Decu.

The Apuseni Mountains have the highest number of troglobitic beetles, Trechinae and Leptodirinae. There are 24 taxa of Trechinae belonging to Duvalius (Duvaliotes) redtenbacheri group [D. cognatus Frivaldszky; – D. hickeri Knirsch; – D. mallaszi Csiki; – D. mandibularis Jeannel; – D. paroecus Frivaldszky; – D. redtenbacheri E. & J. Frivaldszky; – D. sziladyi Csiki]; and to Chaetoduvalius (C. saetosus amblygonus Jeannel, a rare subspecies). D. cognatus is a most interesting Trechinae from the standpoint of variation; it is probably in the middle of its subterranean evolution and widespread in the subterranean superficial habitats from where it was collected in drills and by washing scree samples.

Carabidae Scaritinae

– Clivina subterranea Decu et al., described from Movile cave in Southern Dobrogea; small species, with slightly reduced eyes, with the sensory equipment adapted to life in narrow voids of the Dobrogea karst, from where they enter the cave.

Carabidae Bembidiinae

From this subfamily Limnastis galilaeus, species with circum-mediterranean distribution, was found only in the drills near Movile cave, at -10m and -13m in depth. Is a cleithricolous species. In Europe it is found in hydrothermal regions. In east Africa the genus has blind species, and in Canary Islands, cave species live in lava tubes. First recording in the Romania fauna (See Chap. III.2.4.).

Carabidae Zuphiinae

From this subfamily, with troglobiontic representatives in Itlay, Brazil and Australia, few individuals of Parazuphium chevrolati were found in the same drills as L. galilaeus. Is a cleithricolous species. The species is predominantly west-mediterranean; isolated populations inhabit Eastern and Central Europe, in areas near thermal aquifers. In Romania she has been recorded in others two hydrothermale zones: Deva – Geoagiu and Băile Herculane (See Chap. III.2.4.).

Cholevidae Leptodirinae (Bathysciinae)

The Southern Carpathians, west from the Olt valley, and the Banat Mountains are inhabited by the Sophrochaeta phyletic lineages, very homogenous group and separated from the Drimeotus phyletic lineages.

● Sophrochaeta: with 23 troglobionts or possible troglobionts in the biospelological zones 5 to 14, fig. 16 (S. chappuisi Jeannel; – S. dacica Ieniștea; – S. insignis J. Frivaldszky; – S. motasi Decu; – S. jeanneli Decu; – S. longicornis Jeannel – S. obtusa Jeannel; – S. oltenica Jeannel; – S. orghidani Ieniștea; – S. racovitzai Decu; – S. reitteri Frivaldszky, with 3 subspecies: S. r. mallaszi Bokor; S. r. paralella Jeannel; S. r. retezati Mallász).

Several species of Sophrochaeta were found in the M.S.S. : – S. globosa Jeannel (collected in the M.S.S. of the Basarabilor valley); – S. kovalitzkyi Knirsch; – S. merkli Fridvaldszky; – S. mihoki Bokor; – S. rothi Jeannel; which represent taxa characteristic or possible characteristic for this habitat (see Chap. III.2.3).

● Banatiola vandeli Decu; it is the only Leptodirinae from Banat Mts. (known from a single station, zone 17, Fig. 16); they dig small holes in the desintegrated calcite and probably feed on microorganisms; it is the most fragile Leptodirinae of the country; it is related to Rhodopiola from Rhodopi Mountains, Bulgaria;

● Closania with two species: – C. orghidani Decu from the caves of the Mehedinti Plateau, and – C. winkleri Jeannel, with 2 subspecies (- C. w. elongata Jeannel, from caves of the Mehedinți Mountains (zones 11 and 12, fig. 16), and – C. w. planicollis Jeannel inhabiting one cave in Vâlcan Mts. (zone 9, fig. 16).

Fig. 8. Biological cycle of the subtroglophile beetle Choleva angustata Fabricius, 1781.

(Orig. V. Decu, after S. Deleurance, 1959). Ph. I, Ph. II, Ph. III: phases of the cycle.

● Mehadiella. In the M.S.S. of the Cerna valley influenced by hydrothermalism very numerous individuals of M. paveli Frivaldszky were sampled, and they are typical for this habitat.

● Tismanella with two species: – T. chappuisi Jeannel with 3 subspecies (T. c. arcuata Jeannel, T. c. convexipennis Jeannel, T. c. diversa Decu) – and T. winkleriana Jeannel. They populate the upper bassin of the Tismana (Valcan Mts.).

Sophrochaeta is the most widespread being present throughout the 2nd biospeleological province. Compared to Closania and Tismanella that have not exceeded eastward the Jiu valley, Sophrochaeta spread to the Olt valley (in Capatanei Mts.).

In the Apuseni Mts. 77 species and subspecies of Leptodirinae are inventoried and belong to the Drimeotus phyletic lineages (Drimeotus, Pholeuon and Protopholeuon). Most of them (~70%) are in the Bihor Mountains (zone 20).

● Drimeotus

As in the case of Sophrochaeta, many species of Drimeotus have troglobiont populations in caves and M.S.S. or only M.S.S. Both genera are less adapted to caves in comparison to Closania, Tismanella or Pholeuon. Moreover, we believe that all species of Sophrochaeta and Drimeotus, and also of many Duvalius which have not been found in caves, should be considered as M.S.S. troglobionts.

Pl. XX. Troglobitic Coleoptera. Carabidae Scaritinae. A – Clivina subterranea Decu, Nitzu et Juberthie., 1994; Staphylinidae. B – Tychobythinus sulphydricus Poggi, 2013; C – Decumarellus sarbui Poggi, 1994; D – Bryaxis goliath (Jeannel, 1922); E – Bryaxis dolosus Poggi & Sârbu, 2013; F – Medon dobrogicus Decu & Georgescu, 1994.

The 36 species and subspecies are located mostly in the Bihor Mts. (zone 20, Fig. 16), Pădurea Craiului Mts. (zone 22, Fig. 16) and some in Trascău Mts. (zone 19, Fig. 16).

The species of the zone 20 are: – D. hickeri Knirsch; – D. laevimarginatus Moczarski with 7 subspecies: – D. mihoki Csiki, with 4 subspecies: – D. winkleri Jeannel; – D. breiti Jeannel; – D. entzi chappuisi Winkler; – D. (Fericeus) kraatzi J. & E Frivaldszky; – D. (Trichopharis) blidarius Jeannel.

The species of the zone 22 are: – D. bokori Csiki; – D. chyzeri Biró; – D. entzi Biró of the Misid basin; – D. horvathi Biró; – D. kovacsi Miller; – D. octaviani Moldovan from a cave in Boiului-Ponoare valley; – D. osoiensis Moldovan; – D. plesai Moldovan; – D. puscariui Jeannel; – D. viehmanni (Ieniștea,) from caves of the Iada basin; – D. racovitzai Moldovan; – D thoracicus (Knirsh).

The species of the zone 19 are: – D. (Drimeotus) attenuatus Bokor; – D. (D.) ormayi Reitter.

● Pholeuon

The phyletic lineages of Drimeotus was revised by Racovitza: 1993, 1996, 1998-1999, 2004-2005, 2006-2007, 2009, 2010, 2011 and Moldovan: 1989, 2000a, 2007), by multifactorial analyses and from genetical point of view by Bucur (2007), Buzila et al. (2000-2001), etc.

The 41 species and subspecies of Pholeuon phyletic line are all troglobionts and almost all inhabit caves of the Bihor Mts. (zone 20, Fig. 16). The about one hundred caves of the Someșul Cald basin, at the northern limit of the Bihor Mts., are exclusively populated by Pholeuon angusticolle Hampe and its 6 subspecies; – P. knirschi Breit of the Arieș basin in the central part of the Bihor Mts., with its 15 subspecies, of which P. k. glaciale Jeannel from Scărișoara Ice cave and many caves around this cave were ecologically studied by Racovitza, 1980; – P. leptoderum Frivaldszky with 10 subspecies.

The caves of the zone 22 (Padurea Craiului Mts) are populated by: – P. (Parapholeuon) angustiventre Racovitza; – P. (P.) gracile Frivaldszky with 2 subspecies; – P. (P.) moczaryi Csiki of four caves in the Crișul Repede basin. The Leptodirinae and Trechinae inhabiting this area are more advanced in underground evolution than taxa of the zone 20, which is wetter and colder.

The species of the zone 21 (Codru Moma Mts.) are: P. (Mesopholeuon) comani Ieniștea, known from two caves.

The species of the zone 18 (Metaliferi Mts.) is : – Protopholeuon hungaricum Csiki from Peștera Lucia.

Cholevinae

Among the 50 Cholevinae taxa known from Romania (Nitzu, 2013), Choleva, Catops and Nargus are the three genera that have troglophile representatives or estivant subtroglophiles often cited from Carpathian subterranean habitats (especially the Apuseni Mountains and the South-Western Carpathians), they also have pholeicolous, colluvicolous or cleithricolous populations. The following species can be mentioned: Choleva angustata with the biological cyle presented in Fig. 12, Ch. cisteloides (Frolich), Ch. cisteloides dacica Jeannel, Ch. glauca Britten, Ch. oblonga Latreille, Catops tritis (Panzer), C. picipes (Fabricius), C. longulus Kellner, Nargus badius (Sturm).

Staphylinidae

Two species, one troglobiont Medon dobrogicus Decu & Georgescu, and one possible cleitrobiont M. paradobrogicus Decu & Georgescu, were described from Movile area.

– Bryaxis goliath (Jeannel), from Corobana Mândrutului cave, possible troglobiont; males have reduced eyes and females are probably eyeless; the genus is Palearctic, with over 250 species, of which some were mentioned from caves;

– B. dolosus Poggi & Sârbu, troglobiont, endemic for Movile cave; body testaceous and eyes lacking; other species of Bryaxis found in the Carpathians are edaphic;

– Decumarellus sârbui Poggi, troglobiont endemic for Movile cave; the genus is closely related to the genus Marellus from northern and eastern Africa; – Tychobythinus sulphydricus Poggi & Sârbu, troglobiont from Movile cave; body testaceous and eyes lacking (see Chap. III.2.4); the genus is holarctic with more than 80 eyeless species, mostly from caves.

Troglophile guanophile predator beetles are Atheta Thomson, Aleochara Gravenhorst, Quedius mesomelinus Marsham (one of the guanophilous staphylinids very frequent in European and U.S.A. caves).

Fig. 9. Distribution of the terrestrial troglobitic fauna in Romania: general view. I-V = Biospeological provinces.

Black rounds = caves and zones of caves (see also fig. 16) (After Decu, 1967; Decu et Iliffe, 1984).

Ecology and biology of Romanian subterranean Coleoptera

Numerous studies were dedicated to the subterranean Coleoptera ecology, habitat, developmental biology, behaviour and sex recognition, sensitive modifications as adaptation to habitat, cytology, anatomy and genetics. (Bucur, 2007; Bucur et al, 2003; Buzila et al., 1997, 2000, 2000-2001; Decu, 1961; Decu & Juberthie, 1969; Decu & Papacostea, 1964; Juberthie & Decu, 1970; Moldovan, 1998, 2000c, 2003; Moldovan et al., 1996; Nitzu & Juberthie, 1996; Pleșa, 1969; Racovitza, 1971, 1973, 1978, 1980, 1984b, 1993; Racovitza & Șerban, 1975, 1982).

The study of G. Racovitza and G. Racovitza & M. Șerban on the ecology and seasonal variations of Pholeuon knirschi glaciale populations from the scientific reserves of the Scărișoara Ice cave (Fig. 3), on Pholeuon moczaryi of Vadu-Crișului cave, and on Drimeotus viehmanni in Peștera cu Apa din Valea Lesului focused on the causes of such variations.

The study of G. Racovitza on the sexual and feeding behaviour, and on the activity rythm at Pholeuon leptoderum hazayi and Pholeuon knirschi glaciale were undertaken in the cave-laboratory of Moulis.

The study of R. Buzilă & G. Racovitza of the male genitalia of Tismanella chappuisi, Drimeotus viehmanni, D. mihoki, D. kraatzi, Pholeuon gracile and P. proserpinae (Leptodirinae) of the Apuseni Mountains.

Studies of V. Decu and V. Decu & P. Papacostea on the internal morphology of Leptodirini from the phyletic line of Sophrochaeta Reitter.

V. Decu in collaboration with C. Juberthie has found, by keeping Sophrochaeta oltenica in the cave-laboratory of Moulis, a type K reproduction type, females laying one big egg in one clutch and the first larvae depending on the vitellin reserves, as was obtained on other French species with contracted or intermediary reproduction cycle.

The study in Moulis by C. Juberthie & V. Decu on the neurosecretory cells of the brain and nerve chain in Closania winkleri; the neurosecretory system developed normally, without anatomical regressions that could have been attributed to subterranean lifestyle.

The studies of O. Moldovan of the sexual behaviour on Drimeotus puscariui, D. viehmanni, D. kovacsi, D. bokori in the cave-laboratory of Moulis were completed with behavioural and biochemical investigations on sex recognition by using cuticular hydrocarbons (isolated through Gas Chromatography, Mass Spectrometry in the Orsay University, Paris); the sexual behaviour proved to be influenced by the pheromonal sex recognition. The sensory equipment is important for space and partner recognition in caves and other subsurface habitats, allowing a distant recognition of chemical information.

The study of R. Buzila & O. Moldovan on the sensory equipment of antennae in two Leptodirinae of the Apuseni Mountains.

The study in Moulis of E. Nitzu in collaboration with C. Juberthie defined the changes of the sensory equipment of six species of Clivininae as a function of the voids volume in their habitat ; the mechanical reception by contact is dominant for species that live in microspaces and narrow voids of the rocks or that dig small galeries.

The studies of R. Buzila, G. Racovitza & A. Seitz, R. Bucur and R. Bucur et al. on genetics of Leptodirinae of the Drimeotus phyletic lineages. Among the obtained results are those on Pholeuon: Pholeuon angusticolle and P. leptoderum are well defined taxonomic entities (individual clades) while P. knirschi and P. proserpinae represent one species (Bucur, 2007).

Table IV. Stygobiont taxa, specifics and probables, from Romania; ?● = probable stygobiont.

Turbellaria – Tricladida

Dendrocoelidae

Dendrocoelum (Apodendrocoelum) brachyphallus (de Beauchamp, 1929)

Dendrocoelum (Apodendrocoelum) lipophallus (de Beauchamp, 1929)

Dendrocoelum (Dendrocoelides) alexandrinae Codreanu & Balcesco, 1970

Dendrocoelum (Dendrocoelides) atricostrictum Codreanu & Balcesco, 1967

Dendrocoelum (Dendrocoelides) banaticum Codreanu & Balcesco, 1967

Dendrocoelum (Dendrocoelides) chappuiisi (de Beauchamp, 1932)

Dendrocoelum (Dendrocoelides) clujanum Codreanu, 1943

Dendrocoelum (Dendrocoelides) debeauchampianum Codreanu & Balcesco, 1967

Dendrocoelum (Dendrocoelides) orghidani Codreanu & Balcesco, 1967

Dendrocoelum (Dendrocoelides) polymorphum Codreanu & Balcesco, 1967

Dendrocoelum (Dendrocoelides) racovitzai de Beauchamp, 1949

Dendrocoelum (Dendrocoelides) sphaerophallus (de Beauchamp, 1929)

Dendrocoelum (Dendrocoelides) stenophallus Codreanu & Balcescu, 1967

Dendrocoelum (Dendrocoelides) tismanae Codreanu & Balcesco, 1967

Dendrocoelum (Eudendrocoelum) Botoșăneanui del Papa, 1965

Dendrocoelum (Paleodendrocoelum) geticum Codreanu & Balcesco, 1970

Dendrocoelum (Paleodendrocoelum) romanodanubiale (Codreanu, 1949)

Dendrocoelum (Polycladodes) affine Codreanu & Balcesco, 1970

Dendrocoelum (Polycladodes) album (Steinmann, 1910)

Dendrocoelum (Polycladodes) voinovi (Codreanu, 1929)

Planariidae

Atrioplanaria racovitzai (de Beauchamp, 1928)

Nematoda

Chronogasteridae

Chronogaster troglodytes Poinar & Sârbu, 1994 (Pl. III, C)

Panagrolaimidae

Panagroilaimus n. sp.

Rhabditidae

Protorhabditis n. sp.

Gastropoda

Hydrobiidae

Paladilhiopsis carpathica (Soòs, 1940)

Paladilhiopsis leruthi (C. Boettger, 1940)

Paladilhiopsis transsylvanica (Rotarides, 1943)

Moitessieridae

Heleobia dobrogica (Grossu & Negrea, 1989) (Pl. I, B; III, D)

Polychaeta – Archiannelida

Nerillidae

Troglochaetus beranecki Delachaux, 1921(Pl. III, A)

Oligochaeta

Haplotaxidae

Delaya bureschi Michaelsen, 1725

Lumbriculidae

Lamprodrilus michaelseni carpaticus Botea, 1978

Trichodrilus pragaensis Vejdovsky, 1875

Hirudinea

Haemopidae

Haemopis caeca Manoleli, Klemm & Sârbu, 1998 (Pl. I, C; III, B)

Cladocera

Macrothricidae

Mocrothrix bialatus Motaș & Orghidan, 1948

Ostracoda (editing by S. Iepure)

Candonidae

Cryptocandona kieferi (Klie, 1938)

Cryptocandona matris (Sywula, 1976)

Fabaeformiscandona breuili (Paris, 1920)

Fabaeformiscandona birisiaca (Klie, 1938)

Mixtacandona botoșăneanui Danielopol, 1978

Mixtacandnua chappuisi (Klie, 1943)

Mixtacandona pietrosanii Danielopol & Cvetkov, 1978

Mixtacandona löffleri Danielopol, 1978

Mixtacandona tabacarui Danielopol & Cvetkov, 1978

Nannocandona afinis faba Ekman, 1914

Phreatocandona Motași Danielopol, 1973 (Pl. III, F)

Pseudocandona eremita (Vejdovsky, 1880)

Pseudocandona serbani Danielopol, 1982

Pseudocandona zschokkei (Wolf, 1919)

Cyprididae

Cavernocypris subterranea (Wolf, 1920)

Darwinulidae

Vestalenula boteai (Danielopol, 1970)

Limnocytheridae

Kovalevskiella phreaticola (Danielopol, 1965) (Pl. III, G)

Copepoda (editing by S. Iepure)

Cyclopidae

Acanthocyclops balcanicus bisaetosus Iepure, 2001

Acanthocyclops freaticus (Chappuis, 1928)

Acanthocyclops kieferi (Chappuis, 1925)

Acanthocyclops milotai Iepure & Defaye, 2008

Acanthocyclopsp pleșai Iepure, 2001

Acanthocyclops reductus reductus (Chappuis, 1925)

Acanthocyclops reductus propinquus Pleșa, 1957 (Pl. III, H)

Acanthocyclops stygius deminutus (Chappuis, 1925)

Acanthocyclops stygius stygius (Chappuis, 1924)

Acanthocyclops transylvanicus Iepure & Oarga, 2011

Diacyclops languidoides clandestinus (Kiefer, 1926)

Diacyclops languidoides hypnicola Gurney, 1927

Eucyclops graeteri (Chappuis, 1927)

Eucyclops macrurus damianae (Patkovski, 1971)

Eucyclops macrurus intermedius Damian, 1955

Eucyclops subterraneus subterraneus Graeter, 1907

Eucyclops subterraneus scythicus Pleșa, 1989 (Pl. I, D)

Graeteriella unisetigera (Graeter, 1908)

Speocyclops lindbergi Damian, 1957

Speocyclops troglodytes (Chappuis, 1923)

Ameiridae

Nitocrella calcaripes Damian & Botoșăneanu, 1954

Nitocrella hirta Chappuis, 1923

Nitocrella hirta bucarestiensis Damian & Botoșăneanu, 1954

Canthocamptidae

Bryocamptus (Rheocamptus) unisaetosus Kiefer, 1930

Bryocamptus (Rheocamptus) spinulosus Borutzky, 1934

Ceuthonectes serbicus Chappuis, 1924

Elaphoidella damianae Kiefer, 1967

?● Elaphoidella elaphoides (Chappuis, 1924)

Elaphoidella gracilis serrulata Damian & Botoșăneanu, 1954

Elaphoidella juxtaputealis (Damian & Botoșăneanu, 1954)

Elaphoidella phreatica (Chappuis, 1925)

Elaphoidella pseudophreatica (Chappuis, 1928)

Elaphoidella putealis (Chappuis, 1925)

Elaphoidella romanica Kulhavy, 1969

Elaphoidella simplex Chappuis, 1944

Elaphoidella winkleri (Chappuis, 1928)

Maraenobiotus brucei carpathicus Chappuis, 1928

Spelaeocamptus spelaeus (Chappuis, 1925)

Chappuisidae

Chappuisius inopinus Kiefer, 1938

Parastenocarididae

Parastenocaris aquaeductus Chappuis, 1925

Parastenocaris banaticus Damian, 1957

Parastenocaris chappuisi Șerban, 1960

Parastenocaris clujensis Chappuis, 1925

Parastenocaris jeanneli Chappuis, 1924

Parastenocaris karamani brevicauda Damian, 1958

Parastenocaris latisetosus Damian & Botoșăneanu, 1954

Parastenocaris minuta Chappuis, 1925

Parastenocaris nana Chappuis, 1925

Parastenocaris pannonica Török, 1935

Parastenocaris phreatica Chappuis, 1936

Parastenocaris subterranea Damian, 1958

Parastenocaris uncinatus Damian & Botoșăneanu, 1954

Syncarida

Bathynellidae

Antrobathynella stammeri (Jakobi, 1954) (Pl. VII, A)

Bathynella boteai Șerban, 1971

Bathynella motrensis Șerban, 1971

Bathynella natans Vejdovsky, 1882

Bathynella orghidani Șerban, 1989

Bathynella paranatans Șerban, 1971

Bathynella plesai Șerban, 1971

Bathynella scythica Botoșăneanu & Damian, 1956

Bathynella vaducrisensis Șerban, 1975

Parabathynellidae

Parabathynella motasi Dancău & Șerban, 1963

Parabathynella stygia Chappuis, 1926

Isopoda

Asellidae

Asellus aquaticus infernus Turk-Prevorčnik & Blejec, 1998 (Pl. IV, A)

Proasellus baznosanui (R. & M. Codreanu, 1962) (Pl. IV, B)

Proasellus danubialis (R. & M. Codreanu, 1962)

Proasellus elegans (R. & M. Codreanu, 1962)

Stygasellus phreaticus (Chappuis, 1943)

Microcerberidae

Microcerberus plesai Chappuis & Delamare, 1958 (Pl. IV, C)

Microparasellidae

Microcharon acherontis Chappuis, 1942

Microcharon motasi Șerban, 1964

Microcharon oltenicus Șerban, 1964

Microcharon orghidani Șerban, 1964

Amphipoda

Bogidiellidae

Bogidiella albertimagni Herzog, 1933

Bogidiella skopljensis (S. Karaman, 1933) (Pl. V, C)

Crangonyctidae

Synurella caeca caeca (Dobreanu & Manolache, 1951)

Synurella intermedia (Dobreanu, Manolache & Puscariu, 1952)

Niphargidae

Niphargopsis casparyi (Pratz, 1866) (Pl. V, A)

Niphargus ablaskiri romanicus Dobreanu & Manolache, 1942

Niphargus ablaskiri variabilis Dobreanu, Manolache & Puscariu, 1953

Niphargus alutensis Dancău, 1971

Niphargus andropus Schellenberg, 1940

Niphargus aquilex Schiödte, 1855

Niphargus bajuvaricus bajuvaricus Schellenberg, 1932

Niphargus bihorensis Schellenberg, 1940

Niphargus carpathicus affinis Dobreanu, Manolache & Puscariu, 1953

Niphargus carpathicus carpathicus Dobreanu, Manolache & Puscariu, 1939

Niphargus carpathicus cavernicolus Dobreanu & Manolache, 1957

Niphargus dacicus Dancău, 1963

Niphargus decui Karaman & Sârbu, 1995

Niphargus dobrogicus Dancău, 1964

Niphargus effosus Dudich, 1943

Niphargus foreli Humbert, 1877

Niphargus gallicus Schellenberg, 1935

Niphargus hrabei S. Karaman, 1932

Niphargus illidzensis pannonicus S. Karaman, 1950

Niphargus incertus Dobreanu, Manolache & Puscariu, 1951

Niphargus kochianus petrosani Dobreanu & Manolache , 1933

Niphargus korosensis Dudich, 1943

Niphargus laticaudatus Schellenberg, 1940

Niphargus moldavicus Dobreanu, Manolache & Puscariu, 1953

Niphargus parapupetta Karaman, 1984

Niphargus phreaticolus Motaș, Dobreanu & Manolache, 1948

Niphargus ponoricus Dancău, 1963

Niphargus pseudokochianus Dobreanu, Manolache & Puscariu, 1953

Niphargus pupetta (Sket, 1962)

Niphargus puteanus baloghi Dudich, 1940

Niphargus puteanus banaticus Dobreanu & Manolache, 1936

Niphargus serbicus S. Karaman, 1960

Niphargus somesensis Motaș, Dobreanu & Manolache, 1948

Niphargus stygius Schiödte, 1847

Niphargus stygocharis stygocharis Dudich, 1943

Niphargus tauri jurinaci S. Karaman, 1950

Niphargus tenuicaudatus Schellenberg, 1940

Niphargus transsylvanicus Schellenberg, 1934

Pontoniphargus racovitzai Dancău, 1970

Pontoniphargus ruffoi Karaman & Sârbu, 1996

Karamaniella pupetta (Sket, 1962)

Hydracharina

Limnohalacaridae

Lobohalacarus weberi quadriporus (Walter, 1947)

Parasoldanellonyx typhlops Viets, 1933

Soldanellonyx chappuisi Walter, 1919

Stygothrombidiidae

Charanothrombium racovitzai Motaș & Tanasachi, 1946 (Pl. VI, D)

Stygothrombium chappuisi Walter, 1947

Anisitsiellidae

Bandakia corsica E. Angelier, 1951

Arrenuridae

Arrenurus haplurus Viets, 1925

Arrenurus lundbladianus Motaș & Tanasachi, 1958

Athienemanniidae

Phreatohydracarus mosticus Tanasachi & Orghidan, 1955

Stygohydracarus subterraneus Walter, 1947

Stygohydracarus troglobius Viets, 1932

Aturidae

Albaxona lundbladi Motaș & Tanasachi, 1948 (Pl. VI, E)

Albaxona minuta Szalay, 1944

?● Aturus fontinalis Lundblad, 1930

Aturus karamani Viets, 1936

Aturus paucisetus Motaș & Tanasachi, 1946

Axonopsis inferorum Motaș & Tanasachi, 1947 (Pl. VI, A)

Axonopsis vietsi Motaș & Tanasachi, 1947

Frontipodopsis reticulatifrons Szalay, 1945

Erebaxonopsis brevis Motaș et Tanasachi, 1947 (Pl. VI, B)

Kongsbergia alata Szalay, 1945

Kongsbergia bombifrons Szalay, 1945

Kongsbergia clypeata Szalay, 1945

Kongsbergia dentata Motaș & Tanasachi, 1958

Kongsbergia d-motasi Motaș & Tanasachi, 1958

Kongsbergia pectinigera Motaș & Tanasachi, 1946

Kongsbergia pectinigera sinusa Motaș & Tanasachi, 1947

Kongsbergia pusilla Motaș & Tanasachi, 1946

Kongsbergia ruttneri Walter, 1930

Letaxona cavifrons Szalay, 1943

Bogatiidae

Bogatia maxillaris Motaș & Tanasachi, 1948

Chappuisididae

Chappuisides hungaricus Szalay, 1943

Chappuisides thienemanni Motaș, 1959

Feltriidae

Feltria cornuta paucipora Szalay, 1946

Feltria mira (Motaș & Tanasachi, 1948)

Feltria pectinifera Szalay, 1946

?● Feltria romijni Besseling, 1930

Hungarohydracaridae

Balcanohydracarus alveolatus Motaș & Tanasachi, 1948

Hungarohydracarus subterraneus Szalay, 1943 (Pl. VI, C)

Hydryphantidae

Dacothyas savulescui Motaș, 1959

Tartarothyas fonticola (Motaș & Tanasachi, 1957)

Tartarothyas micrommata Viets, 1934

Wandesia stygophila Szalay, 1944

Wandesia thori Schechtel, 1912

Hygrobatidae

Atractides cisternarum (Viets, 1935)

Atractides elegans (Motaș & Tanasachi, 1948)

?● Atractides ellipticus Maglio, 1909

?● Atractides jeanneli Motaș & Tanasachi, 1947

Atractides latipalpis (Motaș & Tanasachi, 1948)

Atractides latipes (Szalay, 1935)

Atractides microphthalmus (Motaș & Tanasachi, 1946)

Atractides nodipalpis (Thor, 1899)

Atractides orghidani (Motaș & Tanasachi, 1948) (Pl. VI, F)

Atractides magnirostris (Motaș & Tanasachi, 1948)

Atractides phreaticus (Motaș & Tanasachi, 1948)

Atractides primitivus (Walter, 1947)

Atractides prosiliens (Motaș & Tanasachi, 1948)

Atractides pumilus (Szalay, 1946)

Atractides pygmaeus (Motaș & Tanasachi, 1948)

Atractides sokolowi (Motaș & Tanasachi, 1948)

Atractides subterraneus obovalis (Szalay, 1946)

Atractides szalayi (Motaș & Tanasachi, 1948)

Limnesiidae

Kawamuracarus chappuisi Motaș & Tanasachi, 1946

Mideopsidae

Mideopsis fonticola Tanasachi & Orghidan, 1955

Mideopsis longipalpis Szalay, 1945

Mideopsis orbicularis Müller, 1776

Momoniidae

Stygomomonia latipes Szalay, 1943

Neoacaridae

Neoacarus hibernicus Halbert, 1944

Neoacarus stygobius Motaș & Tanasachi, 1947

Torenticolidae

Torenticola andrei (E. Angelier, 1949)

Torenticola jeanneli Motaș & Tanasachi, 1947

Torenticola madritensis (Viets, 1930)

Torenticola ramigera Szalay, 1947

Torenticola ungeri Szalay, 1927

Torenticola vaga Szalay, 1947

Heteroptera

Nepidae

Nepa anophthalma Decu, Gruia & Sârbu, 1994 (Pl. I, A)

Table V. Paleo- and neotroglobiont taxa, specifics and probables, inhabiting the natural and artificial subterranean cavities and in the M.S.S. Note: ●● = troglobiont inhabiting the caves and the M.S.S.; ?●?● = probable troglobiont; ●* = troglobiont inhabiting natural and artificial cavities. Fig. 16: 1-25 = biospeological zones.

Gastropoda

Argnidae

?● Agardhiella crasslabris (Grossu & Negrea, 1968)

?● Agardhiella densicostata (Grossu & Negrea, 1968)

?● Agardhiella grossui (Zilch, 1958)

?● Agardhiella nana (Grossu & Negrea, 1968)

?● Agardhiella parreyssi armata (Clessin, 1887)

Daudebardiidae

?● Daudebardia (Libania) spelaea Grossu, 1960

Isopoda

Armadillidiidae

Armadillidium tabacarui Gruia, Iavorschi & Sârbu, 1998 (Pl. II, A; VII, C)

Mesoniscidae

●● Mesoniscus graniger graniger (Frivaldszky, 1865) (Pl. VII, F)

●● Mesoniscus graniger dragani Giurginca, 2003

Scleropactidae

● Kithironiscus dobrogicus Tăbacaru & Giurginca, 2003

Trachelipodidae

Trachelipus troglobius Tabacaru & Boghean, 1989 (Pl. VII, D)

Trichoniscidae

Banatoniscus karbani Tabacaru, 1991

Biharoniscus fericeus Tabacaru, 1973

Biharoniscus racovitzai Tabacaru, 1963

Caucasonethes vandeli Tabacaru, 1993

●● Caucasonethes n. sp.

Haplophthalmus caecus Radu, Radu & Cadariu, 1955

Haplophthalmus movilae Gruia & Giurginca, 1998

Haplophthalmus tismanicus Tabacaru, 1970 (Pl. VII, B)

Thaumatoniscellus orghidani Tabacaru, 1973

Trichoniscus dancaui Tabacaru. 1996

●?● Trichoniscus inferus Verhoeff, 1908

Trichoniscus racovitzai Tabacaru, 1994

Trichoniscus tuberculatus Tabacaru, 1996

Trichoniscus vandeli Tabacaru, 1996 (Pl. VII, E)

Pseudoscorpiones

Chthoniidae

?● Chthonius decoui Georgescu & Căpușe, 1994

●● Chthonius monicae Boghean, 1989 (Pl. VIII, D)

?● Chthonius scyticus Georgescu & Căpușe, 1994

Chthonius vandeli Dumitresco et Orghidan, 1964

● Mundochthonius decui Dumitrescu & Orghidan, 1970

Neobisiidae

?● Acanthocreagris callaticola Dumitrescu & Orghidan, 1964 (Pl. VIII, C)

Neobisium beieri Dumitrescu & Orghidan, 1970

?● Neobisium biharicum Beier, 1939 (Pl. VIII, B)

?● Neobisium blothroides (Tömösvary, 1882)

Neobisium brevipes (J. Frivaldszky, 1865)

?● Neobisium brevipes montanum Beier, 1939

Neobisium Cloșanicus Dumitrescu & Orghidan, 1970 (Pl. VIII, A)

Neobisium leruthi Beier, 1939

Neobisium maxbeieri Dumitrescu & Orghidan, 1970

Neobisium minutum (Tömösvary, 1882)

Roncus babadochiae Curcic & Dimitrijevic, 2005

Roncus ciobanmos Curcic, Poinar & Sârbu, 1993

?● Roncus craciun Curcic & Dimitrijevic, 2005

?● Roncus decui Curcic & Dimitrijevic, 2005

Roncus dragobete Curcic, Poinar & Sârbu, 1993 (Pl. II, C)

●?● Roncus zeumos Curcic & Dimitrijevic, 2005

Araneae

Hahniidae

Hahnia caeca (Georgescu & Sârbu, 1992) (Pl. X, B)

Linyphiidae

?● Centromerus albidus Simon, 1928

Centromerus chappuisi Fage, 1931

Centromerus dacicus Dumitrescu & Georgescu, 1980 (Pl. X, A)

?● Centromerus jacksoni Denis, 1952

Leptyphantes bureschi carpaticus Dumitrescu & Georgescu, 1970

Leptyphantes constantinescui Georgescu, 1989

Porrhomma kolosvary Miller & Kratochvil, 1940

Porrhomma microphthalmum (O. P. Cambridge, 1871)

?●● Troglohyphantes herculanus (Kulczynski, 1894)

Troglohyphantes jeanneli Dumitrescu & Georgescu, 1970

Troglohyphantes orghidani Dumitrescu & Georgescu, 1977 (Pl. XI, C)

Troglohyphantes racovitzai Dumitrescu, 1970

Nesticidae

Nesticus balacescui Dumitrescu, 1979

Nesticus biroi Kulczynski, 1894

Nesticus carpaticus Dumitrescu, 1979

Nesticus cernensis Dumitrescu, 1979

Nesticus constantinescui Dumitrescu, 1979

Nesticus diaconui Dumitrescu, 1979

Nesticus fodinarum Kulczynski, 1894

Nesticus hungaricus Chyzer, 1894

Nesticus ionescui Dumitrescu, 1979 (Pl. X, C)

Nesticus orghidani Dumitrescu, 1979

Nesticus Pleșai Dumitrescu, 1980

Nesticus puteorum (Kulczynski, 1894)

?● Nesticus racovitzai Dumitrescu, 1980

Nesticus simoni (Fage, 1931)

?● Nesticus spelaeus (Szombathy, 1917)

Nesticus wiehlei Dumitrescu, 1979

Nesticus n. sp.

Liocranidae

●● Agraecina cristiani (Georgescu, 1989) (Pl. II, B; X, D)

Micryphantidae

Caviphantes dobrogica (Dumitrescu & Miller, 1962) (Pl. XI, A)

Mysmenidae

?● Trogloneta granulum Simon, 1922

Theridiidae

Carniella mihaili (Georgescu, 1989)

Palpigradida

Eukoeneniidae

Eukoenenia condei Orghidan, Georgescu & Sârbu, 1982

Eukoenenia margaretae Orghidan, Georgescu & Sârbu, 1982 (Pl. XII, A)

Eukoenenia cf. austriaca Hansen, 1905

Acari

Hermanniellidae

?● Hermanniella multipora Sitnikova, 1973

Labidostomidae

?● Labistoma motasi Iavorschi, 1992

Lohmanniidae

?● Papillacarus ondriasi Mahunka, 1974

Oppiidae

●?● Lasiobelba pontica Vasiliu & Ivan, 2011 (Pl. XII, D)

Multioppia callatisiana Vasiliu & Ivan, 2011

Rhagidiidae

Poecilophysis spelaea (Wankel, 1861)

Rhagidia longipes Trägardh, 1912 (Pl. XII, B)

Uropodidae

Chiropturopoda cavernicola Hutzu, 1997 (Pl. XII, C)

Chilopoda

Lithobiidae

?● Harpolithobius dentatus Matic, 1957

Harpolithobius oltenicus Negrea, 1962

Lithobius dacicus (Matic, 1959)

Lithobius decapolitus Matic, Negrea & Prunescu, 1962 (Pl. XIII, D)

?● Monotarsobius spelaeus (Negrea, 1963)

Diplopoda

Anthroleucosomatidae

Anthroleucosoma banaticum Verhoeff, 1899

Anthroleucosoma (Heteranthroleucosoma) spelaea Ceuca, 1964

Banatosoma ocellatus (Tabacaru, 1967)

Dacosoma motasi Tabacaru, 1967

Haaseidae

●● Haasea hungaricum orientale (Tabacaru, 1965)

Romanosoma cavernicola Ceuca, 1967

?● Romanosoma birtei Ceuca, 1967

Julidae

●● Archiboreoiulus n. sp.

Apfelbeckiella dobrogica Tabacaru, 1966

Banatoiulius troglobius Tabacaru, 1985

Lamellotyphlus mehedintzensis (Tabacaru, 1976)

Typhloiulus (Spelaeoblaniulus) Șerbani Ceuca, 1956

Typhloiulus (S.) serbani unilineatus (Ceuca, 1961)

Polydesmidae

?● Polydesmus microcomplanatus Negrea & Tabacaru, 1958

Polydesmus (Spanobrachium) oltenicus Negrea & Tabacaru, 1958 (Pl. XIII, C)

Trachysphaeridae

Trachysphaera biharica (Ceuca, 1961)

?●?● Trachysphaera costata (Waga, 1857) (Pl. XIII, B)

Trachysphaera dobrogica (Tabacaru, 1960)

Trachysphaera jonescui (Brölemann, 1914) (Pl. XIII, B)

Trachysphaera jonescui isvernae Tabacaru, 1989

Trachysphaera jonescui tismanaeTabacaru, 1989

Trachysphaera orghidani (Tabacaru, 1958) (Pl. XIII, A)

Trachysphaera racovitzai (Tabacaru, 1960)

Trachysphaera spelaea (Tăbacaru, 1960)

Trichopolydesmidae

Banatodesmus jeanneli (Tabacaru, 1980)

Napocodesmus florentzae Tabacaru, 1975

Trichopolydesmus eremitis Verhoeff, 1898

Collembola

Entomobryidae

Heteromurus noseki Mutt & Stomp, 1980

Pseudosinella racovitzai Gisin & Gama, 1971

Hypogastruridae

Acherontides cassagnaui (Thibaud, 1963) (Pl. XIV, A)

Acherontides spelaeus (Ionescu, 1922)

Acherontides tanasachiae (Gruia, 1969)

Mesogastrura ojcoviensis (Stach, 1919) (Pl. XIV, B)

Oncopoduridae

Oncopodura pegyi Gruia, 1994

●?● Oncopodura vioreli Gruia, 1989 (Pl. II, A)

Onychiuridae

Bagnallophorus orghidani (Gruia, 1967)

Deuteraphorura closanicus (Gruia, 1965) (Pl. XIV, C)

Deuteraphorura traiani Gruia & Popa, 2004-2005

Heteronychiurus borzicus (Gruia, 1999)

Onychiuroides granulosus multisetis (Gruia, 1971)

Onychiuroides postumicus (Bonet, 1931)

Onychiurus ancae Gruia, 1971

Onychiurus banaticus Gruia, 1965

Onychiurus boldorii (Denis, 1938)

Onychiurus movilae Gruia, 1989

Onychiurus meziadicus Gruia, 1972

●● Onychiurus romanicus Gruia, 1965

Paronychiurus bogheani (Gruia, 1989)

Tomoceridae

Plutomurus unidentatus (Borner, 1932)

Diplura

Campodeidae

●?● Campodea (Dicampa) neuherzi Condé, 1996

?● Campodea spelaea Ionescu, 1955

?● Plusiocampa elongata Ionescu, 1955

●?● Plusiocampa euxina Condé, 1996

●?● Plusiocampa isterina Condé, 1996

Diptera

Sphaeroceridae

?● Crumomyia hungarica Duda,1938 (Pl. XVII, A)

Coleoptera

Cholevidae – Leptodirinae

Série phylétique des Sophrochaeta Reitter:

Banatiola vandeli Decu, 1967; fig. 16 : 17

Closania orghidani Decou, 1959 ; fig. 16 : 12 (Pl. XVIII, A)

Closania winkleri Jeannel, 1928; fig. 16 : 11

Closania winkleri elongata Jeannel, 1930; fig. 16 : 11

Closania winkleri planicollis Jeannel, 1930; fig. 16 : 10

● Mehadiella paveli (J. Frivaldszky, 1880); fig. 16 : 13 (Pl. XVIII, C)

Sophrochaeta chappuisi Jeannel, 1930; fig. 16: 6

Sophrochaeta dacica Ienistea, 1955; fig. 16 : 6

● Sophrochaeta globosa Jeannel, 1928; fig. 16 : 10

●● Sophrochaeta insignis J. Fridvaldszky, 1880 ; fig. 16 : 13

●?● Sophrochaeta insignis zoltani Csiki, 1913; fig. 16 : 13

Sophrochaeta jeanneli Decou, 1959; fig. 16 : 12

?● Sophrochaeta kovalitzkyi Knirsch, 1913; fig. 16 : 14

Sophrochaeta longicornis Jeannel, 1931; fig. 16 : 9

?● Sophrochaeta merkli J. Fridvaldszky, 1883; fig. 16 : ?7

● Sophrochaeta mihoki Bokor, 1921; fig. 16 : 13

Sophrochaeta motasi Decou, 1959; fig. 16 : 12

Sophrochaeta obtusa Jeannel, 1931; fig. 16 : 9

Sophrochaeta oltenica Jeannel, 1930; fig. 16 : 11 (Pl. XVIII, D)

Sophrochaeta oltenica densepunctata Jeannel, 1931; fig. 16 : 11

Sophrochaeta orghidani Ienistea, 1955; fig. 16 : 8

Sophrochaeta racovitzai Decou, 1959; fig. 16 : 13

Sophrochaeta reitteri J. Fridvaldszky. 1884; fig. 16 : 13

Sophrochaeta reitteri mallaszi Bokor, 1928; fig. 16 : 8

Sophrochaeta reitteri parallela Jeannel, 1928; fig. 16 : 9

Sophrochaeta reitteri retezati Mallász, 1928; fig. 16 : 8

● Sophrochaeta rothi Jeannel, 1924; fig. 16 : 7

Sophrochaeta subaspera Jeannel, 1928; fig. 16 :10

Sophrochaeta subaspera articolis Jeannel, 1931; fig. 16 : 10

?● Sophrochaeta sp.; fig. 16 : 6

● Sophrochaeta sp.; fig. 16 : 11

Tismanella chappuisi Jeannel, 1928; fig. 16 : 10 (Pl. XVIII, B)

Tismanella chappuisi arcuata Jeannel, 1930; fig. 16 : 10

Tismanella chappuisi convexipennis Jeannel, 1930; fig. 16 : 10

Tismanella chappuisi diversa Decou, 1961; fig. 16 : 10

Tismanella winkleriana Jeannel, 1931; fig. 16 : 10

Série phylétique des Drimeotus L. Miller:

Drimeotus (Bihorites) hickeri Knirsch, 1913; fig. 16 : 20

● Drimeotus (Bihorites) laevimarginatus Moczarski, 1912; fig. 16 : 20

Drimeotus (Bihorites) laevimarginatus acuticollis Jeannel, 1923; fig. 16: 20

Drimeotus (Bihorites) laevimarginatus cryophilus Jeannel, 1923; fig. 16:20

Drimeotus (Bihorites) laevimarginatus csikii Mihók, 1912; fig. 16 : 20

Drimeotus (Bihorites) laevimarginatus dieneri Bokor, 1913; fig. 16 : 20

Drimeotus (Bihorites) laevimarginatus hungaricus Csiki, 1912; fig. 16 : 20

Drimeotus (Bihorites) laevimarginatus montistartari Jeannel, 1930; fig. 16:20

Drimeotus (Bihorites) laevimarginatus subterraneus Knirsch, 1913; fig. 16:20

?● Drimeotus (Bihorites) winkleri Jeannel, 1923; fig. 16 : 20

Drimeotus (Bihorites) mihoki Csiki, 1912; fig. 16 : 20

Drimeotus (Bihorites) mihoki condoricus Knirsch, 1913; fig. 16 : 20

Drimeotus (Bihorites) mihoki corlatensis Jeannel, 1930; fig. 16 : 20

Drimeotus (Bihorites) mihoki rothi Jeannel, 1923; fig. 16 : 20

?● Drimeotus (Bihorites) mihoki similis Bokor, 1913; fig. 16 : 20

Drimeotus (Drimeotinus) attenuatus Bokor, 1913; fig. 16 : 19

Drimeotus (Drimeotinus) attenuatus montiscetii Jeannel, 1930; fig. 16:19

Drimeotus (Drimeotinus) ormayi Reitter, 1889; fig. 16 : 19

Drimeotus bokori Csiki, 1911; fig. 16 : 22

?● Drimeotus breiti Jeannel, 1923 ;fig. 16 : 20

Drimeotus chyzeri Biró, 1897; fig. 16 : 22 (Pl. XIX, C)

Drimeotus chyzeri vicinus Jeannel, 1930; fig. 16 : 22

Drimeotus entzi Biró, 1897; fig. 16 : 22

Drimeotus entzi chappuisi Winkler, 1933; fig. 16 : 20

Drimeotus entzi gracilis Jeannel, 1930; fig. 16 : 22

Drimeotus horvathi Biró, 1897; fig. 16 : 22

Drimeotus kovacsi Miller, 1856; fig. 16 : 22

Drimeotus octaviani Moldovan, 1997; fig. 16 : 22

Drimeotus osoiensis Moldovan, 2000; fig. 16 : 22

Drimeotus plesai Moldovan, 2000; fig. 16 : 22

Drimeotus puscariui Jeannel, 1930; fig. 16 : 22

Drimeotus racovitzai Moldovan, 2000; fig. 16 : 22

Drimeotus thoracicus (Knirsch, 1913) ; fig. 16 : 22

●● Drimeotus viehmanni Ienistea, 1955; fig. 16 : 22

Drimeotus (Fericeus) kraatzi J. & E. Frivaldszky, 1857; fig. 16 : 20

Drimeotus (Trichopharis) blidarius Knirsch, 1925; fig. 16 : 20

Pholeuon (Mesopholeuon) comani Ienistea, 1955; fig. 16 : 21

Pholeuon (Parapholeuon) angustiventre Gh.Racovitza, 1996; fig. 16 : 22

Pholeuon (Parapholeuon) gracile Frivaldszky, 1861; fig. 16 : 22

Pholeuon (Parapholeuon) gracile bokorianum Csiki, 1911; fig. 16 : 22

Pholeuon (Parapholeuon) gracile chappuisi Jeannel, 1930; fig. 16 : 22

Pholeuon (Parapholeuon) moczaryi Csiki, 1911; fig. 16 : 22

Pholeuon angusticolle Hampe, 1856; fig. 16 : 20

Pholeuon angusticolle alunensis Gh. Racovitza, 2009; fig. 16 : 20

Pholeuon angusticolle arpadi Csiki, 1912; fig. 16 : 20

Pholeuon angusticolle bihariense Csiki, 1912; fig. 16 : 20

Pholeuon angusticolle gujai Gh. Racovitza, 2009; fig. 16 : 20

Pholeuon angusticolle longicornis Gh. Racovitza, 2009; fig. 16 : 20

Pholeuon angusticolle mihoki Csiki, 1911; fig. 16 : 20

Pholeuon knirschi Breitt, 1911; fig. 16 : 20

Pholeuon knirschi albacensis Gh.Racovitza, 2005; fig. 16 : 20

Pholeuon knirschi brachynotos Jeannel, 1923; fig. 16 : 20

Pholeuon knirschi brevicule Jeannel, 1923; fig. 16 : 20

Pholeuon knirschi cetatensis Jeannel, 1930; fig. 16 : 20

Pholeuon knirschi christiani Gh. Racovitza, 2005; fig. 16 : 20

Pholeuon knirschi convexum Knirsch, 1913; fig. 16 : 20

Pholeuon knirschi dieneri Mihók, 1912; fig. 16 : 20

Pholeuon knirschi elemeri Csiki, 1912; fig. 16 : 20

Pholeuon knirschi glaciale Jeannel, 1923; fig. 16 : 20 (Pl. XIX, B)

Pholeuon knirschi gyleki Moczarski, 1912; fig. 16 : 20

Pholeuon knirschi intermittens Knirsch, 1913; fig. 16 : 20

Pholeuon knirschi onaci Gh.Racovitza, 2006; fig. 16 : 20

?●● Pholeuon knirschi proserpinae Knirsch, 1913; fig. 16 : 20

Pholeuon knirschi Șerbani Ienistea, 1955; fig. 16 : 20

Pholeuon knirschi vartopensis Gh.Racovitza, 2005; fig. 16 : 20

Pholeuon leptoderum E. & J. Frivaldszky, 1857 ; fig. 16 : 20

Pholeuon leptoderum attila Csiki, 1912; fig. 16 : 20

Pholeuon leptoderum biroi Csiki, 1912; fig. 16 : 20 (Pl. XIX, A)

Pholeuon leptoderum fagensis Gh. Racovitza, 2010; fig. 16 : 20

Pholeuon leptoderum hazayi J. Frivaldszky, 1884; fig. 16 : 20

Pholeuon leptoderum janitor Jeannel, 1923; fig. 16 : 20

Pholeuon leptoderum jeanneli Gh. Racovitza, 2010; fig. 16 : 20

Pholeuon leptoderum moldovani Gh.Racovitza, 2010; fig. 16 : 20

Pholeuon leptoderum nanus Gh.Racovitza, 2010; fig. 16 : 20

Pholeuon leptoderum problematicus Gh. Racovitza, 2010; fig. 16 : 20

Pholeuon leptoderum winkleri Jeannel, 1923; fig. 16 : 20

Protopholeuon hungaricum Csiki, 1904; fig. 16 : 18

Carabidae – Trechinae

?● Chaetoduvalius saetosus amblygonus Jeannel, 1926; fig. 16 : 19

?● Duvaliopsis transylvanicus Csiki, 1902; fig. 16 : 3)

Duvalius (Duvalidius) gr. merkli :

?● Duvalius (Duvalidius) gaali Mallasz, 1928 ; fig. 16 : 8

?● Duvalius poporogui Decu, 1973; fig. 16 : 4

Duvalius (Duvalidius) gr. procerus:

?● Duvalius delamarei Decu, 1967; fig. 16 : 5

?● Duvalius deubelianus Csiki, 1903; fig. 16 : 3

?● Duvalius onacei Moldovan, 1993; fig. 16 : ?1

Duvalius (Duvaliotes) gr. budai:

Duvalius budai Kenderesy, 1879; fig. 16 : 7

Duvalius budai baznosanui Mallasz, 1928; fig. 16 : 8

Duvalius budai lepsii Mallasz, 1928; fig. 16 : 7

Duvalius chicioarae Jeannel, 1930; fig. 16 : 10

●* Duvalius coiffaiti Decu,1967; fig. 16 : 15

?● Duvalius hegedüsi J. Frivaldszky, 1887

?● Duvalius hegedüsi closanensis Jeannel, 1928; fig. 16 : 10, 11

●● Duvalius hegedüsi jonescui Jeannel, 1919 ; fig. 16 : 13

Duvalius herculis J. Frivaldszky, 1887; fig. 16 : 13

Duvalius milleri J. Frivaldszky, 1862; fig. 16 : 17 (Pl. XIX, E)

Duvalius nannus Jeannel, 1931; fig. 16 : 11

Duvalius oltenicus Jeannel, 1919; fig. 16 : 9

Duvalius spiessi Jeannel & Mallasz, 1928; fig. 16 : 10, 11

Duvalius spiessi decoui Casale & Laneyrie, 1982, ; fig. 16 : 10, 11

Duvalius spinifer Jeannel, 1928; fig. 16 : 11 (Pl. XVIII, E)

Duvalius spinifer tismanae Jeannel, 1928; fig. 16 : 10

Duvalius stilleri Reitter, 1913; fig. 16 : 13

Duvalius stilleri cernisorensis Decu,1962; fig. 16 : 13

Duvalius stilleri longulus Jeannel, 1928; fig. 16 : 12

Duvalius voitestii Jeannel, 1930; fig. 16 : 6

Duvalius (Duvaliotes) gr. redtenbacheri:

?● Duvalius cognatus longicollis Jeannel, 1928 ; fig. 16 : 20

●?● Duvalius cognatus nuptialis Csiki, 1912 ; fig. 16 : 20

?● Duvalius cognatus reissi Mihok, 1911 ; fig. 16 : 22

?● Duvalius hickeri Knirsch, 1913 ; fig. 16 : 20

Duvalius hickeri infernus Knirsch, 1913 ; fig. 16 : 20

?● Duvalius mallaszi Csiki, 1901 ; fig. 16 : 18

Duvalius mondibularis Jeannel, 1930 ; fig. 16 : 22

Duvalius paroecus csikii Mihok, 1912 ; fig. 16 : 20

Duvalius paroecus mocsaryi Csiki, 1913 ; fig. 16 : 22

Duvalius paroecus montisblidarii Jeannel, 1928 ; fig. 16 : 20

Duvalius paroecus montistartari Jeannel, 1928 ; fig. 16 : 20

Duvalius paroecus taxi Breit, 1911 ; fig. 16 : 20

Duvalius redtenbacheri E. & J. Frivaldszky, 1857 ; fig. 16 : 22

Duvalius redtenbacheri almosi Bokor, 1921; fig. 16 : 22

Duvalius redtenbacheri angustatus Jeannel, 1928 ; fig. 16 : 22

Duvalius redtenbacheri bihariensis Csiki, 1911 ; fig. 16 : 22

Duvalius redtenbacheri biroi Csiki, 1905 ; fig. 16 : 22

Duvalius redtenbacheri jeanneli Winkler, 1933 ; fig. 16 : 22

Duvalius redtenbacheri vidaretensis Bokor, 1921 ; fig. 16 : 22

● Duvalius redteubacheri n. ssp.; fig. 16 : 20

?● Duvalius scarisoarae Knirsch, 1913; fig. 16 : 20

Duvalius sziladyi Csiki, 1904 ; fig. 16 : 19 (Pl. XIX, D)

Duvalius sziladyi anubris Bokor, 1913 ; fig. 16 : 19

Duvalius sziladyi dilatatus Bokor, 1913 ; fig. 16 : 19

Duvalius sziladyi pseudoparoecus Csiki, 1905 ; fig. 16 : 19

Scaritinae

●● Clivina subterranea Decu, Nitzu & Juberthie, 1994 ; fig. 16 : 25

(Pl. II, D; XX, A)

Staphylinidae

Bryaxis dolosus Poggi & Sârbu, 2013; fig. 16 : 25 (Pl. XX, E)

?● Bryaxis goliath (Jeannel, 1922) ; fig. 16 : 20 (Pl. XX, D)

Decumarellus sarbui Poggi, 1994 ; fig. 16 : 25 (Pl. XX, C)

●● Medon dobrogicus Decu & Georgescu, 1994 ; fig. 16 : 25 (Pl. XX, F)

?● Medon paradobrogicus Decu & Georgescu, 1994 ; fig. 16 : 25

Tychobythinus sulphydricus Poggi & Sârbu, 2013 ; fig. 16 : 25 (Pl. XX, B)

V. Biogeographical data

(Dancău & Tabacaru, 1964, 1969; Decu, 1967; Decu & Negrea, 1969; Jeannel, 1928a, b, 1929, 1931; Moldovan & Rajka, 2007; Olteanu, 2006; Olteanu & Jipa, 2006; Oncescu 1957; Orghidan & Nedelcu, 1969; Popov et al., 2004; Posea et al., 1974; Saulea, 1967; Tabacaru, 1966, 1968°, 1969°, 1969b, 1970a, 1970b)

The paleogeographic Tertiary context of the Carpathians distribution for the ancestors of the subterranean Coleoptera derived from the Dinarids and from the massifs of concerns: 1 – the Carpathian orogenesis, 2 – the Pannonian (Tisza) Massif and Central Paratethys, and 3 – the totally transversal valleys of Southern and Western Carpathians (Banat and ).

1 – The distribution of ancestors of troglobiont Coleoptera was dependent on the presence of forested areas on hills and uplands, at elevations between 200 and 1000 m. However, the uplift of the Carpathians began during late Cretaceous – beginning of Paleocene (the Laramian morphotectonic phase) and continued until Ouaternary with lower with amplitudes during the Savian phase (late Oligocene – early Miocene) and Rhodano – Walachian phase (Pliocene – lower Pleistocene).

Following the Laramic tectonic movements in the Banat and the Apuseni Mountains, faults appeared inside and outside of these units; internal faults have given the Apuseni Mountains the appearance of horst, divided in smaller horsts and grabens important in the isolation of subterranean fauna lineages. During Middle Miocene, on the western faults began the collapse of the Pannonian Massif, and during late Cretaceous – beginning of the Paleocene on the eastern faults collapsed the Transylvanian Massif (Posea et al., 1974).

During the Paleogene and early Miocene the Western and Southern Carpathians were connected through the "Iron Gates" of the Danube with the more southern regions.

The connection between the Eastern, Central and Northern Carpathians and the Bohemian Massifs, was established since the Middle Miocene (Popov et al., 2004).

2 – The distribution of lines was also dependent on the presence and the evolution of the Pannonian Massif and of the Pannonian basin (including the Transylvanian basin) and Dacic basin (both components of the Central Paratethys, maintained from the Upper Eocene to the Upper Pliocene) (Olteanu, 2006).

The Pannonian Massif and the Transylvanian Massif are the results of the Hercynian phase orogeny, an uprising and individualisation took place during the Triassic – Liassic period (Posea et al., 1974). It was a large area of the Carpathians, at middle altitude, which extended between the Alps, the Dinaric Alps, the Southern Carpathians and Western Carpathians. The link with the Dinarides was continuous from Late Eocene to Early Middle Miocene (Popov et al., 2004).

Tabl. VI. Stygobiont and troglobiont taxa, specifics and probables, of Romania.

Fig. 14. Percentage of the stygobitic and troglobitic taxa from Romania.

It is important to mention that corresponds to the "Massif du Banat" (which extended to Olt valley) of Jeannel. This massif, wrote in 1928 the French biologist, "existait depuis le début du Tertiaire, largement rattaché au nord de l'Egeide, mais aussi sans doute uni, du moins temporairement, au Bihor, au massif des Carpates Occidentales (Tatras) et à la Bohème." In 1931 he added: "à une époque très ancienne du Nummulitique (Paleogène), il semeble que le massif du Banat ait été relié par le massif slovaque à la Bohème, cette connexion continentale laissant en dehors d'elle le Bihor".

The collapse of the Pannonian Massif starts from Early Middle Miocene reaching maxima in the Tortonian and Sarmatian. In its place forms the Pannonian depression and basin submerged by the waters of Paratethys until Upper Pliocene.

The orogeny and subsidence of the Pannonian Massif and the Pannonian basin transgressions have largely influenced the Western Carpathians: fragmentation (especially of the Apuseni Mountains ) throughout the Middle Miocene ( massifs that separates the Nagy and Kis Alföld in Hungary, and the limestone massifs in the western part of the Western Carpathians represent remnants); the development of profound bays (now depressions ) along fault lines in the western part; and the transformation in a true archipelago during Tortonian and Sarmatian ( fig. 15).

The collapse of the Transylvanian Massif began during the Laramic phase in the same time with the crystalline zone that linked the Carpathians to the Balkans. In their place depressions and Transylvanian and Dacic (Getic) basins developped, submerged also by the brackish waters of the Paratethys. These basins represent together with the Pannonian basin the main tectonic units that communicated from Eocene, or Middle Miocene until Pliocene through sea corridors. These corridors correspond to the totally transversal valleys.

3 – A morphological characteristic of the river network in Romania is represented by these transversal valleys, with a unique frequency in the Western and Southern Capathians. These are: the Danube valley (between Bazias and Vârciorova), the Mureș valley (between Deva and Lipova), the Olt valley (between Turnu Roșu and Mânăstirea Cozia) the Crișul Repede valley (between Bologa and Vadu Crișului) and the Somes valley (between Turbuta and Jibou); there are also partially transversal valleys such as the valleys of Timiș or Jiu (Orghidan & Nedelcu 1969; Posea et al., 1974) (Fig. 15).

– The Danube valley is very old, and its origin can be traced up to Middle Miocene, when it functioned as sea corridor between the and the Dacic and Ponto-Caspic basins. Tectonic movements or climate change could not have interrupted this corridor. In the Upper Pliocene, the Danube river system was formed.

– During the Neogene, the Miocene waters of the Pannonian basin communicated with waters of the Transylvanian basin through the transversal corridor between Poiana Ruscăi and Southern Carpathians (the "Gate Iron Transylvania"), now drained by Timis valley. This corridor has been linked with that of the lower Cerna.

– The Mures corridor provided water communication between the Pannonian, Transylvanian and Dacic basins since the Middle Miocene.

– The evolution of Crișul Repede is linked to the evolution of the Pannonian Basin; since the Middle Miocene, allowing the connection between Pannonian and Transylvanian basins.

– The way the Somes river goes out the Pannonian plain ("Porta Meszesiana") date from end of Cretaceous; a large opening through which the waters of the seas hardly communicated with the Transylvanian Basin until Pliocene.

– In the actual Olt notch, the marine corridor that existed since Eocene linked the Transylvanian basin to the Dacic basin. The Olt has survived the uprising and the collapse of the mountains and basins maintaining the former corridor.

The seven valleys (Danube, Mures, Crișul Repede, Somes, Timis , Jiu and Olt) are transversal valleys (which totally or partially penetrate the Carpathian chain), antecedents and epigenetics (Orghidan & Nedelcu , 1969).

Fig. 15. Totally and partially transversal valleys of the western half of Romania. 1 = mountains; 2 = intramountain depressions; 3 = hills; 4 = partially transversal valleys: Jiu, Timis, etc.; 5 = totally transversal valleys: Dunarea , Mures, Crișul Repde (C.r.), Somes and Olt Valleys (after Orghidan & Nedelcu, 1969, modified); 6 = the limit between the Panonian and the Carpathian domains (after Posea et al., 1974).

V.1. Biospeleological division: biospelelogical provinces and zones.

Transversal valleys have worked as Miocene marine corridors, but at the same time they represent zoogeographic barriers ( especially during the transgressions of Tortonian and Sarmatian seas) defining four biospeleological provinces in the Romanian Carpathians: I – Eastern and Southern Carpathians up to the Olt valley, II – the Southern Carpathians between the Olt and the corridor formed by the valleys of the Timis and lower Cerna, III – Banat Mountains, west of this corridor, and IV – the Apuseni Mountains between the valleys of Mures and Crișul Repede. A V-th province is Dobrogea, which is completely isolated from the Carpathian chain.

The provinces (I-V) are divided in biospeleological zones (1-25) on the basis of characteristic taxa (Fig. 16) and corresponding to major relief units.

Each of these provinces shows subterranean terrestrial characteristic traits given by the endemic taxa having value of biological indicators . The majority of these fauna elements are the beetles , which represent more than half of the terrestrial subterranean fauna.

For climatic reasons, the cave fauna of the Southern Carpathians and Banat Mountains is more adapted than the fauna of the Apuseni Mountains, where the number of troglophiles is higher.

Caves populated by troglobionts are located at medium altitudes: 300-750 m in the Southern Carpathians and Banat Mountains, and 300-1300 m in the Apuseni Mountains. The same altitude intervals correspond to stations of M.S.S. with Coleoptera colluvio- and cleithrotroglobionts. About 60% are fossils and 30% actives (most of those in Apuseni Mts.).

I-st province – Eastern and Southern Carpathians to the Olt valley

The first province with 4 zones is poor in troglobiont fauna; only seven trolgobitic or possible troglobitic species are known, belonging to Nesticus and Leptyphantes from spiders, Neobisium from pseudoscorpions, Romanosoma from diplopods, and from Trechinae Duvalius (Duvalidius) procerus group and Duvaliopsis.

Fig. 16. Paleogeographical map of Romania in the Upper Tortonian (after E. Saulea, S. Pauliuc et al..).

The present karstic zones in maroon; the hatched areas represent the Tortonian Sea.

II-nd province – Southern Carpathians from the Olt valley and the Timiș-Cerna corridor

The second province with 11 zones is characterized, on the contrary, by a more diversified fauna and especially distributed up to the Jiu valley. The endemic troglobionts are isopods (Trichoniscus and Haplophthalmus), pseudoscorpions (Neobisium), araneids (Troglohyphantes and Centromerus), diplopods (Trachysphaera, Polydesmus, Trichopolydesmus, Dacosoma, Lamellotyphlus, Napocodesmus and Anthroleucosoma), chilopods (Lithobius and Harpolithobius) and many Trechinae (Duvalius (Duvaliotes) of budai group), and Leptodirinae (Mehadiella, Sophrochaeta, Tismanella and Cloșania).

There is also the endemic Duvalius (Duvalidius) of merkli group, but this is probably troglobiont or troglophile.

III-rd province – Banat Mountains

The third province with 2 zones, has only few troglobiont elements, all concentrated in the mountains of the Western Banat. They are isopods (Banatoniscus), diplopods (Banatodesmus, Banatosoma, Banatoiulus), chilopods (Lithobius) and beetles [Duvalius (Duvaliotes) milleri and Banatiola].

IV-th province – Apuseni Mountains

The fourth province with 5 zones, with a much stronger endokarstic development is also very rich in troglobitic fauna, most of the species being in Bihor and Padurea Craiului mountains. The endemics are among pseudoscorpions (Neobisium), spiders (Centromerus, Nesticus, Troglohyphantes), isopods (Biharoniscus and Haplophthalmus), diplopods (Trachysphaera and Typhloiulus), chilopods (Monotarsobius) and mostly beetles [Chaetoduvalius, Duvalius (Duvaliotes) redtenbacheri group, Drimeotus, Pholeuon and Protopholeuon].

The Apuseni Mountains are at the northern limit of the egeidian Tertiary fauna.

V-th province – Dobrogea

Caused by its isolation, the fifth province with 3 zones has a quite diversified and very original troglobiont fauna. Until 1986 only pseudoscorpions (Acanthocreagris), spiders (Caviphantes), isopods (Caucasonethes), diplopods (Trachysphaera and Apfelbeckiella) and beetles (Trechus) were known. The discovery of the ecosystem of Movile cave raised drastically the originality, because it resulted in the identification of numerous terrestrial and aquatic new species in an ecosystem based mainly on the mesothermal sulfurous aquifer (see Chap. III.2.4. and Table III).

Many of the species described only from Movile cave were found also in two drillings in the Sarmatian limestones and the traps introduced at different depths in the entrance pit. The microspaces and superficial or deep fissuration of the limestone shelter, thuis, the main part of the terrestrial species found in Movile Cave.

V.2. – Origin of subterranean Trechinae and Leptodirinae

Two categories can be distinguished by considering the origin (Fig. 16): 1 – hercynian, originating from the massifs of Bohemia and Northern Carpathians: Duvalius (Duvalidius) procerus and merkli groups and Duvaliopsis. 2 – mediterranean and egeidian, originating from northern Egeide: Chaetoduvalius, Duvalius (Duvaliotes) budai and redtenbacheri groups, the phyletic lineages of the Leptodirinae Sophrochaeta and Drimeotus. In fact, the subterranean beetles originate mostly from northern Egeide.

– Duvalius (Duvalidius) procerus group and Duvaliopsis (phyletic line of Trechoblemus), with a mostly endogean fauna colonised from north to south the Eastern and Southern Carpathians to the Olt valley at the end of Oligocene and beginning of Miocene (Fig. 17: 1, 2). The transversal valley of Somes represented a barrier to the colonization of the Apuseni Mts. by these beetles’ ancestors.

– Duvalius (Duvalidius) merkli group distributes in the Banat Mts and Southern Carpathians, west from the Olt valley at the end of Oligocene and beginning of Miocene, by the intermediary of the Pannonian massif (Fig. 17 : 3). This group is related to microphthalmus group (from Slovakia and Hungary) and procerus group.

– Chaetoduvalius belonging to Aphaenops phyletic line is present in the Apuseni Mts. (Fig. 17: 5), where they arrived by the ancient massif Tisza during Paleogene and mostly during Lower Miocene (before the subsidence of the Panonnian massif).

– Duvalius (Duvaliotes) budai and redtenbacheri groups have succesively migrated at the end of Paleogene and beginning of Miocene from the Dinaric massifs to the Apuseni Mountains by the intermediary of the Pannonian massif (Fig. 17: 4, 7). The two groups are linked to the D. pilifer group widespread in the former Yugoslavia and Greece. D. budai relates mainly to D. trescavicensis Ganglbauer of Bosnia-Herzegovina, with slender tarsi. D.redtenbacheri has more affinities with D. pilifer Ganglbauer and D. winneguthi Apfelbeck, also from Bosnia and Herzegovina.

Fig. 17. Map of biospeological provinces (I – V in red) and zones (1 – 25) of Romania. I = Eastern and Southern Carpathians up to the Olt River: 1- Țibles, Maramures, Rodnei, Rarău, Bargau, Bistrița and Giurgeu Mountains (Mts.), Preluca and Purcareț-Boiul Mare Massifs (Mfs.); 2 – Ceahlau and Haghimas Mts.; 3 – Varghis Basin, Persani, Ciucas, Piatra Mare, Postavaru, Bucegi and Piatra Craiului Mts.; 4 – Făgaraș Mts. II = Southern Carpathians between the Olt River and the Timiș-Cerna Couloir: 5 – Stogu-Vânturarița, Lotru and Cibin Mts., 6 – Căpățânii and Parang Mts.; 7 – Sebeș Mts.; 8 – Jiul de Vest Basin; 9 – Vâlcan Mts. (between Bistrița and Jiul Rivers); 10 – Vâlcan Mts. (between Bistrița and Motru Rivers) 11 – Mehedinți Mts. (between Orzești – Steiul Cozii and Piatra Mare a Cloșanilor Mfs. – Baia de Arama); 12 – Mehedinți Plateau; 13 – Cerna Basin; 14 – Cernei-Godeanu (North and South of Cornereva Depression) and Țarcu Mts.; 15 – Poiana Ruscăi Mts. III = Western Carpathians south of the Mureș River (Banat Mountains): 16 – Almăj Mts.; 17 Western Banat Mts.; IV = Western Carpathians north of the Mureș River (Apuseni Mountains): 18 – Gilău and Metaliferi Mts.; 19 – Trascău Mts.; 20 –

Bihor Mts.; 21 – Codru-Moma Mts.; 22 – Pădurea Craiului Mts; V = Dobrogea: 23 – North Dobrogea province; 24 – Central Dobrogea province; 25 – South Dobrogea province. (After Decu, 1967,1980; Decu et al., 1969, 1984).

Fig. 18. Probable migrations of the subterranean Coleoptera lineages into the Charpathians (after Jeannel, 1928, 1929; Decu, 1967). Lineages with troglobiont / neotroglobiont Trechinae and Leptodirinae: A – Original lineages from the hercynian massifs of Bohemia and North-Western Carpathians: 1 = Duvalius (Duvalidius) procerus group; 2 = Duvaliopsis; 3 = Duvalius (Duvalidius) merkli group; B – Original lineages from the septentrional aegean dinaric: 4 = Duvalius (Duvaliotes) redtenbacheri group; 5 = Chaetoduvalius; 6 = Phyletic lineages of Drimeotus (Drimeotus, Pholeuon, Protopholeuon); 7 = Duvalius (Duvaliotes) budai group; 8 = Phyletic lineages of Sophrochaeta (Sophrochaeta, Cloșania, Tismanella, Mehadiella, Banatiola); 9 = Duvalius milleri and Banatiola.

– Duvalius (Duvaliotes) milleri and Banatiola have colonized the Banat Mts. at west before the transgression of the Tortonian sea and remain here during Tortonian (Fig. 17 : 9). Their migration and the migration of other groups took place, probably, independantly from the migration of the troglobionts of the IInd biospeleological province.

– The dispersion of the two phyletic lineages of Leptodirinae, Sophrochaeta (in Banat and Southern Carpathians to Olt valley) and Drimeotus (in Apuseni Mts. through the Tisia massif), was realized from the Dinaric massifs in the same period as the dispersion of Duvalius (Duvaliotes) budai and redtenbacheri groups (Paleogene – Early Miocene), and before the deepening of the Danube and Mures valleys (fig. 17 : 6-9).

– As for the Dobrogea, the subterranean fauna has mostly east-Mediterranean and Caucasian Pontic origins, and probably dates back to the Quaternary, and perhaps even the Pliocene. The southern part was submerged during the lower and middle Eocene, the upper Tortonian, the lower and middle Sarmatian and partly (half of the east) during the upper Sarmatian (See also Chap. III.2.4.).

Chiroptera (Victor Gheorghiu)

(Borda & Borda, 2008; Borda et al., 2004-2005; Decu, Murariu & Gheorghiu, 2003; Dumitrescu et al., 1955, 1963; Dumitrescu & Orghidan, 1963; Gheorghiu, et al., 2001; Gheorghiu, 2007; Gheorghiu & Decu, 2007, Gheorghiu et al 2011; Murariu et al. 2016, Murariu & Gheorghiu, 2018a, Murariu & Gheorghiu, 2018b), Petculescu, & Murariu(coord.) – 2009; Petculescu et al 2017.

The bats, with 31 species, represent the only vertebrate group known in Romanian caves (Tab. VII). Seven species can be considered as troglophiles: Rhinolophus ferrumequinum (Schreber); – R. hipposideros (Bechstein);
– R. mehelyi Matschie; – R. euryale Blasius; – Myotis myotis (Borkhausen); – Miniopterus schreibersii (Kühl); – Pipistrellus pipistrellus (Schreber);

– R. ferrumequinum (Pl. XXI, D), with a large Palearctic distribution is the most common species. Is present in the entire country with hibernation or parturition colonies and even permanent colonies;

– R. hipposideros (Pl. XXI, C), distributed in Europe, Asia and Africa was found in all karst areas of Romania. In general, they do not form important colonies.

– R. mehelyi (Pl. XXI, B), known from Europe, was found only in Dobrogea in hibernation and maternity colonies in caves;

– R. euryale (Pl. XXI, A), form during summer a huge colony in Peștera lui Adam de la Băile Herculane;

– Myotis myotis, distributed in Europe and Asia is present all over the country and forms important colonies of hibernation and parturition;

– Miniopterus schreibersii (Pl. XXI, F), present in Europe, Asia, Africa and Oceania is found all over the country in hibernation and parturition colonies and even permanent colonies;

– Pipistrellus pipistrellus (Pl. XXII, E), known from Europe, Asia and Africa is present in few caves in Apuseni Mts. and Southern Carpathians (it forms together with Pipistrellus pygmaeus, a huge colony in Sura Mare cave in Hunedoara);

– Myotis blythii (Pl. XXII, A), hibernation colonies in caves;

– Plecotus auritus (Pl. XXII, C), hibernation and maternity colonies in caves;

– Barbastella barbastellus (Pl. XXI, E), hibernation colonies in caves;

A general remark is that the gregarous species that forma colonies choose big caves, with a stream or with a nearby surface stream.

Tabl. VII. Chiroptera of Romania: habitat, bionomics; • / • • = presence and size of the colonies.

Pl. XXI. Chiroptera. A – Rhinolophus euryale Blasius, 1853; B – Rhinolophus mehelyi (Matschie, 1901); C – Rhinolophus hipposideros (Schreber, 1774); D – Rhinolophus ferrumequinum (Bechstein, 1800); E – Barbastella barbastellus (Schreber, 1774); F – Miniopterus schreibersii (Kuhl, 1817) (Aquarelles Marinela Năzareanu).

Pl. XXII. Chiroptera. A – Myotis blythii (Tomes, 1857); B – Myotis emarginatus (Geoffroy, 1906); C – Plecotus auritus (Linnaeus, 1758); D – Myotis daubentoni (Kuhl, 1817); E – Pipistrellus pipistrellus (Schreber, 1774) (Aquarelles Marinela Nazareanu)

VI – Caves microorganisms and flora

Several contributions were on microbiology. Three concern the microbiology of different trophic substrates in caves, and the intestine of troglobiont beetles: Decu, 1961a; Decu & Papacostea, 1964; Hodorogea, 1972.

The works on air microorganisms in show caves were done by Borda & Borda (2004-2005); on the cave mondmilch by Manolache (2004-2005), etc.

Another is about nitrifying bacteria in the Ice cave of Scărișoara (Pop, 1949).

Some recent ones are on chemosintesizing thyobacteries from Movile Cave (Chiurtu & Dumitru, 1995; Lazar et al., 2004-2005; Sârbu & Popa, 1992, Sârbu et al., 1994; Sârbu, 2000; Vlasceanu et al., 1997, etc.).

Other works deal with systematics, ecology and morphology of different algae [Geitleria calcarea Friedmann (Cyanophycea), the only trolgobiont algae from Romanian caves], lichens, fungae, mosses, Pteridophyta and Spermatophyta: Stefureac, 1951, 1970; Șerbănescu & Decu, 1962; L. Gruia, 1973; Balazuc, 1970, 1973.

Several papers on bacteria, algae or plants are in Godeanu (red.), 2011 (papers by Crișturean et al., Herlea, Peterfi et al., 2011).

The work of Pop & Ciobanu (1950), Feurdean et al. (2011) are on the pollen in Scărișoara Ice cave and place the beginning of the ice formation in Sub-Atlantic (3000 years ago). Palinological researches were undertaken also by Boșcaiu & Lupșa (1967) in caves of Banat (Peștera Haiducilor and Peștera Veterani). Those of Farkas et al. (2000-2001, 2004-2005) are on the palinological analyses on guano in Peștera lui Adam de Băile Herculane and Peștera Liliecilor de la Gura Dobrogei, and from a drill at -11 m in the loess deposit of the sinkhole Obanul Mare near Movile cave. The guano deposit in Peștera Liliecilor de la Gura Dobrogei is Sub-Atlantic and the loess deposit in Obanul Mare is from the Lower Quaternary.

In 1959 and after in 1961a and 1961b Decu and Decu & Decu have mentioned the presence of parasitic macromycets [Hyphomycetes, Troglobiomyces guignardi (Maheu)] on the beetle Closania orghidani in Topolnita Cave and the hymenopteran Amblyteles quadripunctorius. In the case of Closania a severe reduction in population occured because individuals fed on the dead corpse full of spores contaminated the entire population.

VII – Anthropological discovery

(Moldovan et al., 2003; Nicolaescu-Plopșor, 1957; Rougier, 2012; Trinkaus et al., 2003, 2013)

Even if it is surpassing the topics of this tomes, the discovery of the oldest directly dated modern human remains (Homo sapiens) in Peștera cu Oase in south-western Romania (an incomplete skull and a mandible) (Pl. XXIII), radiocarbon dated at 35,000 years BP, mixed with bones of Quaternary mammals) is remarkable.

Fossils of Homo sapiens were found also in other Romanian caves: Peștera Cioclovina Uscată, where in 1937 a skull was found in a deposit of guano-phosphates, and dated at 30,000-29,000 BP; Peștera Muierii de la Baia de Fier, where in 1957, a skull and bones were found and were dated at 30,000-29,000 BP, etc.

These datations add two other recent datations of the fossil Homo sapiens from several countries in Europe indicate that our species started to colonise Europe, including England, approximate 40,000 ans ago, by comming from Middle East.

Pl. XXIII. A – Remains of an early european modern human discovered in Pestera cu Oase of SW Banat (Romania) (Photo: S. Constantin). B – Reconstruction of the skull by Richard Neave (photo from “The Independent Newspaper”, Britain, 4 May 2009). C – Pestera cu Oase, from the left to the right: S. Milota (member of the speological ProAcvaGroup, the discoverer of the site); H. Rougier (anthropologist, California State Univ. Narthridge); O. Moldovan (researcher, Speological Inst. E. Racovitza, Cluj). (Photo: M. Gherase, in Rougier, 2012).

VIII Conservation

In the first half of the twentieth century in Romania, the protection of caves with special biological interest was under the influence of the "Martel Law" published in France in 1902, as well as of the decisions of 1923 (Paris) of the First International Congress for the Protection of Nature in which they are emphasized serious anthropogenic threats to cave species. The history of speleology makes a special distinction for Romania in relation to the other European countries by the existence of the first speleological institute destined for scientific research of the underground environment. Founded in Cluj, it is specified in the chapter 3 of the law establishing that: "The exploitation of any form of the caves cannot be done without the approval of the Institute of Speleology" (Official Journal no. 86 of 1920). By this "it was considered the preservation of the underground patrimony under the care of the Institute of Speleology”, and the discovery of the almost unknown cave fauna at that time makes the scientific research being predominantly biospeleological with additions and observations regarding the hydrological, microclimatic and geological structure of the cavities. The scientific results will be published by Racovita's team in volumes known as "Ennumeration des grottes visitées".

After the second half of the twentieth century, the Speleological Institute is reorganized in two research departaments, Bucharest and Cluj, exclusively for research and exploration. The protection and preservation of the speleological reservations belong to a commission of the Romanian Academy. The situation is positive, the number of speleological reservations will increase between 1952-1966 with 16 new reservations. The Academy receives funds to protect fauna and arrange some touristical caves. Unfortunately, in 1973 a new law appears that will transfer to the Local Councils (Communities) the attributions for the protection of underground sites. This law will be disastrous for the Romanian caves left without a real protection. In this context, it was proceeded to develop the associations of amateur speleologists who will gradually take over the custody and protection of some important caves. During this period, the researchers of the Institute of Speleology will be involved in large projects of identification, mapping and description of the speleological fauna, they will also provide the logistical and informative support necessary for the knowledge and protection of the underground environment. Important scientific volumes appear regarding the discovery and knowledge of new sites, Among them we mention: ”Oltenia and Banat caves” (1964, Decu et al.), The first catalog of caves in Romania called “Map of karst regions of Romania”, (1969 , Orghidan et al.) With a list of 984 cavities. In 1982 C. Goran published the latest "Systematic Catalog of the Caves in Romania". For the knowledge and monitoring of underground fauna in 1971 V. Decu together with R. Ginet published "The Underground World” appeared concurrently in Bucharest and Paris, and 40 years later the same author, Dr. Vasile Decu, will coordinate the publication "The illustrated determinator of Romanian flora and fauna – The underground environment”.

The end of this century brought important changes in terms of increasing the protection capacity of underground caves and fauna in Romania. In 1990, the speleological clubs began to reorganize themselves as non-profit associations, and in 1994, the Romanian Speleological Federation was created. Within this framework a Commission for the Protection of Caves will work, which in time will prove very efficient due to consistent projects obtained from European funds for the protection of caves and underground fauna. Supporting amateur speleologists, the researchers of the Institute of Speleology will provide training for hundreds of students in schools organized at the Speleological Station in Closani. As a rule, for one year, during two stages, beginners and advanced students will be taught courses on: underground topography, biospeology (knowledge and protection of underground fauna); chiropterology (knowledge and protection of chiropractors); karstology; paleontology, underground photography, etc. In the context of Romania's accession to the European Union, a friendly legislation for underground wildlife was also enacted, Law no. 90 of May 23, 2000, regarding the protection of bats and their shelters. For the implementation of this law, on March 31, 2001, the Romanian Federation of Chiropterology (Honorary President being Ph.D Vasile Decu), was founded. The first project with European funding will take act as LIFE 00 NAT / RO / 7187 LIFE Natura – 2000 regarding the protection of chiropters and caves whit bats in the southern Southern Carpathians (the scientific studies for this first project will be elaborated by Ph.D Vasile Decu, and Victor Gheorghiu). In support of the protection of bats in Romania – protection considered important because it supports the protection of the cave / shelter, including the whole underground fauna – is the appearance in 2003 of the volume "Chiropere din România" 512 pp. with a rich illustration. The volume addressed a wide range of fields regarding chiropters, from their knowledge and identification by external morphology and ultrasound emission to the protection of species and sites, the work was carried out by a research group formed by V. Decu, D. Murariu, V .Gheorghiu.

On April 12, 2000, appeared Law no. 5 regarding the approval of the Plan for the development of the national territory – in which Section III includes – protected areas, here are specified caves with reservation regime and monuments of nature, with their classification in A and B categories, corresponding to the mentioned law. August 2, 2001, appeared the Law no. 462 regarding the regime of natural protected areas. The law defines the protected caves, the categories of caves, the restrictions and prohibitions, all the caves and species of underground fauna are protected (Gheorghiu, 2005) even the undiscovered fauna is protected. The list of caves remade punctually by the Institute of Speleology is the object of Order 604/2005 for approving the classification of caves and cave sectors – protected natural areas. Currently, Romania has a number of 132 strictly protected caves or cave sectors.

A relevant experience for the protection of the underground cave, fauna and bat sites was materialized by financing a project by the Romanian Academy through GAR 69/2005; 72/2006; 87/2007 and 147/2008 granted to the "Emil Racoviță" Speleology Institute Bucharest for the ecological restoration of the Dry Cioclovina Cave. In November 2003, a group of 10 bats were reported in the Sept Chambre of Dry Cioclovina’s Cave. We mention that this cave is a habitat that for nine decades (1912-2003) has endured aggressive anthropic pressure, due to the industrial exploitation of the guano-phosphate existing in the cave. In this cave there is also an important paleontological deposit which contains remnants of Homo sapiens fosilis, also here is the locus tipicus for the phosphatic mineral called Ardealith. The site is on the UNESCO protection list, therefore the cave was imposed among the conservation urgencies of the "Emil Racoviță" Speleology Institute. For the beginning in the cave the environmental conditions prior to the anthropic interventions were reconstructed. Thus, a watertight gate was installed (approx. 130m from the entrance), blocking the Anthropic Tunnel (artificial) through which the cave was accessed, and the guano phosphate extracted from the cave was evacuated. The filling of this corridor had the role of restoring the balance of the microclimate from the site and marked the beginning of the ecological restoration process. The solid metal diaphragm installed also considered blocking unauthorized access to the site. Approximately at 10 m behind the Natural Entrance was mounted a metal gate with horizontal rails that would allow only the unimpeded flight of bats. The obtained results were relevant and underline the success of the ecological restoration process; thus, starting with a number of 10 bats (2003), after filling the Anthropic Tunnel the number of bats reaches 83 ind. (2004), to 406 ind. (2005); 520 ind. (2006), and in the winter 2007-2008, 801 ind. At the same time, the number of bat species known in the site increased from 4 species in 2004 to 10 species in 2008. The researches in the Dry Cioclovina Cave were included in a volume published in Petculescu et al – 2009, The first ecological reconstruction underground environment from Romania Cave, Petculescu A., Murariu D (coord.), University Ed., 136 pp, Bucharest.

Among the many projects developed by amateur speleologists for the protection of the underground environment, we exemplify the one of the Resita Explorators Speleological Association (LIFE Nat.2000 / 2013 for site 8310 Nerei-Beusnita Gorge), in which the ecological rehabilitation of 19 caves was carried out or with LIFE08 project NAT / RO / 000504 of 2012 "Conservation of bat species in the Pădurea Craiului, Bihor and Trascău Mountains" where the Association for Bats Protection, the Institute of Speleology in Cluj and the Bihor Environmental Protection Agency, on which occasion they were protected 15 caves with gates, modified five tourist routes, sanitation of nine caves, and the lighting system was modified for three caves. De asemenea o echipa de cercetatori a lucrat in Parcul Național Buila Vanturarița in perioada 2010-2014 pentru identificarea siturilor si a cunoasterii si protectiei faunei subterane Petculescu et al (2017).

Was considered that by protecting the caves with bats, due to the trophic support brought by them in the underground, it is implicitly the protection of the existing underground fauna complementary to the presence of chiropterans.

Bibliography

ALTERR, E. – 1971. Contribution à la connaissauce des Nématodes cavernicoles de Roumanie. Bull. Soc. Vaud. Sc. Nat. Lausanne, 71 pp. 23-46

AVRAM, S., DANCĂU, D. & E. ȘERBAN – 1964. Cercetari speologice in bazinul Cernei. Nota I. Lucr. Inst. Speol. E. Racovitza, 3, pp. 131-201.

AVRAM, S., DANCĂU, D. & E. ȘERBAN – 1966. Cercetari speologice in bazinul Cernei. Nota II. Lucr. Inst. Speol. E. Racovitza, 5, pp. 11-21.

AVRAM, S. – 1968. Laniatores cavernicoles de Roumanie. Révision des genres Scotolemops Rwr., Brigestus Rwr., et Bukowina Rwr. (Opiliones, Phalangodidae). Ann. Spéléol., 23, 3, pp. 641-665.

AVRAM, S. & D. DUMITRESCU – 1969. Contributii la cunoasterea raspindirii geografice si a ecologiei opilionidelor cavernicole, endogee si epigee din Romania. Lucr. Inst. Speol. E. Racovitza, 8, pp. 99-145.

AVRAM, S. – 1972. Contribution à la connaissance de l'anatomie des régions frontale et ventrale chez les Opilions cavernicoles de Roumanie (Brigestus granulatus Roewer, Nemastoma sillii Herman, Ischyropsalis dacica Roewer). Trav. Inst. Spéol. E. Racovitza, 11, pp. 249-257. Ed. Acad. R.S.R., 654 pp.

AVRAM, S. – 1973. Contribution à la connaissance du développement embryonnaire et postembryonnaire chez Nemastoma cf. sillii Herman (Opiliones, Nemastomatidae). Livre Cinquant. Inst. Spéol. E. Racovitza, pp. 269-305.

AVRAM, S. – 1976. Contributie la cunoasterea opilionidelor troglofile Brigestus granulatus (Roewer) (Gonyleptomorphi), Paranemastoma sillii (Herman) si Ischyropsalis manicata C.L. Koch (Dyspnoi) din Romania. Ph. D. Thesis. Inst. St. Biol., București, 155 pp. + 40 pl.

BACESCU, M. – 1967. Fauna R. S. Romania. Crustacea Decapoda, 4, 9. Ed. Acad. R. S. R., 351 pp.

BADONNEL,A. & Ch. LIENHARD – 1994. Psocoptera. In : C. Juberthie & V. Decu (eds), Encyclopaedia Biospeologica, T. 1. Soc. Int. Biospéol. Moulis-Bucarest, pp. 301-305.

BALAZUC, J. – 1970. Commentaires sur les Rhachomyces parasites des Trechidae avec descriptions de formes nouvelles (Ascomycètes, Laboulbéniales). Ann. Soc. Entomol. Fr., 6, 3, pp. 677-699.

BALAZUC, J. – 1973. Ebauche d'une flore des Laboulbéniales de Roumanie (Ascomycètes). Livre Cinquant. Inst. Spéol. Emile Racovitza, pp. 463-477. Ed. Acad. R.S.R., 654 pp.

BEAUCHAMP, P. de – 1929. Nouvelles diagnoses de Triclades obscuricoles. 2e. Les Dendrocoelides de Transylvanie. Bull. Soc. Zool. Fr., 54, pp. 20-28.

BEAUCHAMP, P. de – 1940. Etudes Biospéologiques. 20. Triclades obscuricoles de Roumanie (Turbellaria). Bull. Mus. roy. Hist. nat. Belg., 16, pp. 1-5.

BEAUCOURNU, J.-C., SUCIU, M. & V. DECU – 1998. Siphonaptera. In : C. Juberthie & V. Decu (eds). Encyclopaedia Biospeologica, 2. Soc. Int. Biospéol. Moulis-Bucarest, pp. 1008-1113.

BEIER, M. – 1939. Die Höhlenpseudoscorpione des Balkanhalbinsel. Studien Gebiete allgemeinen Karstforschung Biol., ser. 4, Brünn.

BERNASCONI, R. – 1991. Sur une gastéropode prosobranche de la grotte Peștera Movile, Mangalia, Roumanie : Semisalsa dobrogica (Grossu & Negrea, 1989). Comb. nov; (Hydrobiidae, Littoridininae). Mém. Biospéol., 18, 237-243.

BLEAHU, M., DECU, A. & V. DECU – 1963. Das hydrographische System von Zaton-Ponoare (Baia de Arama). Rev. Géol., Géogr., 7,1, pp. 147-156.

BLEAHU, M. & T. RUSU – 1965. Carstul din Romania. O scurta privire de ansamblu. Lucr. Inst. Speol. E. Racovitza, 4, pp. 59-73.

BLEAHU, M. – 1972. Karst of Romania. In: M. Herak & V. T. Stringfield (eds), Important karst regions of the Northern Hemisphere. Elsevier, pp. 341-353.

BOGHEAN, V. – 1989. Sur un Pseudoscorpion cavernicole nouveau, Chthonius (Ch.) monicae n. sp. (Arachnida, Pseudoscorpiones, Chthoniidae). Misc. Speol. Romanica, 1, pp. 77-85.

BOGHEAN, V. & Gh. RACOVITZA – 1989. Données préliminaires sur le topoclimat de la grotte « Peștera de la Movile » (Mangalia-Dobrogea de sud-Roumanie). Misc. Speol. Romanica, 1, pp.19-31.

BOLE, J. & VELKOVRH, F., 1986: Mollusca from continental subterranean aquatic habitats. In: BOTOSANEANU, L. (ed.): Stygofauna mundi, E. J. Brill/Dr. W. Backhuys, Leiden, 177–208.

BOKOR, E. – 1921. Arthropoden der ungarischen Grotten. Barlangkutatas, 9, ,1-22 et 45-49.

BORDA, C & D. BORDA – 2004-2005. Airborne microoganisms in show caves in Romania. Trav. Inst. Speol. E. Racovitza, 43-44, pp. 65-73.

BORDA, D, RACOVIȚĂ, Gh. & L. BARTI – 2004-2005. Sur les chiroptères de la collection "Biospeologica". Trav. Inst. Speol. E. Racovitza, 43-44, pp. 217-234.

BORDA, C. & A. BORDA – 2008. Bats. Relations with environment and us. Napoca Star, 178 pp.

BOTEA, F. – 1969. Oligochete limicole din zona viitorului lac de baraj de la Portile de Fier (ape interstitiale hiporeice). Nota II.

BOTEA, F.-1975. Considerations sur l'ecologie des oligochetes hyporheophiles de la riviere Prahova, (1975).

BOTEA, F., -1979. Oligochetele din biotopul hiporeic. In: Monografia “Porțile de Fier”, Speologie, 88-97.

BOTEA, F. – 1968. Cercetari asupra faunei de Naididae (Oligochaeta) din diferite ape interstitiale hiporeice din Romania. Lucr. Inst. Speol. E. Racovitza, 7, pp. 217-230.

BOTEA, F. – 1970a. Enchytréidés (Oligochaeta) du domaine souterrain de Roumanie. Note I. Trav. Inst. Spéol. E. Racovitza, 9, pp. 183-190.

BOTEA, F. – 1970b. Sur la faune des Lumbricidés (Oligochaeta) des divers biotopes souterrains de Roumanie. Livre Cent. Emile Racovitza (1868-1968), pp. 257-264. Ed. Acad. R.S.R., 699 pp.

BOTEA, F. – 1973a. Enchytréidés (Oligochaeta) du domaine souterrain de Roumanie. Note II. Trav. Inst. Spéol. E. Racovitza, 12, pp. 87-111.

BOTEA, F. – 1973b. Considérations sur l'écologie des Oligochètes hyporhéophiles des différentes stations de la rivière de Crișul Repede. Livre Cinquant. Inst. Spéol. E. Racovitza, pp. 161-170. Ed. Acad. R.S.R., 654 pp.

BOTEA, F – 1977. Oligochete din domeniul subteran din Romania. Ph. D. Thesis, 198 pp.

BOTEA, F. & L. BOTOȘĂNEANU – 1966. Pelodrilus bureschi Mich. 1924 dans les grottes du Banat. Int. J. Speleol., 2, pp. 223-229.

BOTEA, F. & C. PLEȘA – 1968. Cercetari asupra faunei interstitiale din bazinul Crișului Repede. Lucr. Inst. Speol. E. Racovitza, 7, pp. 197-215.

DAMIAN, A. & BOTOSANEANU, L. – 1955a. Beschreibung neuer subterraner Harpacticoiden Hydrobiologische Untersuchungen des Leitungswassers der Stadt Bukarest. Zool. Anz., 155 (5/6): 119-134.

BOTOSANEANU, L. – 1955b Cercetäri hidrobiologice asupra izvoarelor din Bazinul Arieșurilor (Muntii Apuseni) cu privire specialä asupra Copepodelor si asupra cercurilor lor de forme, Buletin Stiintific, Sect. Sl. Bioi. etc., 7 (2): 433

BOTOȘĂNEANU, L. – 1959. Bathynellacea. Fauna R.P.R. Crustacea 6. Ed. Acad. R.P.R., 35 pp.

BOTOȘĂNEANU, L., DECU, V. & T. RUSU – 1964. Cea de-a treia expeditie speologica internationala din R.P. Bulgaria (15-27.8.1963). Lucr. Inst. Speol. E. Racovitza, 3, pp. 411-430.

BOTOȘĂNEANU, L. – 1966. Les genres Stenophylax Kol. et Micropterna Stein. (Trichoptera) en Roumanie. Aperçu statistique. Lucr. Inst. Speol. E. Racovitza, 5, pp. 99-114.

BOTOȘĂNEANU, L., NEGREA, A. & St. NEGREA – 1967. Recherches sur les grottes du Banat et d'Olténie, Roumanie (1959-1962). I-e partie: Grottes du Banat, explorées de 1960 à 1962. Edit. du CNRS, Paris, 1-226 pp. + fig. 1-18.

BOTOȘĂNEANU, L. – 1970. Documents pour la connaissance de la faune aquatique souterraine des Monts du Banat (Roumanie). Livre Cent. Emile Racovitza (1868-1968), pp. 247-255. Ed. Acad. R.S.R., 699 pp.

BOTOȘĂNEANU, L. – 1971. Observations sur la faune aquatique hypogée des Monts du Banat (Roumanie). Trav. Inst. Spéol. E. Racovitza, 10, pp. 123-166.

BOTOȘĂNEANU, L. (ed.) – 1986. Stygofauna mundi. A faunistic, distributional and ecological synthesis of the world fauna inhabiting subterranean waters (including the marine interstitial). E. J. Brill, Leiden, 740 pp.

BOȘCAIU N., LUPȘA VIORICA – 1967, Cercetări palinologice în peștera Veterani din Defileul Dunării, Contrib. bot. Cluj, pag. 39 – 46

BOUVET, Y. – 1977. Conditions de vie des Trichoptères subtroglophiles (Insectes, Limnephilidae); leurs reactions aux variations des facteurs du milieu. Thèse, Univ. Claude-Bernard, Lyon, 82 pp.

BRAD T., – 1999, The present stage of our knowledge concerning the spreading of the subterranean Amphipods from Romania, Studii si Cercetari (Biologie) Bistrița

BRAD T., FISER C.,  FLOT J.F. – 2015, Niphargus dancaui sp. nov., previously referred to as Niphargus cf. stygius, was sampled from various groundwater sites in and near the town of Mangalia (SE Romania) and described with Movile Cave (a sulfidic, chemoautotrophically based ecosystem). European Journa of Taxonomy 164, 1-28

BRÖLEMANN H.-W., _ 1913 Glomerides (Muriapodes) (17° Série). Biospeologica No NXXI, Arch. Zool. exper. génér. Paris, 52. 6. 387–445.

BRÖLEMANN,H.-W.-1914.Spelaeogervaisia ionescui, Myriapode glomeroïde cavernicole nouveau de Roumanie. (Biospeologica XXXV). Arch. Zool. expér. gén. 54 (4),pp. 99 –104.

BREUIL, H. – 1925. Stations paléolithiques en Transylvanie. Bull. Soc. Sci. Cluj, 2, 2, p. 193-217.

BUCUR, R. – 2007. Filogenia si biogeografia coleopterelor subterane din Muntii Apuseni. Ed. Napoca Star, 134 pp.

BUCUR, R, KOSUCH, J. & A SEITZ – 2003. Molecular phylogenetic analysis of Romanian cave Leptodirine (Coleoptera, Cholevidae). Atti Mus. Civ. Storia nat. Trieste, 50, pp. 231-265.

BURGHELE-BALACESCU, A. – 1965. Specii noi de Mycetophilidae cavernicole din Rominia. Lucr. Inst. Speol. E. Racovitza, 4, pp. 171-181.

BURGHELE-BALACESCU, A. – 1966. Date noi asupra raspindirii Nycteribiidelor (Diptera, Pupipara) in Rominia. Lucr. Inst. Speol. E. Racovitza, 5, pp. 115-125.

BURGHELE-BALACESCU, A. & S. AVRAM – 1966. Pesteri cercetate in Oltenia, intre valea Motrului si valea Tismanei. Lucr. Inst. Speol. E. Racovitza, 5, pp. 21-43.

BUZILA, R. & Gh. RACOVITZA – 1997. Etude anatomique de l’appareil genital mäle de quelques Coléoptères Leptodirinae. Trav. Inst. Spéol. E. Racovitza, 36, pp. 107-117.

BUZILA, R. & O. MOLDOVAN – 2000. Antennal receptors in two representants of Bathysciinae (Coleoptera Cholevidae). Evolution and Adaptation, 6, pp. 117-124.

BUZILA, R., RACOVITZA, Gh. & A. SEITZ – 2000-2001. Biometric and genetic study of Parapholeuon subgenus. Trav. Inst. Spéol. E. Racovitza,39-40, pp. 121-133.

CAMACHO, I. A. (ed) – 1992. The natural history of biospeleology. Monogr., Mus. nac. Cienc. nat. Madrid, 680 pp.

CARAUSU S., DOBEANU E., MANOLACHE C., – 1955, Fauna R,P,R. (Crustacee, Amphipodae). Ed. Academiei R,P.R. 312-317

CARBONNEL, J. P., DECU, V., OLIVE, Ph., POVARA, I. & V. GHEORGHIU – 1996. Première datation par 14C du remplissage de guano d’une grotte des Carpathes méridionales : Peștera lui Adam (Roumanie). Trav. Inst. Speol. E. Racovitza, 35, pp. 145-155.

CARBONNEL, J. P., OLIVE, Ph., DECU, V. & D. KLEIN – 1999. Datations d'un dépôt de guano holocène dans les Carpates Méridionales (Roumanie). Implications tectoniques. C.R. Acad. Paris. Sciences de la terre et des planètes, 328, pp. 367-370.

CARBONNEL, J. P., KLEIN, D., LAMY, S., DECU, V., BACIU, F., SILVESTRU, E., GEORGHIU, V. & A. GIURGINCA – 2000. Le 137CS des sols et des guanos de Roumanie 13 ans après Tchernobil. Incidences sur le milieu karstique. Mém. Biospéol., 27, pp. 25-36.

CĂPUȘE, I. & M. GEORGESCU – 1962a. Acasis variegata (HBN) (Geometridae) si Monopis crocicapitella (CLEM.) (Tineidae) elemente noi pentru fauna R.P.R. Com. Acad. R.P.R., 12, 3, pp. 345-352.

CĂPUȘE, I. & M. GEORGESCU – 1962b. Acrolepia pulicariae Klim. (Acrolepidae, Lep.) un nouvel élément troglophile dans les grottes de la R. P. Roumaine. Bull. Soc. Entomol. Mul-house, pp. 75-78.

CĂPUȘE, I. & M. GEORGESCU – 1963. Contributii la studiul lepidopterelor cavernicole. Lucr. Inst. Speol. E. Racovitza, 1-2, pp. 495-503.

CĂPUȘE, 1965.Beitrage zur Kenntnis der Brunnenfauna im Tai des Flusses Bela Reca (Rumänien). International Journal of Speleology, vol. l, Part. 4, p. 461-478.

CARAUSU, S., DOBREANU, E & C. Manolache – 1955. Amphipoda, forme salmastre si de apa dulce. Fauna R.P.R., 4, 4. Ed. Acad. R. P. R., 407 pp.

CEUCA, Tr. – 1956. Contribuțiuni la studiul Diplopodelor din Fauna R.P.R. Studii și Cercetări de Biologie Cluj, VII, 1-4, pp.125-135.

CEUCA, T. – 1958. Contributii la cunoasterea diplopodelor din fauna Republicii Populare Romane. 3. Diplopode cavernicole. St. Cerc. Biol. Cluj, 9, 2, pp. 335-343.

CEUCA, Tr.- 1961. Contribuții la studiul Diplopodelor din fauna R.P.R. IV. Diplopode cavernicole. Studia Univ. Babeș –Bolyai., Cluj, Ser. II, Biologia, 2, pp. 159-165.

CEUCA, Tr. – 1964. Cîteva Diplopode noi în fauna R.P.R. Studia Universitatis Babeș-Bolyai Series Biologia, Fasc.2 , pp. 89-99.

CEUCA, Tr. – 1967 Quelques autres Diplopodes nouveaux de la faune de la Roumanie. Studia Universitatis Babeș-Bolyai, Series Biologia, Fasc. 1, pp. 107-117.

CIMPEAN, M. & C. PAVELESCU – 2002-2003. Prelimnary study on oligochaetes (Annelida, Oligochaeta) and water mites (Acari, Hydrachnidia) from the hyporheic zone of the Crișul Repede river (Romania). Trav. Inst. Spéol. E. Racovitza, 46-47, pp. 149-158.

CHAPPUIS, A. P. – 1925. Sur les Copépodes et les Syucarides des eaux souterraines de Cluj et des Monts Bihor. Bul. Soc. St. Cluj, 2, 4, pp. 157-162.

CHAPPUIS, P.A., 1927. Die Tierwelt der unterirdischenGewässer – Die Binnengewässer.

CHAPPUIS, 1939, Uber Bathynella und Parabathynella. VesLnik Ceske Zool. Spol. . v. Praze, VI-VII: 120-132.

CHAPPUIS, P. A., 1942a. Eine neue Methode zur Untersuchung der Grundwasserfauna. Acta Sci. Math. Nat. Univ. Francisco-Josephina, Kolozsvar, 6, 3-7.

CHAPPUIS P.A. 1942b. Microcharon acherontis spec., nov., ein neuer subterraner Isopode. Fragm. Faun. Hun garica, 5 (3-4): 120-121.

CHAPPUIS P. A., 1943a.Stygonectes phreaticus n. gen. n. sp., ein neuer Isopode aus dem Grundwasser der Körös bei Barátka (Bihar). Fragmenta Faunistica Hungarica, VI, 1, 19-21.

CHAPPUIS, P. A., 1943b.Stygasellus nom. nov. für Stygonectes CHAPPUIS 1943. Fragmenta Faunistica Hungarica, VI, 2, 42.

CHAPPUIS, P.A., 1944. Die Grundwasserfauna der Körös und Szamos. Math. Termes. Közlem., 40, 2, 5-43.

CHAPPUIS, P.A., 1946. Un nouveau biotope de la faune souterraine aquatique. Bull. Sect. sci. Acad. Roumaine, 29. 1-8.

CHAPPUIS, P. A.,-1947.Tokophryabathynellaeune nouvelle Acinétetroglobie,AcadémieRoumaine, Bulletin de la Section Scientifique, 29, 10: 659-66.

CHAPPUIS, P. A.,-1948. Sur deux genres d´Asellides aberrants: Stygasellus et Synasellus (Crust. Isop.). — Bull. Soc. Se. Cluj. X: 282-286.

CHAPPUIS, P. A., DELAMARE-DEBOUTEVILLE C.L., -1958. Un Microcerberinae nouveau de Roumanie. Vie et Millieu, Tome

CHAPPUIS, A. P. & R. JEANNEL – 1951. Enumération des grottes visitées 1927-1949. Arch. Zool. Expér. Gén., 88, pp. 81-230.

CHIURTU, A. & L. DUMITRU – 1995. Populations bactériennes présentes dans la grotte « Peștera de la Movile », Dobrogea méridionale, Roumanie. Trav. Inst. Spéol. E. Racovitza, 34, pp. 89-97.

COCEAN, P. – 1988. Chei si defilee in Muntii Apuseni. Ed. Acad. R.S.R., 166 pp. + 38 pl.

CODREANU, M. & R. CODREANU – 1962a. Asellus (Coxasellus) basnosanni n. sp.: 158-159 si 214. In: C. Motaș & al. (eds.) – Cercetari asupra biologiei izvoarelor si apelor freatice din partea centrala a Campiei Romane. Ed. Acad. R.P.R., 366 pp.

CODREANU, M. & R. CODREANU – 1962b. Ordnung Isopoda: 193-206. In: C. Motaș, I. Căpușe – Beiträge zur Kentniss der Brunnenfauna im Tal des Flusses Bela Reca (Rumänien). Biol. Glasnik, 15.

CODREANU, R. & D. BALCESCU – 1967a. Sur trois Dendrocoelides aveugles nouveaux des sources du Banat (Roumanie). Rev. roum. Biol., Zool., 12, pp. 287-294.

CODREANU, R. & D. BALCESCU – 1967b. Sur deux nouveaux Dendrocoeles hypogés de Roumanie et certains effets de néoténie. Arch. roum. Path. exp. Microbiol., 46, pp. 843-852.

CODREANU, R. & D. BALCESCU – 1968. Revision et mise en synonymie de quelques Dendrocoelides obscuricoles nouvellement décrits de Roumanie. Rev. roum. Biol., Zool., 13, pp. 145-149.

CODREANU, R. & D. BALCESCU – 1970. Répartition des Dendrocoelides anophthalmes dans les Carpates de Courbure et dans la plaine roumaine. Livre Cent. Emile Racovitza (1868-1968), pp. 239-246. Ed. Acad. R.S.R., 699 pp.

COLLART, A. – 1940. Etudes biospéologiques. 22. Helomyzidae (Dipt.) de Transylvanie. Bull. Mus. roy. Hist. nat. Belg., 16, 35, 27 pp.

COLLART, A. – 1941. Etudes biospéologiques. 25. Ichneumonida (Hymenoptera) de Transylvanie. Bull. Mus. roy. Hist. nat. Belg., 16, 3, pp. 1-7.

COMAN, D. – 1961. Mermithidae In: Fauna R.S.R., 2, 3. Ed. Acad. R. S. R., 60 pp.

COMAN, D. – 1969. Considérations sur les Nématodes des biotopes aquatiques souterrains. Actes Congr. Int. Spéléol., Ljubljana, 4-5, pp. 49-53.

CONDÉ, B. – 1993. Une lignée danubienne du genre Plusiocampa (Diploures, Campodéides). Rev. Suisse Zool., 100, 3, pp. 735-745.

CONDÉ, B. – 1996. Diploures Campodéides de la Peștera de la Movile, Dobroudja méridionale (Roumanie) Rev. Suisse Zool., 103, pp. 101-114.

CONDÉ, B. – 1998. Palpigradida, pp. 913-920. In: C. Juberthie et V. Decu (eds), Encyclopaedia Biospeologica, Soc. Biospéol., Moulis-Bucarest, 839-1373 pp.

CONSTANTINEANU, M. I. – 1959. Familia Ichneumonidae, Subfamilia Ichneumoninae, Tribul Ichneumoninae Stenopneustice. Fauna R. P. R., Insecta, 9, 4. Ed. Acad. R. P. R., București, 1248 pp.

CONSTANTINESCU, T. – 1989 – Considérations sur la zone karstique de la « Movile » (Mangalia, Dobrogea du Sud, Roumaine). Misc. Speol. Romanica, 1, pp. 7-12, Cartes 1 et 2.

CONSTANTINESCU, T. – 1995. Le karst de type Movilé (Mangalia, Dobrogea du Sud, Roumanie). Theor. Appl. Karstology, 8, pp. 91-96.

CONSTANTINESCU, T. & S. CONSTANTIN – 2001. La genese et l’evolution des grandes dolines (obans) de la zone karstique de Mangalia (Dobroudja du Sud, Roumanie). Theor. Appl. Karstology, 13-14, pp, 87-42.

CONSTANTINESCU, T. – 2002-2003. Le karst de la zone Mangalia. Trav. Inst. Speol. E. Racovitza, 41, pp. 89-109.

COOREMAN, J. – 1951. Etudes biospéologiques 34. Acariens de Transylvanie. Bull. Inst. royal Sci. nat. Belgique, Bull., 27, 42, pp. 1-16.

CSIKI, E. – 1946. Die Käferfauna des Karpatenbeckens. I. Budapesta, 798 pp.

CULVER, C. D. & W. B. WHITE (eds) – 2005. Encyclopedia of caves. Elsevier, Acad. Press, USA, UK, 654 pp.

ĆURČIĆ, P. B., M., POINAR, O. G. & S. M. SÂRBU – 1993. New and little-known species of Chthoniidae and Neobisiidae (Pseudoscorpiones, Arachnida) from the Movile Cave in southern Dobrogea, Romania. Bijdr. Dierk., 63, 4, pp. 221-241.

ĆURČIĆ, P. M. B. & V. DECU – 2004-2005a. The Pseudoscorpions of Dobrogea: from origins to the present and perspectives. Trav. Inst. Spéol. E. Racovitza, 43-44, pp. 35-44.

ĆURČIĆ, P. M. B., DECU, V. & R. N. DIMITRIJEVIČ – 2004-2005b. Neobisium blothroides (Tomosvary, 1882) (Neobisiidae, Pseudoscorpiones): an endemic species from Romania. Trav. Inst. Speol. E. Racovitza, 44, pp. 109-118.

ĆURČIĆ, P. M. B., R. N. DIMITRIJEVIC et al. – 2005. Four new and endemic species of Roncus I. Koch (Neobisiidae, Pseudoscorpiones) from Romania, Serbia and Montenegro, Periodicum Biologorum, 107, 3, pp.

ĆURČIĆ, P. M. B., R. N. DIMITRIJEVIC et al. – 2006. Biodiversity of pseudoscorpions from the Carpathian Arc in Romania: ecology and evolution of some cave-dwelling taxa. Periodicum Biologorum, 108, 2, pp. 223-230.

DADAY, E., – 1885 Jelentes az év nyarán vegzett chiropterologiai gyüjtések eredményeiröl és az erdélyi orsz, museum-egylet denevérgyüjteményéenek jagyzéke (Chiropterologische Ausbeute in Sommer 1885 und Verzeichnis der im Siebenbürger Museum zu Klausenburg befindlichen Fledermäuse). Im Orvostermészettudomany érstesitö, 10: 266–276.

DADAY, E., – 1886 Uj Adatok Erdely Denevérfaunájának ismertéhez (Neue Beiträge zur Kenntnis der Siebenbürgischen Feledermäse Fauna). Ertekezesek a Természettudomanyok horebel, 16: 7

DAMIAN-GEORGESCU, A. – 1963. Fauna Republicii Populare Romania. Crustacea 4, 6, Copepoda, Fam. Cyclopidae (forme de apa dulce). Ed. Acad. București, 204 pp.

DAMIAN-GEORGESCU, A. – 1970. Fauna Republicii Socialiste Romania. Crustacea 4, 11, Copepoda Harpacticoida. Ed. Acad. București, 248 pp.

DANCĂU, D. – 1963. Asupra catorva amfipode subterane din R. P. Romana. Niphargus dacicus n. sp. si N. jovanovici ponoricus n. sp. Lucr. Inst. Speol. E. Racovitza, 1-2, pp. 461-474.

DANCĂU, D. & E. ȘERBAN – 1963. Sur une nouvelle Parabathynella de Roumanie, P. Motași n. sp. Crustaceana, 5, 4, pp. 241-250.

DANCĂU, D. – 1964. Noi contributii la studiul amfipodelor subterane: Niphargus dobrogicus n. sp. Lucr. Inst. Speol. E. Racovitza, 3, p.p 397-403.

DANCĂU, D. & I. TĂBACARU – 1964. Observatii zoogeografice asupra faunei cavernicole din Oltenia si Banat. Lucr. Inst. Speol. E. Racovitza, 3, pp. 293-340.

DANCĂU, D., DANIELOPOL, D., JUVARA, I. & E. ȘERBAN – 1968. Cercetari speologice in bazinul Cernei. III. Lucr. Inst. Speol. E. Racovitza, 7, pp. 45-54.

DANCĂU, D. & I. TĂBACARU – 1969. Contributions à la connaissance de l'origine et de la répartition de la faune cavernicole des Carpates Méridionales. Actes IVe Congr. Int. Spéléol., Yougoslavie, Ljubljana, 1969, pp. 53-63.

DANCĂU, D. – 1970. Sur un nouvel Amphipode souterrain de Roumanie, Pontoniphargus racovitzai n. g., n. sp. Livre Cent. Emile Racovitza (1868-1968), pp. 275-285.

DANCĂU, D. – 1971. Sur un nouvel Amphipode souterrain de Roumanie, Niphargus alutensis n. sp. Trav. Inst. Spéol. E. Racovitza, 10, pp. 209-215.

DANCĂU, D. – 1972. L'état actuel de nos connaissances sur le genre Niphargus en Roumanie. Actes Ier Colloque Int. genre Niphargus. Verona 1969, pp. 55-59.

DANCĂU D., ȘERBAN E. -1965. La présence de BogidiellaalbertimagniHertzug 1933 en Roumanie et quelquesremarques sur les espèceseuropéennes du genreInternat.Joum. Speology,Weinheim, 1, 3, 339- 348.

DANIELOPOL, L. D. – 1965. Nouvelles données sur les Ostracodes d'eau douce de Roumanie: Cordocythere phreaticola n. g., n. sp., Eucypris petkovskii n. sp., Limnocytherini et Metacyprini nouvelles tribus de la sous-famille Limnocytherinae Sars, 1925. Ann. Limnol., 1, 3, pp. 443-468.

DANIELOPOL D.L. – 1970a. Une nouvelle espèce du genre Darwinula des eaux souterraines de Roumanie et quelques remarques sur la morphologie des Darwinulidae (Ostracoda – Podocopida). Trav. Inst. Spéol. Emile Racovitza, 9: 135- 149

DANIELOPOL D.L. 1970b. Sur la morphologie, l'origine et la répartition du genre Cordocythere Dan. (Ostracoda – Cytheridae). In: T. Orghidan & M. Dumitresco eds., Livre du centenaire Emile G. Racovitza: 287-299 (Edit. Acad. R.S. Roumanie, Bucarest).

DANIELOPOL, L. D. – 1978. Uber Herkunft und Morphologie der süsswasserhypogäischen Candoninae (Crustacea Ostracoda). Sitzber. Osterr. Akad. Wiss. Math. nat. Kl., Abt. 1, 187, pp. 1-162.

DANIELOPOL, L. D. & L. CVETKOV – 1979. Trois nouvelles espèces du genre Mixtacandona (Ostracoda, Cyprididae, Candoninae). Hydrobiologia, 67, 3, pp. 249-266.

DANIELOPOL, L. D. – 1980a. Sur la biologie de quelques Ostracodes Candoninae épigés et hypogés d'Europe. Bull. Mus. nat. Hist. nat. Paris, 2, pp. 471-506.

DANIELOPOL, L. D. – 1980b. The role of the limnologist in ground water studies. Int. Revue ges. Hydrobiol., 65, 6, pp. 777-791.

DANIELOPOL, L. D. – 1982. Nouvelles données sur les Candoninae (Ostracoda) hypogés de Roumanie et Yougoslavie. Bull. Mus. nat. Hist. nat. Paris, 4, 3-4, pp. 369-396.

DECU-BURGHELE, A. – 1962. Contribuții la cunoasterea Nyecteribiidelor (Diptera, Pupipara) din fauna R. P. R. St. cerc. Biol., Biol. anim., 14, 2, pp. 225-239.

DECU-BURGHELE, A. – 1963a. Cercetari asupra pupariului la Nycteribiidae (Diptera, Pupipara) Com. Acad. R. P. R., 13, 8, pp.726-732.

DECU-BURGHELE, A. – 1963b. Contributii la studiul dipterelor cavernicole din pesterile R. P. Romine. Lucr. Inst. Speol. E. Racovitza. I-II, pp. 475-495.

DECU, A. & V. DECU – 1961a. Hyménoptères recueillis dans les grottes de Roumanie. Ann. Centr. nat. Recher. Sci. Souter., Belg., 2, pp. 65-75.

DECU, A. & V. DECU – 1961b. Cercetari morfologice la musca guanoului (Thelida atricornis Mg., Diptera, Helomyzidae). St. Cerc. biol., ser. Biol. anim., 13, 4, pp. 467-484.

DECU, A. & V. DECU – 1964. Recherches sur la synusie du guano des grottes d'Olténie et du Banat (Roumanie). (Note préliminaire). Ann. Spéléol., 19, 4, pp. 781-797.

DECU, A., DECU, V. & M. BLEAHU – 1967. Recherches sur les grottes du Banat et d'Olténie, Roumanie (1959-1962). II-e partie: Grottes d'Olténie, explorées de 1959 à 1962. Ed. du CNRS, Paris, pp. 227-392 + fig. 19-46.

DECU, E., DIACONU, O., HUSTIU, V. & L. ANDRIESCU – 1979. Mesure de la radiation solaire sur les calcaires du nord des Monts Mehedinti (Carpates Méridionales). Note préliminaire. Trav. Inst. Spéol. E. Racovitza, 18, pp. 233-247.

DECU, E., DIACONU, O., ANDRIESCU, L., SUCIU, N. & A. DECU – 1980. Mesure de la radiation solaire sur les calcaires du nord des Monts Mehedinti (Carpates Méridionales). Note II. Trav. Inst. Spéol. E. Racovitza, 19, pp. 227-235.

DECU, Gh. V. – 1959a. Sophrochaeta Motași n. sp. et Cloșania orghidani n. sp., nouvelles espèces de Bathysciinae (Coleoptera-Catopidae) des Carpates Méridionales. Ann. Spéléol., 14,1-2, pp. 187-196.

DECU, V. – 1959b. Deux nouvelles espèces de Bathysciinae cavernicoles des Carpates Méridionales. Ann. Spéléol., 14, 3-4, pp. 351-357.

DECU, V. – 1961a. Contributii la studiul morfologiei interne la coleopterele cavernicole din seria filetica Sophrochaeta Reitter (Catopidae – Bathysciinae). Stud. Cerc. biol., Biol. anim., 13, 3, pp. 395-407.

DECU, V. – 1961b. Nouvelle contribution à l'étude des Coléoptères cavernicoles des Carpates Méridionales, imagos et larves. Ann. Spéléol., 16, 2, pp. 199-215.

DECU, V. – 1962. Contribution à la l'étude de quelques espècies de Choleva Latr.du groupe de Choleva cisteloides (Frohlich) (Coleoptera, Catopidae). Acta Zool. Cracov., 7, 8, pp. 135-143.

DECU, V. – 1962. Revision der Arten der Gattung Duvalius Delar. aus den Höhlen Rumäniens. Ann. Hist. Nat. Mus. Nat. Hung., pars Zool., 54, pp. 259-267.

DECU, V. – 1963. Originea si raspindirea coleopterelor troglobionte Bathysciinae si Trechinae din pesterile Romaniei in conceptia lui Jeannel. Lucr. Inst. Speol. E. Racovitza, I-II, 1962-1963, pp. 437-460.

DECU, V. – 1964. Le catalogue des Coléoptères cavernicoles de Roumanie (Coleoptera). Acta Zool. Cracov., 9, 7, pp. 441-467.

DECU, V. & L. BOTOȘĂNEANU – 1964. Quelques données relatives à l'anatomie de Pheggomisetes bureschi Knirsch (Coleoptera, Trechinae). Ann. Spéléol., 19, 4, pp. 759-768.

DECU, V. & P. PAPACOSTEA – 1964. Anatomische und mikrobiologische Untersuchungen über einige Arten von höhlenbewohnenden Coleopteren aus Oltenien (Rumänien). Folia Entomol. Hung., 17, 6, pp. 87-112.

DECU, V. & St. NEGREA – 1965. Bibliographia Speologica Romanica. I. Bibliographia Biospeologica Romanica (1937-1963). Trav. Inst. Spéol. E. Racovitza, 4, pp. 299-309.

DECU, V. – 1967. Nouveaux Coléoptères cavernicoles des Carpates Occidentales (Monts du Banat et Poiana Ruscai) et des Carpates Méridionales (Monts Capatinei). Ann. Spéléol., 22, 2, pp. 433-453.

DECU, V. & C. JUBERTHIE – 1969. Sur l'élevage et le développement de Sophrochaeta oltenica Jeann. et Mall. Description de la larve du premier stade. Ann. Spéléol., 24, 3, pp. 581-593.

DECU, V. & R. GINET – 1971. Lumea subterana. Ed. Stiințifica, Buc., 271 pp. + 17 pl.

DECU, V. & St. NEGREA – 1969. Aperçu zoogéographique sur la faune cavernicole terrestre de Roumanie. Acta Zool. Cracov., 14, 20, pp. 471-546.

DECU, V. – 1973. Quelques remarques sur la présence des Diptères Mycétophilides dans les grottes d'Olténie (Roumanie). Livre Cinquant. Inst. Spéol. E. Racovitza, pp. 353-369. Ed. Acad. R.S.R., 654 pp.

DECU, V., NEGREA, A. & St. NEGREA – 1974. Une oasis biospéologique tropicale développée dans une région tempérée: "Peștera lui Adam" de la Băile Herculane (Carpates Méridionales, Roumanie). Trav. Inst. Spéol. E. Racovitza, 13, pp. 81-103.

DECU, V. & M. TUFESCU – 1976. Sur l'organisation d'une biocénose extrême : la biocénose du guano de la grotte "Peștera lui Adam" de Băile Herculane (Carpates Méridionales, Roumanie). Trav. Inst. Spéol. E. Racovitza, 15, pp. 113-133.

DECOU, V. & W. HERDLICKA – 1978. Recherches écologiques dans les grottes des Monts Mehedinți (Carpates Méridionales). Trav. Inst. Spéol. E. Racovitza, 17, p. 95-116.

DECU, V., TUFESCU, M. & Gh. RACOVIȚĂ – 1978. Particularités de l'écologie cavernicole terrestre des zones tempérées. Trav. Mus. Hist. nat. G. Antipa, 19, p. 343-348.

DECU, V. – 1980. Analyse de la répartition selon l'altitude des Coléoptères cavernicoles Bathysciinae et Trechinae des Carpates de Roumanie. Mém. Biospéol., 7, pp. 99-118.

DECU, V. – 1982. Ecosistemele subterane terestre. Pontus Euxinus, St. si cerc., 2, pp. 140-142.

DECU, V., HERDLICKA, W. & N. SUCIU – 1982. Mensuration indirecte de l'eau de condensation de deux grottes des Monts Mehedinti (Carpates Méridionales). Implication écologique de la condensation endokarstique. Trav. Inst. Spéol. E. Racovitza, 21, pp. 43-53.

DECU, V., DONITA, N., HERDLICKA, W. & C. LASCU – 1982. Aspecte ale problemei conservarii ecosistemelor forestiere si subterane din zonele calcaroase. Pontus Euxinus, St. Cerc., 2, pp. 168-172.

DECU, V. – 1983. Fauna mediului cavernicol terestru. pp. 479-484. In: Geografia Romaniei I. Geografia Fizica. Edit. Acad. R. S. R., 662 pp.

DECU, V. & Gh. RACOVITZA – 1983. Sur la conservation des écosystèmes forestiers et souterrains des zones calcaires. Mém. Biospéol. 10, pp. 177-178.

DECU, V. & T. ILIFFE – 1984. A review of the terrestrial cavernicolous fauna of Romania. N. S. S. Bull., Oct., p. 86-97.

DECU, V. – 1986. Some considerations on the bat guano synusia. Trav. Inst. Spéol. E. Racovitza, 25, pp. 41-51.

DECU, V. & M. GEORGESCU – 1994. Deux nouvelles espèces de Medon (M. dobrogicus et M. paradobrogicus) de la grotte « Peștera Movile » Dobrogea méridionale, Roumanie. Mém. Biospéol., 21, pp. 47-51.

DECU, V., RACOVIȚĂ, Gh. & C. VACZY – 1991. Sur la nomenclature des milieux souterrains, édaphiques et des annexes directes du sol. Trav. Inst. Spéol. E. Racovitza, 30, pp. 63-69.

DECU, V. &t C. JUBERTHIE – 1994. Un monde retrouvé. La grotte de Movilé . In : Encyclopaedia universalis, pp. 224- 228.

DECU, V. & Gh. RACOVITZA – 1994. Roumanie, pp. 779-802. In: C. Juberthie et V. Decu (eds.), Encyclopaedia Biospeologica, 1, Soc. Biospéol. Moulis-Bucarest, 834 pp.

DECU, V., NITZU, E. & C. JUBERTHIE – 1994. Clivina subterranea (Caraboïdea, Scaritidae) nouvelle espèce de la grotte « Peștera de la Movile », Dobrogea méridionale, Roumanie. Mém. Biospéol., 21, pp. 41-45.

DECU, V., GRUIA, M. KEFFER, L. & S. SÂRBU – 1994. A stygobiotic water scorpion Nepa anophthalma n. sp. (Hemiptera, Nepidae) from a sulphurous cave in Romania. Amer. Entomol. Soc, 87, pp. 755-761.

DECU, V. – 1998. Cercetari bíospelogice intre Cerna, Jiul de Vest si Olt. Acad. Romana, ISER, Ph. D. Thesis, 209 pp.

DECU, V. MURARIU, D. & V. GHEORGHIU – 2003. Chiroptere din Romania. V. Decu et C. Marin (eds). Bucarest, 521 pp.

DECU, V., JUBERTHIE, C. & V. GHEORGHIU – 2004-2005. Researches on the Mesovoid Shallow Substratum (MSS) from Romania. Trav. Inst. Spéol. E. Racovitza, 43-44, pp. 193-206.

DECU, V., GHEORGHIU, V. & D. MURARIU – 2005. Contribution to the knowledge of the distribution of Rhinolophus mehelyi Matschie, 1901 species (Chiroptera: Rhinolophidae) in Romania. Trav. Inst. Spéol. E. Racovitza, 44, pp. 235-247.

DECU V., GHEORGHIU V., – 2007, Peștera lui Adam de la Băile Herculane (România) Un adăpost de tip tropical pentru o colonie de maternitate a liliecilor, Miscellanea Chiropterologica, Rev. Fed. Rom. de Chiropterologie, 1, 29-37, București

DECU, V. – 2011. Increngatura Nemertina, pp. 149, 150; Increngatura Annelida (collab. V. Pop), pp. 165-177; Ord. Opiliones (collab. C. Juberthie, V. Ilie), pp. 226-230; Ord. Decapoda, fam. Astacidae, pp. 284-286; Ord. Diplura, pp. 323-326; Ord. Microcoryphia, pp. 327-329; Ord. Heteroptera, pp. 334, 335; Ord. Psocoptera, pp. 336, 337; Ord. Coleoptera (collab. E. Nitzu), pp. 338-363; Ord. Hymenoptera, pp. 390-393. In: S. Godeanu (red.), Diversitatea lumii vii. IV. Mediul subteran. „Vasile Goldis” University Press, Arad, 423 pp.

DELTSHEV, C., LAZAROV, S., NAUMOVA, M. & P. STOEV – 2011. A survey of spiders (Araneae) inhabiting the euedaphic soil substratum and the superficial underground compartment in Bulgaria. Arachnol. Mitteil., 40, pp. 33-46.

DIACONU, G. – 2002-2003. Point de vue concernant la paléo-évolution du processus d’endokarstification dans la zone de Mangalia. Trav. Inst. Spéol. E. Racovitza, 41-42, pp. 71-87.

DIACONU, O. – 2002-2003. Des caractéristiques climatologiques dans la Dobrogea du Sud pendant la période 1961-1997. Trav. Inst. Spéol. E. Racovitza, 41-42, pp. 53-69.

DUMITRESCU, M., TANASACHI, J. & T. ORGHIDAN – 1955. Contributii la studiul biologiei chiropterelor. Dinamica si hibernarea chiropterelor din Peștera Liliecilor de la Minastirea Bistrita. Bul. st., sect., St. Biol. Agr. Geol. Geogr., 7, 2, pp. 317-357.

DUMITRESCU M. & T. ORGHIDAN – 1958. Peștera din valea Fundata. An. Comit. Geol., 31, pp. 421-459.

DUMITRESCU, M., ORGHIDAN, T. & J. TANASACHI – 1958b. Peștera de la Gura Dobrogei. An. Comit. Geol., 31, pp. 461-499.

DUMITRESCU, M. & T. ORGHIDAN – 1963. Contribution à la connaissance de la biologie de Pipistrellus pipistrellus Schreiber. Ann. Spéléol., 18, 4, pp. 511-517.

DUMITRESCU, M., TANASACHI, J. & T. ORGHIDAN – 1963. Raspindirea chiropterelor in R. P. Romana. Lucr. Inst. Spéol. E. Racovitza, I-II (1962-1963), pp. 509-576.

DUMITRESCU, M. & T. ORGHIDAN – 1964. Contribution à la connaissance des Pseudoscorpions de la Dobroudja. Ière Note. Ann. Spéléol., 19, 3, pp. 599-630.

DUMITRESCU, M., ORGHIDAN, T., TANASACHI, J. & M. GEORGESCU – 1965. Contributii la studiul monografic al Pesterii de la Limanu. Lucr. Inst. Speol. E. Racovitza, 4, pp. 59-75.

DUMITRESCU, M., ORGHIDAN, N., ORGHIDAN, T., PUSCARIU, V., TANASACHI, J., GEORGESCU, M. & St. AVRAM – 1967. Contributii la studiul pesterilor din regiunea Hunedoara. Lucr. Inst. Speol. E. Racovitza, 6, pp. 9-89.

DUMITRESCU, M. & T. ORGHIDAN – 1969a . Date noi obtinute in studiul faunei litoclazice. Lucr. Inst. Speol. E. Racovitza, 8, pp. 55-73.

DUMITRESCU, M. & T. ORGHIDAN – 1969b. Observations sur les variations quantitatives et qualitatives périodiques de la faune cavernicole. Actes 4e Congr. Int. Spéléol., Yougoslavie, 4-5, p. 65-75.

DUMITRESCU, M. & M. GEORGESCU – 1970. Révision des représentants du genre Troglohyphantes des grottes de Roumanie. Livre Cent. Emile G. Racovitza, pp. 313-331.

DUMITRESCU, M. et T. ORGHIDAN – 1970. Contribution à la connaissance des Pseudoscorpions souterrains de Roumanie. Trav. Inst. Spéol. E. Racovitza, 9, pp. 97-111.

DUMITRESCU, M. & M. GEORGESCU – 1977. Nouvelle espèce du genre Troglohyphantes en Roumanie. Trav. Inst. Spéol. E. Racovitza, 16, pp. 63-70.

DUMITRESCU, M. – 1979. La monographie des représentants du genre Nesticus des grottes de Roumanie, Ière Note. Trav. Inst. Spéol. E. Racovitza, 18, pp. 53-84.

DUMITRESCU, M. – 1980. La monographie des représentants du genre Nesticus des grottes de Roumanie. IIe Note. Trav. Inst. Spéol. E. Racovitza, 19, pp. 77-101.

DUMITRESCU, M. & M. GEORGESCU – 1980. Quelques espèces du genre Centromerus (Araneae, Linyphiidae) trouvées en Roumanie. Trav. Inst. Spéol. E. Racovitza, 19, pp. 103-123.

DUMITRESCU, M. & M. GEORGESCU – 1981. Contribution à la connaissance des espèces cavernicoles du genre Lepthyphantes des grottes de Roumanie. Ière Note. Trav. Inst. Spéol. E. Racovitza, 20, pp. 9-28.

DUMONT, H. & St. NEGREA – 1996. A conspectus of the Cladocera of the subterranean waters of the world. Hydrobiologia, Belgium, 325, pp. 1-30.

DUSBABEK, F. – 1998. Acari parasiti: pp. 921-928. In: C. Juberthie et V. Decu (eds), Encyclopaedia Biospeologica, 2, Soc. Biospéleo., Moulis-Bucarest, 839-1373 pp.

EDER, R. – 1994. Nematoda, pp. 49-52 In: C. Juberthie & V. Decu (eds), Encyclopaedia Biospeologica, 1, Soc. Biospéol. Moulis-Bucarest, 834 pp.

FARKAS, S., TANȚAU, I., OTTO, T., BODNARIUC A., DECU, V. & V. GHEORGHIU – 2004-2005. Analyses palynologiques préliminaries effectuées en Dobroudja centrale et sud. Trav. Inst. Spéol. E. Racovitza, 43-44, pp. 45-64.

FARKAS, S., TANȚAU, I., DECU, V., BODNARIUC A. & V. GHEORGHIU – 2000-2001. Aspects de l’histoire de la végétation postglaciaire du Sud de la Roumanie, dans le contexte national et sud-Européen. Trav. Inst. Spéol. E. Racovitza, 39-40, pp. 135-155.

FEIDER, Z. – 1970. Nouvelles espèces de Trombiculides dans les grottes d’Europe. Livre cent. Emile Racovitza (1868-1968), pp. 333-350. Ed. Acad. R.S.R., 699 pp.

FEIDER, Z. & I. Mironescu – 1970. Sur les Ixodides des grottes du bassin méditerranéen (Collection de la « Biospeologica » 1905-1930). Description d’une nouvelle espèce et variation phénotypique d’Ixodes (Escatocephalus) vespertilionis. Livre Cent. Emile Racovitza (1868-1968) Ed. Acad. Bucarest, pp.351-369.

FEJER, A. & O.T. MOLDOVAN – 2013. Population size and dispersal patterns for a Drimeotus (Coleoptera, Leiodidae, Leptodirini) cave population. Subterranean Biology, 11, pp. 31–44.

FERU, M. U. & A. CAPOTA – 1991. Les eaux thermominérales karstiques de la zone de Mangalia (Roumanie). Theor. and Appl. Karstologie, 4 pp. 143-157.

FEURDEAN, A., PERSOIU, A., PAZDUR, A. & B. ONAC – 2011. Evaluating the palaeoecological potential of pollen recovered from ice in caves : a case study from Scărișoara Ice Cave, Romania. Rev. Paleobotany and Palynology, 165 pp. 1-10.

FIERS, F. & O. T. MoldOVAN – 2008. Redescription of Spelaeocamptus spelaeus (Chappuis 1925), a subterranean copepod endemic to the Apuseni Mountains in Romania (Copepoda Harpacticoida). Subterranean Biology, 6, pp. 51-64.

FRIVALDSZKY, E. & J. – 1857. Drei neue Grottenkäfers aus Ungarns. Verh. zool.-bot. Ver., Wien, 7, 34-46.

FRIVALDSZKY, J. – 1880. Coleoptera nova ex Hungaria meridionali. Termes. Fuzetek, 4, pp. 179-183.

FRIVALDSZKY, J. – 1884. Coleoptera nova ex Hungaria. Termes. Fuzetek, 8, pp. 279-287.

GEORGESCU, M. – 1964. Contribution à l'étude des microlépidoptères (Tineidae) des grottes de Roumanie. Ann. Spéléol., 19, 3, pp. 587-597.

GEORGESCU, M. – 1968. Contributii la studiul ixodidelor din pesterile Romaniei. Trav. Inst. Spéol. E. Racovitza, 7, pp. 187-197.

GEORGESCU, M. – 1973. Le développement post-embryonnaire de l'espèce cavernicole Lessertiella dobrogica Dumitrescu et Miller (Araneida, Micryphantidae). Trav. Inst. Spéol. E. Racovitza, 12, pp. 63-75.

GEORGESCU, M. – 1989. Sur trois taxa nouveaux d'Aranéides troglobies de Dobrogea (Roumanie). Misc. Speol. Romanica, 1, pp. 85-102.

GEORGESCU, M & S. SÂRBU – 1992. Description d’un nouveau taxon : Iberina caeca de la grotte « Peștera de la Movile » (Araneae Hahniidae). Mém. Biospéol., 13, pp. 139-141.

GEORGESCU, M. – 1994. Sur la présence d'une espèce troglobionte de Nesticus (Araneae, Nesticidae) dans la grotte "Peștera de la Movile". Trav. Inst. Spéol. E. Racovitza, 33, pp. 85-88.

GEORGESCU, M & I. CĂPUȘE – 1994. Sur les pseudoscorpions de la région de la grotte Movile (Mangalia, Dobrogea du Sud, Roumanie). Trav. Inst. Spéol. E. Racovitza, 33, pp. 63-78.

GEORGESCU, M. & V. DECU – 1994. Sur la présence des deux espèces d'Eukoenenia (E. mirabilis Grassi et E. subangusta (Silvestri) dans le souterrain et l'euédaphique du midi de la Dobrogea (Roumanie). Trav. Inst. Spéol. E. Racovitza, 33, pp. 79-84.

GHEORGHIU, V., PETCULESCU, A. & V. IAVORSCHI – 2001. Contribution to the knowledge of the Chiroptera distribution from Romania sector of the Carpatian Mountains. Studia Chiropterologica, Krakow, 2, pp. 17-47.

GHEORGHIU V., – 2005 Conservarea chiropterelor și a habitatelor lor lor subterane din S-V Carpaților, Ecocarst, Rev. Soc. Rom. de Speol. Carst., 5-6, 43-46,

GHEORGHIU V., – 2006 – Contribution to the knowledge of the Family Nycteribiidae (Diptera, Pupipara) of Piatra Craiului National Parc, In: Research in Piatra Craiului National Park, ed. Oliviu G. Pop., 2: 118-122, Brașov.

GHEORGHIU V., MURARIU D., – 2007, Reabilitarea unui adăpost de naștere și hibernare a liliecilor în peștera Sf. Grigore Decapolitul (munții Căpățânii Romania), Miscellanea Chiropterologica, Rev. Fed. Rom. de Chiroper., 2, 4-13, București

GHEORGHIU V., – 2005 Conservarea chiropterelor și a habitatelor lor lor subterane din S-V Carpaților, Ecocarst, Rev. Soc. Rom. de Speol. Carst., 5-6, 43-46,

GHEORGHIU V., MURARIU D., BORDA D., FARCAS A., CHACHULA O.,-2009, Ecological rehabilitation and restoration of the hibernating colonies of chiroptera from Ciclovina Uscata Cave, 67-88 pp., In: The first ecological reconstruction underground environment from Romania Ciclovina Uscata Cave, Petculescu A., Murariu D(coord.), Ed. Universitara, București, 134.

GINET, R. & V. DECU – 1977. Initiation à la biologie et à l'écologie souterraines. Paris, 345 pp.

GIURGINCA, A. & L. VANOAICA – 1998-1999. Chaetophiloscia sicula Verhoeff, 1908 (Isopoda Oniscidea: Philosciidae) – a new species for the Romanian fauna. Trav. Inst. Spéol. E. Racovitza, 38, pp. 159-166.

GIURGINCA, A. – 2000-2001a. The spreading of the genus Mesoniscus in the Romanian Carpathians. Trav. Inst. Spéol. E. Racovitza, 39-40, pp. 11-22.

GIURGINCA, A. – 2000-2001b. Mesoniscus graniger dragani n. ssp. from the caves of Valea Sighistelului and Valea Craiasa. The granulation of Mesoniscus graniger. Trav. Inst. Spéol. E. Racovitza, 39-40, pp. 29-42.

GIURGINCA, A. & S. B. CURCIC – 2003. A check-list of Oniscidea (Isopoda, Crustacea) from Dobruja (Romania). Arch. Biol. Sci., 55, 1, pp. 39-44.

GIURGINCA, A. & L. VANOAICA – 2007. Data concerning the Oniscidea and the Diplopoda from the Varghisului Gorge complex Reserve. Trav. Inst. Spéol. E. Racovitza, 46, pp. 51-58.

GIURGINCA, A. – 2009. Aspects concerning the genus Mesoniscus. Morphology, spreading, historical biogeography. Politechnica Press, Bucarest, 127 pp.

GIURGINCA, A, NAE, A. & L. VǍNOAICA – 2009. Species of Oniscidea and Araneae from Movile Cave drillings. Trav. Inst. Spéol. E. Racovitza, 48, pp. 31-43.

GODEANU, P. S. (red) – 2011. Diversitatea lumii vii. Determinatorul ilustrat al Florei si Faunei Romaniei. Volumul IV – Mediul subteran. „Vasile Goldis” Univ. Press, Arad, 423 pp.

GORAN, C. – 1982. Catalogul sistematic al pesterilor din Romania. .N.E.F.S. București, 496 pp.

GORAN, C. – 1989. Le spéléogramme de Roumanie. Misc. Speol. Romanica, 1, pp. 335-346.

GORAN, C. – 1993. Les publications de l’Institut de Spéologie « E. Racovitza ». Ed Acad. Romana, 384 pp.

GOURBAULT, N. – 1971 – Recherches sur les Triclades paludicoles hypogés. Mém. Mus. nat. Hist. nat. Paris, 73, pp. 1-249.

GROSSU, A. & A. NEGREA – 1968 – Révision des espèces du genre Argna (Gastropoda, Pulmonata) de Roumanie et la description de quelques nouvelles unités taxonomiques. Trav. Mus. Hist. nat. G. Antipa, 8, pp. 721-734.

GROSSU, A. & A. NEGREA – 1989. Paladilhia (Paladilhiopsis) dobrogica – une nouvelle espèce de la famille des Moitessieridae (Gastropoda, Prosobranchia). Misc. Speol. Romanica, 1, pp. 33-38.

GRUIA, L. – 1973. Contribution à l'étude des algues des grottes de Roumanie. II. Livre Cinquant. Inst. Spéol. E. Racovitza, pp. 479-485. Ed. Acad. R.S.R., 654 pp.

GRUIA, M. – 1967. Sur quelques Collemboles cavernicoles de Roumanie. Int. J. Speleol., 3, pp. 97-115.

GRUIA, M. – 1969. Date asupra raspindirii Colembolelor in pesterile Romaniei. Lucr. Inst. Speol. E. Racovitza, 8, pp. 161-178.

GRUIA, M. – 1971. Sur certaines espèces d'Onychiuridae des grottes de Roumanie. Acta Zool. Cracov., 16, 4, pp. 283-296.

GRUIA, M. – 1976. Biotopes cavernicoles peuplés par les Collemboles. Trav. Inst. Spéol. E. Racovitza, 15, pp. 107-122.

GRUIA, M. – 1989. Nouvelles espèces troglobies de Collemboles de Roumanie. Misc. Speol. Romanica, 1, pp. 103-114.

GRUIA, M. – 1994. Les Oncopodura (Collemboles Oncopoduridae) des grottes de Roumanie. Mém. Biospéol., 22, pp. 67-74.

GRUIA, M., IAVORSCHI, V. & S. SÂRBU – 1994. Armadillidium Tăbacarui (Isopoda, Oniscidea, Armadilliidae) a new troglobitic species form a sulfurous cave of Romania. Proc. Biol. Soc. Wash., 107, 4, pp. 69-106.

GRUIA, M. – 1996. Quelques considérations sur la faune de Collemboles de la grotte de Movilé (Dobrogea). Mém. Biospéol., 23, pp. 105-109.

GRUIA, M. – 1998. Sur la faune de Collemboles de l’écosystème exokarstique et karstique de Movile, Dobrogea du Sud, Mangalia, Romania. Mém. Biospéol., 25, pp. 45-52.

GRUIA, M. & A. GIURGINCA – 1998. Haplophthalmus movilae (Isopoda, Trichoniscidae), a new troglobitic species from the Movile Cave, Dobrogea, Romania. Mitt. Hamb. Zool. Mus. Inst., 95, pp. 133-142.

GRUIA, M. – 2000. Collembola of the karstic system of Romania. Mém. Biospéol., 27, pp. 53-60.

GRUIA, M. & V. ILIE – 2000-2001. Collembola from the karstic system of Romania (II). Trav. Inst. Spéol. E. Racovitza, 39-40, pp. 59-114.

GRUIA, M. & I. POPA – 2004-2005. Collembola of the Piatra Craiului National Park (II). Trav. Inst. Spéol. E. Racovitza, 44, pp. 119-11312.

GRUNER, H. E. & I. TĂBACARU – 1963. Revision der Familie Mesoniscidae Verhoeff, 1908 (Isopoda, Oniscoidea). Crustaceana, 6, pp. 15-34.

GIDO, J. – 2010. Descriptionof Pseudocandona serfozoi n.sp. (Crustacea,Ostracoda, Candonidae) from Romania.Bull. Soc. Nat. Luxemb. 111: 131-143.

GUNN, J. (ed) – 2003. Encyclopedia of caves and karst science. Fitzroy Dearborn, NY, London, 902 pp.

HAMPE, C. – 1856. Ein neuer Höhlenkäfer. Verh. zool.-bot. Ver., Wien, 6, 463, 464.

HILLEBRAND-VOICULESCU A., ITCUS C., ARDELEAN I., PASCU D., PERȘOIU A.,RUSU A., BRAD T., POPA E., ONAC B., PURCAREA C. – 2014, Searching for cold-adapted microorganisms in the underground glacier of Scarisoara Ice Cave, Romania Iskanje na mraz prilagojenih mikroorganizmov v podzemnem ledeniku Ledene jami Scarisoara (Romunija), Acta Carstologica,43/2–3, 319–329.

HODOROGEA, P. – 1972. Recherches microbiologiques dans la grotte de Topolnița (Roumanie). Première note. Trav. Inst. Spéol. E. Racovitza, 11, pp. 335-343.

HOLLINGER, A. M. – 1971. Contributii la studiul tizanurelor din Romania. St. Cerc. Biol. ser. Zool., 22, 4, pp. 313-317.

HOLLINGER, A. M. – 1978. Contributii la cunoasterea tizanurelor din Banat si alte regiuni ale Romaniei (Insecta, Thysanura). Banatica, 7, pp.249-258.

HUTZU, M. – 1997. Chiropturopoda cavernicola, ein neue Höhlenbewohnende Uropodiden-Art (Anactinotrichida, Uropodina). Mém. Biospéol., 24, pp. 163-168.

IAVORSCHI, V. – 1992. Labidostoma Motași n. sp. (Nicoletiidae) a new species of the mite of Romania. Trav. Inst. Spéol. E. Racovitza, 31, pp. 47-51.

IENISTEA, Al. M . – 1955. Contributii la cunoasterea faunei de Coleoptere cavernicole din R.P.R., Bul. Stiintific, St. Biol., Agron., Geol., Geogr., 7, 2, pp. 409-426.

IEPURE, S. – 2007. Micro-evolutionary aspects and speciation of groundwater cyclopids (Copepoda, Cyclopida) and ostracods (Ostracoda), PhD Thesis, Romanian Academy, 270 pp.

IEPURE, S., SELESCU, L. – 2009. Relationship between heavy metals and hyporheic invertebrate community structure in the middle basin of the Arieș River (Transylvania, Northwestern Romania), Transylvanian Review of Systematical and Ecological Research 7: 125-148.

IEPURE, S. – 2001. Cyclopides du Parc National des Monts Apuseni. Acanthocyclops Pleșai n. sp. et A. balcanicus bisaetosus n. ssp. Studia Univ. Babes-Bolyai, Biologia, 46, 2 pp. 31-41.

IEPURE, S. – 2007. Aspecte microevolutive la specii de ostracode (Crustacea, Ostracoda) si ciclopide (Crustacea, Copepoda) din ape subterane. Ph. D. Thesis, 179 pp.

IEPURE, S., T. Namiotko & D. L. DANIELOPOL – 2007. Evolutionary and taxonomic aspects within the species Pseudocandona eremita (Vejdovsky) (Ostracoda, Crustacea). Hydrobiologia, 585, pp. 159-180.

IEPURE, S. & D. DEFAYE – 2008. The Acanthocyclops kieferi complex (Crustacea : Copepoda) from South-Eastern Europe, with description of a new species.Crustaceana, 81,5, pp. 611-633.

IEPURE, S., T. Namiotko & D. L. DANIELOPOL – 2008. Morphological diversity and microevolutionary aspects of the lineage Cryptocandona vavrai Kaufmann 1900 (Ostracoda, Canonina). Annls Limnol-Internat. J. Limnol., 44, 2, pp. 151-166.

IEPURE, S. – 1998-1999. Recherches sur la stygofaune de la grotte Huda lui Papara (Monts de Trascau, Roumanie). Trav. Inst. Spéol. E. Racovitza, 38, pp.133-142.

IEPURE, S. – 2000. Contributions to the study of the cyclopids (Crustacea, Copepoda) fauna from the groundwater habitats of Somesul Cald Basin, Bihor Mountains (Transylvania) with redescription of Acanthocyclops balcanicus. Proceed. Conf. Karst studies and Problems, July 2000, Cluj-Napoca, p. 167

ILIE, V., GIURGINCA, A. & VANOAICA – 2002. Premiminary data conserning some Arthropods fauna from the Cloșani karstic area. Muz. Olteniei, Craiova, 18, pp. 129-137.

ILIE, V. – 2007. Cecetari taxonomice, ecologice si biogeografice asupra Chilopodelor din mediile edafic si subteran superficial din aria carstícá a Munților Banatului. Ph. D. Thesis, 189 pp.

IONESCU, M. A. – 1955. Diplura. In: Fauna R. P. R. Insecta 7, 2. Ed. Acad. București, 48 pp.

IONESCU, C. N. – 1912. Biospeologica. Faune des grottes dans les Carpathes de Roumanie avec: Liste des Coléoptères recoltés par la Dr. C. N. Ionesco dans les grottes des Carpathes roumaines (mèridionales) et déterminés par le dr. R. Jeannel. Ann. Sci. Univ. Jassy, 7, 3, pp. 235-251.

IONESCU, C. N. – 1913. Biospeologia Carpatilor Meridionali. Bul. Soc. Rom. Geogr., 34, 2

IONESCU, C. N.– 1915. Contributions à la faune des insects Collemboles de Roumanie (en comprenant aussi les formes cavernicoles). Bull. Ac. Romana,3 pp. 320-325.

IONESCU, C. N. – 1915a. Araignées cavernicoles des Carpates roumaines. Ann. Sci. Univ. Jassy, 8, pp. 404-406.

IONESCU, C. N. – 1922. Quelques nouveaux insectes Collemboles récoltés dans les grottes des Carpathes Méridionales. Ann. Sci. Univ. Jassy, 11, pp. 373-382.

IVAN, O. & N. A. VASILIU – 2010. Fauna of oribatid mites (Acari, Oribatida) from the Movile cave area (Dobrogea, Romania). Trav. Inst. Spéol. E. Racovitza, 49, pp. 29-40.

JEANNEL, R. – 1923. Etude préliminaire des Coléoptères aveugles du Bihar. Bull. Soc. Sci. Cluj, 1, 3, pp. 411-472.

JEANNEL, R. – 1924. Monographie des Bathysciinae. Arch. Zool. Expér. Gén., 63, 436 pp.

JEANNEL, R. – 1928a. Monographie des Trechinae. Morphologie comparée et distribution géographique d'un groupe de Coléoptères. L'Abeille, 35, 808 pp.

JEANNEL, R. – 1928b. Diagnoses préliminaires de Coléoptères cavernicoles nouveaux de l'Olténie. Bull. Soc. Entomol. Fr., pp. 267-275.

JEANNEL, R. & E. G. RACOVITZA – 1929. Enumération des grottes visitées 1918-1927. Arch. Zool. Expér. Gén., 68, pp. 203-608.

JEANNEL, R. – 1930a. Coléoptères cavernicoles des Carpates Méridionales. Bull. Soc. Sci. Cluj, 5, 2, pp. 5-47.

JEANNEL, R. – 1930b. Coléoptères cavernicoles nouveaux des Monts Bihar. Bull. Soc. Sci. Cluj, 5, 2, pp. 48-61.

JEANNEL, R. – 1931a. Coléoptères nouveaux de la troisième campagne organisée par l'Institut de Spéologie dans les Carpathes Méridionales. Bull. Soc. Sci. Cluj, 5, 2, pp. 134-141.

JEANNEL, R. – 1931b. Origine et évolution de la faune cavernicole du Bihar et des Carpates du Banat. Arch. Zool. Ital., 16, pp. 47-60.

JUBERTHIE, C. & V. DECU – 1968. Les glandes pygidiales de quelques Trechinae cavernicoles. Ann. Spéléol., 23, 1, pp. 195-210.

JUBERTHIE, C. & V. DECU – 1970. Neurosécretion chez les invertebrés souterraines. La neurosécretion et les glandes endocrines chez le coléoptère Cloșania winkleri. Ann. Spéléol., 25, 2, pp. 299-317.

JUBERTHIE, C., DELAY, B., DECU, V. & Gh. RACOVIȚĂ – 1981. Premières données sur la faune des microespaces du milieu souterrain superficiel de Roumanie. Trav. Inst. Spéol. E. Racovitza, 20, pp. 103-113.

JUBERTHIE, C. & V. DECU (eds) – 1994-2001. Encyclopaedia Biospeologica, T. I (1994), T. II (1998), T. III (2001). Ed. Fabrro, Saint-Girons, 2294 pp.

JUBERTHIE-JUPEAU, L. & I. TĂBACARU – 1968. Glandes postgonopodiales des Oniscomorphes (Diplopodes, Myriapodes). Rev. Ecol. Biol. Sol, 5, 4, pp. 605-618.

JUGET, J. & E. DUMNICKA – 1986. Oligochaeta (incl. Aphanoneura) des eaux souterraines continentales, p. 234- : L. Botoșăneanu (ed.), Stygofauna mundi, Leyden, 740 pp.

JUVARA, I. – 1967. Acarieni din fam. Spinturnicidae si Dermanyssidae (Mesostigmata: Gamasina) paraziti pe chiroptere din Romania. Lucr. Inst. Speol. E. Racovitza, 6, pp. 183-193.

KARAMAN, S. 1935. Die Fauna unterirdischen Gewasser Iugoslawiens. Verh. Int. Ver. Limnol., 7: 46-73.

KARAMAN, G. S. & S. RUFFO – 1986. Amphipoda: Niphargus – group (Niphargidae) sensu Bousfield, 1984. In: Botoșăneanu (ed.), Stygofauna mundi, Leyden, 740 pp.

KARAMAN, G. S. & S. SÂRBU – 1993. A new species of the genus Pontoniphargus Dancău, 1970 (Amphipoda, Gammaridea, Family Niphargidae) from Romania, N. ruffoi n. sp. Bol. Mus. Civ. St. Nat. Verona, 20, 2, pp. 569-582.

KARAMAN, G. & S. SÂRBU – 1995. Niphargus decui n. sp. (Amphipoda, Gammaridea, Niphargidae) a new species for Romania. Trav. Inst. Spéol. E. Racovitza, 34, pp. 77-87.

KASER, D., 2010. A new habitat of subsurface waters: the hyporheic biotope . By Traian Orghidan (1917-1985). English version of Orghidan’s 1959 paper. Fundamental and Applied Limnology, 176, 4, 291-302.

KRATOCHVÍL, J. 1958. Jeskynní sekáèi Bulharska (Cyphophthalmi a Laniatores) [Die Hölenweberknechte Bulgariens (Cyphophthalmi und Laniatores]). Acta Ac. Sci. Cechos. Basis Brun., 30: 372-396

KULCZYNSKI, L. – 1895. üeber die Theridioiden der Spinnenfauna Ungarns. Termes. Fuzetek, 18, 188-201, 288, 289.

LASCU, C. – 1989. Paleogeographical and hydrogeological hypothesis regarding the origin of a peculiar cave fauna. Misc. Speol. Romanica, 1, pp. 13-18.

LASCU, C., POPA R., SARBU S., VLASCEANU L., and PRODAN S. 1993, La Grotte de Movilé: une Faune Hors du Temps. La Recherche 258: 1092-1098

LASCU, C., POPA, R. & S. SÂRBU – 1994. Le Karst de Movile. (Dobrogea du Sud). Rev. Roum. Géographie, 24, pp. 85-94.

LASCU, C., POPA, R. & S. SÂRBU – 1995. Le Karst de Movile. (Dobrogea du Sud). Rev. Roum. Géographie, 38, pp ; 31-40.

LASCU, C. – 1996. Salvati pesterile (Save the caves). Pesteri din Romania, valoare si conservare (Caves of Romania, value and conservation). GESS, 40 pp.

LASCU, C., CONSTANTIN, S. & S.E. LAURITZEN – 2000. Black Sea level oscillations based on preliminary U-series dating of submerged speleothems from Peștera Piatra (Central Dobrogea, Romania). Proceed. Meet. Friends of Karst, Theor. and Appl. Karstology, July 2000, Cluj-Napoca, Romania. Presa Univ. Napocensis Cluj-Napoca, pp. 72-76.

LASCU, C. – 2003. – Movile cave, Romania. In: J. Gunn (ed.). Encyclopaedia of caves and karst Science, Fitzroy Dearborn, N.Y, London, pp. 528-530.

LAZAR I., VOICU A., DOBROTA S.,STEFANESCU M., PETRISOR I.G.,CISMASU C., – 2004-2005, New contribution to the microbionta naturally occurring in the Movile Cave. Trav. Inst. Spéol. E. Racovitza, 43-44, pp.17-35.

LENGERSDORF, F. & R. LERUTH – 1940. Etudes biospéologiques. 19. Sciaridae (= Lycoriidae) et Mycetophilidae (= Fungivoridae) cavernicoles de Transylvanie (Diptera). Bull. Mus. roy. Hist. nat. Belg., 16, 6, 24 pp.

LERUTH, R. – 1939. Etudes biospéologiques. 12. Remarques écologiques et biologiques sur les stations visitées en Roumanie. Bull. Mus. roy. Hist. nat. Belg., 15, 36, 51 pp.

LOOSJES, E. F. & A. NEGREA – 1968. Gastropoda (Pulmonata) in the karst regions of Romania. Zool. Medeling., 43, 4, pp. 41-55.

MALLASZ, J. – 1928. Bestimmungstabelle der Sophrochaeta Arten. Publ. Muz. jud. Hunedoara, 3-4 (25-26).

MANOLACHE, E. R. 2004-2005. Populatii microbiene si activitati enzimatice in substrate naturale aflate in conditii ecologice nefavorabile. Ph. D. thesis UBB Cluj-Napoca, 2001.

MANOLELI, D. – 1994. Contributions to the knowledge of the Hirudinea from the eastern Romanian Plain and from the Mountains of Vrancea. Trav. Mus. natl. Hist. nat. “Grigore Antipa”, 14, pp. 79-83.

MANOLELI, D., KLEMM, D. J. & S. M. SÂRBU – 1998. Haemopis caeca (Annelida, Hirudinea, Haemopidae) a new species troglobitic leech from a chemoautotrophycally based groundwater ecosystem in Romania. Proceed. Biol. Soc. Washington, 111, pp. 222-229.

MARIN, C & T. NICOLESCU – 1993. The geochemistry of groundwater from southeastern Dobrogea. Romania. Trav. Inst. Spéol. E. Racovitza, 32, pp. 229-348.

MARIN, C. – 2000. Modelarea speciatiei elementelor in sisteme apoase naturale. Ph. D. Thesis, Ed. OSIM, 450 pp.

Martens, J. (1978) Spinnentiere, Arachnida: Weberknechte, Opiliones. Die Tierwelt Deutschlands. Vol. 64. G. Fischer Verlag, Jena, 464 pp

MATIC, Z. – 1966. Fauna R. S. Romania. VI, Chilopoda, 1, Anamorpha. Ed. Acad. București, 227 pp.

MATIC, Z. – 1968. Chilopodele din colectia "Biospeologica" (seriile VII-VIII). Lucr. Inst. Speol. E. Racovitza, 7, pp. 55-77.

MATIC, Z. – 1972. Fauna R. S. Romania. VI, Chilopoda, 2, Epimorpha. Ed. Acad. București, 220 pp.

MATILE, L. – 1962. Morphologie et biologie d'une insecte diptère cavernicole Speolepta leptogaster Winnertz (Mycetophilidae). Mém. Mus. Hist. nat. Paris, 20, pp. 220-241.

MATILE, L. – 1994. Diptera: pp. 341-357 In: C. Juberthie et V. Decu (eds), Encyclopaedia Biospeologica, 1. Soc. Biospéol. Moulis-Bucarest, 834 pp.

MELEG, I., CIMPEAN, M. & C. PAVELESCU – 2009. Hyporheic fauna from interstitial of the Somes basin (Transylvania, Northwestern Romania). Trav. Inst. Spéol. E. Racovitza, 48, pp.45-58.

MELEG, I.N., MOLDOVAN, O.T. & F. FIERS – 2011. Assessing copepod (Crustacea: Copepoda) species richness at different spatial scales in northwestern Romanian caves. Subterranean Biology, 91, pp. 103-112.

MELEG, I., MOLDOVAN, O.T., IEPURE, S., FIERS, F. & T. BRAD – 2011. Diversity patterns of fauna from dripping water in caves from northwestern Romania, Int. J. Limnol., 47, pp.185-197.

MEHELY, L., – 1900 Monographia Chiropterum Hungariae. A Maghiar Tudomanyos Academia tamogata saval Riadja Maghyar Nemzeti Muzeum Budapest, 372p.

MILLER, L. 1856. Beschreibung eines neuen Grottenkäfer aus Ungarn. Verh. zool.-bot. Ver., Wien, 6, 635, 636.

MESTROV, M. 1962.Un nouveau milieu aquatique souterrrain: le biotope hypotelminorhéique. Comptes Rendus de l'Academie des Sciences Paris 254: 2677-2679.

MOLDOVAN, O. T. – 1989. Révision systématique de l'espèce Pholeuon angusticolle (Coleoptera, Catopidae, Bathysciinae). Trav. Inst. Spéol. E. Racovitza, 28, pp. 29-41.

MOLDOVAN, O. – 1993. A new species of Duvalius from the Somesan Plateau. Mém. Biospéol., 20, pp. 145-146.

MOLDOVAN, O., ALVES, H. & J. M. JALLON – 1996. Données préliminaries sur les hydrocarbures cuticulaires chez quelques espèces de Drimeotus s. str. (Coleoptera, Leptodirinae). Trav. Inst. Spéol. E. Racovitza, 35, pp. 109-114.

MOLDOVAN, O. T. – 1997. Drimeotus octaviani (Coleoptera : Cholevidae : Bathysciinae). Mém. Biospéol., 24, pp. 169- 173.

MOLDOVAN, O. T. – 1997. Reconnaissance des sexes et isolement reproductif chez les coléoptères Bathysciinae souterrains: approche taxonomique, biochimique et expérimentale. Ph. D. Thesis,”Paul Sabatier” University, Toulouse, 130 pp.

MOLDOVAN, O. T. – 1998. Reconnaissance des sexes chez les Coléoptères Bathysciinae (Leptodirinae) souterrains ; I. Approche expérimentale et ultrastructure. Mém. Biospéol., 25, pp. 87-105.

MOLDOVAN, O. – 2000a. Révision de Drimeotus s.str Miller, 1856 (Coleoptera, Cholevidae, Leptoditinae) de Transylvanie (Roumanie), avec description de deux nouvelles espèces. Zoosystema, 22, 1, pp. 139-152.

MOLDOVAN, O. – 2000b. Drimeotus Pleșai (Coleoptera Cholevidae) a new species of Leptodirinae from Transylvania (Romania). Mém. Biospéol., 27, pp. 89-92.

MOLDOVAN, O. – 2000c. The presence of cuticular hydrocarbons at the underground beetles and their importance. Proceed. Conf. Karst studies and Problems, July 2000, Cluj-Napoca, p. 170.

MOLDOVAN, O. – 2002. Coleoptere din pesteri. Adaptari, taxonomie, ecologie, feromoni, comportament, protectie. Accent, 113 pp.

MOLDOVAN, O. – 2003. Sex recognition at the subterranean Leptodirinae (Coleoptera, Cholevidae). II. Biochemical approach and data integration. Subterranean Biology, 1, pp. 99- 110.

MOLDOVAN, O., Racovitza, G. & G. RAJKA – 2003. The impact of tourism in Romanian show caves: the example of the beetle populations in the Ursilor cave of Chiscau Subterranean Biology, 1, pp. 73- 78.

MOLDOVAN, O., MILOTA, S., SARCINA, L., TRINKAUS, E., BALTEAN, I., SOFICARU, A. & A. RAJKA – 2003. The oldest modern humans in Europe. Theor. Appl. Karstologia, 16, pp. 78-81.

MOLDOVAN, O., IEPURE, S. & A. PERSOIU – 2005. Biodiversity and protection of Romanian karst areas the example of interstitial fauna In : Z. Stevanovic & P. Milanovic (eds). Water resource an environmental problem in Karst. Proced. Int. Conf. Beograd & Kotor, pp. 831-836.

MOLDOVAN, O. (ed ) – 2007. Lista faunistíca a Romaniei (specii terestre si de apa dulce). ISER, Casa Cartii de stiința, Cluj-Napoca, 411 pp.

MOLDOVAN, O. T. & G. RAJKA – 2007. Historical biogeography of subterranean beetles – “Plato’s cave” or scientific evidence? Time in karst, Postojna, pp. 77-86.

MOLDOVAN, O., Racovitza, G. & J. DUNAJ – 2007. Reconsidering the Pholeuon Hampe, 1856 (Coleoptera Leiodidae, Cholevinae) with the description of a new sub-genus. Zootaxa, 1449, pp. 31-43.

MOLDOVAN, O., PIPAN, T., IEPURE, S., MIHEVC, A. & J. MULEC – 2007. Biodiversity and Ecology of fauna in percolating water in selected Slovenian and Romanian caves. Acta Carsologica, 36, 3, pp. 493-501.

MOLDOVAN, O. T. – 2008. Why so many Leptodirini (Coleoptera, Leiodidae) in Romania? In : S. E. Makarov & R. N. Dimitriević Advance in Arachnology and Developmental Biology. Inst. Zool. Bulgarian Acad. Sci., Monograph XII, pp. 475-483. Moldovan, O. T., Iepure S., Rajka G., 2002.Research on groundwater fauna in North-Western Romania. Studia Univ. Babes-Bolyai, Biologia, Cluj-Napoca, XLVII, 1, 17-32.

MOLDOVAN, O. T., LEVEL, E., BANCIU, M., BANCIU, H.L., MARIN, C., PAVELESCU, C., BRAD, T., CIMPEANU, M., MELEG, I., IEPURE, S., POVARA, I., – 2011.Spatial distribution patterns of the hyporheic invertebrate communities in a polluted river in Romania. Hydrobiologia, 669, 63-82.

MOLDOVAN, O. T., I. N. MELEG, E. LEVEI & M. TERENTE, – 2013. A simple method for assessing biotic indicators and predicting biodiversity in the hyporheic zone of a river polluted with metals. Ecological Indicators, 2: 412–420.

MOLDOVAN, O.T., LEVEI, E.- 2015.Temporal variability of fauna and the importance of sampling frequency in the hyporheic zoneHydrobiologia, 755: 27.

MOLDOVAN, O. T., MELEG, I. N. & A. PERSOIU – 2011. Habitat fragmentation and its effects on groundwater populations. Ecohydrology (wileyonlinelibrary.com) DOI: 10.1002/eco. 237.

MOLDOVAN, O. T., MIHEVE, A., MIKO, L., CONSTANTIN, S., MELEG, I. N., PETCULESCU, A. & P. BOSAK – 2011. Invertebrate fossils from cave sediments: a new proxy for pre-Quaternary paleoenvironments. Biogeosciences, 8, pp.1825-1837.

MOLDOVAN, O. T., MELEG, I.N., LEVEI, E. & M.TERENTE – 2013. A simple method for assessing biotic indicators and predicting biodiversity in the hyporheic zone of a river polluted with metals. Ecological Indicators, 24, pp. 412-420.

MOTAȘ, C. – 1958. Freatobiologia, o nouă ramură a Limnologiei. Natura, București, X, 3, 95-105.

MOTAȘ, C. – 1962, Procédé des sondages phréatiques – Division du domaine souterrain – Classification écologique des animaux souterrains – Le psammon. Acta Musei Maced. Sci. Nat., Skopje, VIII, 7 (75), 135-173.

MOTAȘ, C. – 1962. Sur les acariens phréatiques, leur distribution géographique, leur origine. Zool Anz., 168, 325-350.

MOTAȘ, C. – 1963. La notion de nappe phréatique. La phréatobiologie ses débuts son objet. Analele șt. Univ. ”Al. I. Cuza” Iași (Serie nouă), Secț. II (Stiințe naturale), IX, 1, 57-61.

MOTAȘ, C., TANASACHE, J. – 1946.Acariensphréaticoles de Transylvanie. Not. Biol. T. 4, 1-3, Bucarest, 1947: Hydracariensphréaticoles de Roumanie. Not. Biol. T. 5, 1-3.

MOTAȘ, C., TANASACHE J., OORGHIDAN Tr., – 1947, Diagnoses de quelques nouveaux Hydracariens phréaticoles de Roumanie. Bull. Sect. sci. Acad. Roum., XXIX, 8, 506-512.

MOTAȘ, C., TANASACHE J., OORGHIDAN Tr., – 1947, Hydracariens phréaticoles de Roumanie. Notat. Biol., Bucarest, V, 1-3, 3-67.

MOTAȘ, C., TANASACHE J., OORGHIDAN Tr., – 1958. Hydrachnellesphréaticolesdela R.P.Roumaine. Acta Soc. Zool.Bohemosl. T. 22, 2

MOTAȘ, C., ORGHIDAN T., 1948. Quelques Cladocères recueillis dans l’eau phréatique. Notat. Biol.,Bucarest, VI, 1-2, 123-129.

MOTAȘ, C., TANASACHE J., OORGHIDAN Tr., – 1957. Über einige neue phreatische Hydrachnellae aus Rumänien und über Phreatobiologie, ein neues Kapitel der Limnologie. Abh. Naturw. Ver. Bremen, 35, 1, 101-122.

MOTAȘ, C., ȘERBAN E., 1961. Cercetări freatobiologice : Valea Motrului (Notă preliminară). Studii. Cercet. Biol. Ser. Biol. Anim., XIII, 2, 227-236.

MOTAȘ C., BOTEA Fr., 1961. Cercetări asupra faunei freatice de pe valea rîului Doftana. Comunic. Acad. R.P.R., XX, 7, 833-838.

MOTAȘ, C., BOTEA, Fr., 1962. Cercetări asupra faunei freatice din Valea Prahovei. Stud. Cercet. Biol. Ser. Biol. Anim., XIV, 529-537.

MOTAȘ, C., BOTOȘĂNEANU L., NEGREA St., 1962.Cercetări asupra biologiei izvoarelor și apelor freatice din partea centrală a Câmpiei Române. Ed. Acad. R.P.R., București, 367 pag.

MOTAȘ, C., TANASACHE J., -1963. Hydrachnellae freatice din bazinul Vîrghisului. Lucrarile Institutului de Speologie E.Racoviță, I-II (1962-1863), 311-340.

MOTAȘ, C., Șerban, E., 1965. Recherches phréatobiologique. II. La capture des Niphargus adultes par le procédé des sondages Karaman-Chappuis. Les crues et la biocénose de la nappe phréatique. Intern. Journ. Speleol. I,

MOTAȘ, C. & J. SOAREC – 1939 – Sur deux Halacarides recueillis dans les Monts Apuseni, Roumanie. Bull. Mus. roy. Hist. nat. Belg., 15, 38, 11 pp.

MOTAȘ, C. & J. TANASACHI – 1946. Acariens phréaticoles de Transylvanie. Notationes Biol., 4, 1-3, pp. 3-63.

MOTAȘ, C., TANASACHI, J. & T. ORGHIDAN – 1946. Diagnoses de quelques nouveaux Hydracacriens phréaticoles de Roumanie. Bul. Sect. Sci. Acad. Roum., ,19, 8, pp. 1-7.

MOTAȘ, C., TANASACHI, J. & T. ORGHIDAN – 1947. Hydracariens phréaticoles de Roumanie. Notationes Biol., 5, 1-3, pp. 3-65.

MOTAȘ, C., TANASACHI, J. & T. ORGHIDAN – 1958. Hydrachnelles phréaticoles de la R. P. Roumaine. Acta Soc. Zool. Bohemoslovenicae, 22, 4, pp. 293-333.

MOTAȘ, C. & E. ȘERBAN – 1961. Cercetari freatobiologice: Valea Motrului (nota preliminara). St. Cerc. biol., Biol. anim., 13, 2, pp. 227-236.

MOTAȘ, C. – 1962. Procédé des sondages phréatiques. Division du domaine souterrain. Classification écologique des animaux souterrains. Le psammon. Acta Mus. Mac. Sci. nat., 8, 7 (75), pp. 135-173.

MOTAȘ, C. & J. TANASACHI – 1962a – Hydrachnellae freatice din bazinul Vïrghisului. Lucr. Inst. Speol. E. Racovitza, I-II, (1962-1963), pp. 311-340.

MOTAȘ, C. & J. TANASACHI – 1962b. Beschreibung einiger Hydrachnellen aus Rumänien, nebst Verzeichnis der bis jetzt gefundenen Formen von Hydrachnellen, Porohalacariden, Halacariden, Stygothrombiiden und Oribatiden (Acari). Ann. Hist. nat. Mus. nat. Hung., 54, pars Zool., pp. 434-472.

MOTAȘ, C., BOTOȘĂNEANU, L. & St. NEGREA – 1962c. Cercetari asupra izvoarelor si apelor freatice din partea centrala a Cimpiei Romane. Edit. Acad. București, 366 pp.

MOTAȘ, C. & I. CĂPUȘE – 1964. Beiträge zur Kenntnis Brunnenfauna im Tal des Flusses Bela Reca (Rumänien). Int. J. Speleol., 1, 4, pp. 461-478.

MOTAȘ, C., DECU, V. & A. BURGHELE – 1967. Sur l'association pariétale des grottes d'Olténie (Roumanie). Ann. Spéléol., 22, 3, pp. 475-522.

MOTAȘ, C., – 1974 – Muz. St. nat. Bacau, St. Com., Dr. C.N. Ionescu (1878-1937), pp. 217 -222

MOTAȘ, C. – 1976. Termes spéologiques et phréatobiologiques. Muz. St. nat. Bacau, St. Com. , 9, pp. 254-283.

MURARIU D., G. CHIȘAMERA, D. MĂNTOIU, I. POCORA, 2016 – Romanian Fauna. Mammalia, Vol. XVI, Fascicle 3 – CHIROPTERA. The Publishing House of the Romanian Academy, Bucharest: 292 pp.

MURARIU D., GHEORGHIU V., – 2018a A possible case of lek demes in some troglophilic bats and interspecific relations in bat colonies from some Romanian cave, Trav. Inst. Spéol. «Émile Racovitza», t. LVII, p. 71–79, Bucarest.

MURARIU D., GHEORGHIU V., – 2018b, The concept of ecological re-establishment of some large bat populations in Women Cave from Baia de Fier (Romania), Rom. J. Biol. – Zool., Vol. 63, Tom. 1–2, p. 85–105, Bucharest

NAE, A., VLAICU, M., POPA, I., IAVORSCHI, V., CONSTANTINESCU, T. & E. NITZU – 2004-2005. First note on the invertebrate fauna of caves from the Piatra Craiului National Park. Trav. Inst. Spéol. E. Racovitza, 43-44, pp. 133-164.

NAE, A. – 2010. Cercetari biospeologice in masivul Piatra Craiului. Ph. D. Thesis Acad. Romana, 304 pp.

NAE, A. – 2012. Carniella mihaili (Georgescu, 1989) – New contribution of genus and description of the male (Araneae, Theridiidae). Trav. Inst. Spéol. E. Racovitza, 51, pp. 67-72.

NAE A.,SARBU S., WEISS I. – 2013, Kryptonesticus georgescuae sp..nov. from Movile Cave, Romania (Araneae: Nesticidae), Arachnologische Gesellschaft, Arachnologische Mitteilungen: Arachnology Letters, 55(1) : 22- 24 Published By: Arachnologische Gesellschaft

NEGOESCU, I. – 1989. Sur une population troglobie d'Asellus aquaticus (L.) (Isopoda, Asellota, Asellidae). Misc. Speol. Romanica, 1, pp. 47-53.

NEGREA, A. & A. RIEDEL – 1968. Eine neue unterirdische Zonitiden-Art und Gattung (Gastropoda) aus Rumänien. An. Zoologici , 26, 5, pp. 209-215.

NEGREA, A. & St. NEGREA – 1971. Sur la synusie du guano des grottes du Banat (Roumanie). Trav. Inst. Spéol. E. Racovitza, 10, pp. 81-123.

NEGREA, A. – 1974. Contribution à l'étude des Zonitidae (Gastropoda) cavernicoles et endogés de Roumanie. Int. J. Speleol., 6, 4, pp. 303-324.

NEGREA, A. & St. NEGREA – 1978. Sur l’écologie et l’origine des populations cavernicoles terrestres du défilé du Danube. Trav. Mus. natl. Hist. nat. “Grigore Antipa”, 19, pp. 349-351.

NEGREA, A. – 1979. Contribution à l'étude des Clausiliidae (Gastropoda) des zones karstiques de Roumanie. Trav. Inst. Spéol. E. Racovitza, 18, pp.7-32.

NEGREA, A & St. NEGREA – 1980. Considération sur la biocénose des planchers de la zone profonde des grottes du Banat (Roumanie). Trav. Mus. natl. Hist. nat. “Grigore Antipa”, 21, pp. 151-156.

NEGREA, A. & St. NEGREA – 1983. Considérations sur les écosystèmes des grottes Comarnic et Popovat (Banat, Roumanie). Trav. Inst. Spéol. E. Racovitza, 22, pp. 47-57.

NEGREA, A. – 1994. Gastéropodes (Gasteropoda) connus jusqu’à présent des provinces biospéologiques de Romania. Trav. Mus. natl. Hist. nat. “Grigore Antipa”, 34, pp. 227-264.

NEGREA, St. & I. TĂBACARU – 1958. Noi specii de Polydesmide cavernicole din R. P. R. An. Univ. București, ser. St. Nat., 18, pp. 127-133.

NEGREA, St. – 1964. Observatii asupra variatiei caracterelor si dezvoltarii postembrionare la unele Lithobiidae (Chilopoda) din pesterile R. P. Romane Lucr. Inst. Speol. E. Racovitza., 3, pp. 311-361.

NEGREA, St., NEGREA, A., SENCU, V. & L. BOTOȘĂNEANU – 1965. Grottes du Banat (Roumanie) explorées en 1963. Int. J. Speleol., 1, 4, pp. 397-439.

NEGREA, St. & A. NEGREA – 1968. Contribution à l’étude de l’association pariétale des grottes du Banat. Lucr. Inst. Speol. E. Racovitza, 7, pp. 79-148.

NEGREA, St. – 1969. Aperçu sur les Chilopodes cavernicoles de Roumanie. Bull. Mus. nat. Hist. nat. Paris, 41, p. 102-107.

NEGREA, St. & A. NEGREA – 1969. Pesterile din defileul Dunarii. Lucr. Inst. Speol. E. Racovitza, 8, pp. 25-51.

NEGREA, St. & A. NEGREA – 1972. Recherches sur l'association pariétale des grottes du Banat (Roumanie). Acta Zool. Cracov., 17, 3, pp. 45-96.

NEGREA, St. & A. NEGREA – 1977. Sur les associations de plancher des grottes du Banat (Roumanie). Trav. Inst. Spéol. E. Racovitza, 16, pp. 99-141.

NEGREA, St. – 1980. Ecosisteme subterane. In: C. Pïrvu (ed.), Ecosisteme din Romania. pp. 197-225.

NEGREA, St., NEGREA, A. & G. KARBAN – 1992. Grottes explorées dans les gorges du Caras (Banat, Roumanie) et leur faune. Trav. Inst. Spéol. E. Racovitza, 32, pp. 105-132.

NEGREA, St. – 1993. Sur une population troglobionte de Cryptops anomalans Newport, 1844 (Chilopoda, Scolopendromorpha) trouvée dans la grotte « Peștera de la Movile. Trav. Inst. Spéol. E. Racovitza, 32, 87-94.

NEGREA, St., NEGREA, A. & G. KARBAN – 1993. Grottes explorées dans les vallées Luca, Comarnic et Toplița (Banat, Roumanie) et leur faune. Trav. Inst. Spéol. E. Racovitza, 32, pp. 131-154.

NEGREA, St. – 1994a. Chilopodes (Chilopoda) de Roumanie connus jusqu’à présent. Trav. Mus. natl. Hist. nat. “Grigore Antipa”, 34, pp. 265-283.

NEGREA, ST. – 1994b. Cladocera: pp. 99-104. In: Encyclopaedia Biospeologica, 1. C. Juberthie et V.Decu (eds), Société de Biospéologie, Moulis- Bucarest, 834 pp.

NEGREA, ST. & A. MINELLI – 1994c. Chilopoda : pp. 249-254. In: Encyclopaedia Biospeologica, 1. C. Juberthie et V.Decu (eds), Société de Biospéologie, Moulis-Bucarest, 834 pp.

NEGREA, St., NEGREA, A. & G. KARBAN – 1994. Grottes explorées dans le bassin du Doman (Banat, Roumanie). Trav. Inst. Spéol. E. Racovitza, 33, pp. 179-194.

NEGREA, St. – 1997. Nouvelles données sur les Chilopodes souterrains et endogés de la zone karstique de Mangalia (Dobrogea, Roumanie). Trav. Mus. natl. Hist. nat. “Grigore Antipa”, 39, pp. 45-51.

NEGREA, St. & V. BOITAN – 2001. An ecological and biogeographical overview on the terrestrial and aquatic subterranean environments from Romania. Trav. Mus. Natl. Hist. nat. Grigore Antipa, 43, pp. 367-424.

NEGREA, St. – 2003a. Diversity of Chilopoda (Myriapoda) in subterranean terrestrial habitats from the speleological province II (Meridional Carpathians, west of river Olt) and III (Banat Mountains). In: Proceed. Int. Workshop on Subsurface Organisms. Fauna Europea project, pp. 31-34.

NEGREA, St. – 2003b. Diversity of Cladocera (Crustacea, Branchiopoda, Cladocera) in groundwater from the Romanian Occidental Carpathians (the Banat and the Apuseni Mountains). In: Proceed. Int. Workshop on Subsurface Organisms. Fauna Europea project, pp. 34-36.

NEGREA, St., NEGREA, A. & A. ARDELEAN – 2004. Biodiversitatea ín mediile subterane din Romania. Vasile Goldis Univ. Press, 246 pp.

NEGREA, St. – 2007. Historical development of biospeology in Romania after the death of Emile Racovitza. Trav. Inst. Spéol. E. Racovitza, 46, pp. 131-167.

NICOLAESCU-PLOPSOR, C. S. – 1957. Le paléolitique dans la République Populaire Roumaine à la lumières des dernières recherches. Dacia, 1, Acad. R.P.R., pp. 41-60.

NITZU, E. & C. JUBERTHIE – 1996. Changement dans l’équipement sensoriel des antennes et des palpes maxillaires en fonction de l’habitat chez les Coléoptères Clivininae (Scaritidae). Mém. Biospéol., 23, pp. 91-102.

NITZU, E. – 1997. Edaphicolous, endogeous and subterranean Coleoptera from the Movile karstic area. Trav. Inst. Spéol. E. Racovitza, 36, pp. 73-98.

NITZU, E. – 1998. Laemostenus (Pristonychus) euxinus n. sp. (Coleoptera Carabidae) in the subterranean habitat from Southern Dobrogea, Romania. Trav. Mus. Natl. Hist. nat. “Grigore Antipa”, 40, pp. 337-346.

NITZU, E. & V. DECU – 1998. First record of Limnastis galileus Brulle, 1875 and Parazuphium chevrolati (Castelnau, 1853) (Coleoptera Caraboidea) in the subterranean habitat from Southern Dobrogea, Romania. Entomol. Mitt. Hamb. Zool. Mus. 12, 157, pp. 229-236.

NITZU, E.,, GIURGINCA, A., ILIE, V. & L. VANOAICA – 1998-1999. First note on the edaphic and subterranean fauna from the evaporitc karstic regions of Romania. Trav. Inst. Spéol. E. Racovitza, 37-38, pp. 143-158.

NITZU, E. – 2000. Edaphicolous, endogeous ans subterranean Coleoptera from the Movile karstic area (Southern Dobrogea, Romania. Proceed. Int. Conf. Karst Studies Problems, July 2000, Cluj-Napoca, pp. 171-175.

NITZU, E. – 2001. Edaphic and subterranean Coleoptera from the Dobrogea karstic areas (Romania). A zoogeographic approach. Mitt. Hamb. Zool. Mus. Inst., 98, pp. 131-169.

NITZU, E. & V. ILIE – 2003. Contribution to the knowledge of edaphic and subterranean Coleoptera from the Cloșani karstic area (Oltenia, Romania) – with special references on the Mesovoid Shallow Substratum. Trav. Inst. Spéol. E. Racovitza, 41-42, (2002-2003), pp. 159-168.

NITZU, E., POPA, J. & A. GIURGINCA. – 2011. Invertebrate fauna (Coleoptera, Collembola, Diplopoda, Isopoda) collected in the karst areas of the Aninei-Locvei Mountains. Trav. Inst. Spéol. E. Racovitza, 50, pp. 15-36.

NITZU, E. – 2013. The Cholevinae of Romania (exclusive of Leptodirini) (Coleoptera, Leiodidae) with special reference to the hypogeal fauna. Zootaxa, 3620, pp. 351-378.

NITZU, E. & NAE, A. & I. POPA – 2007. Eco-faunistic study on the invertebrate fauna (Aranea, Collembola and Coleoptera) from the Varghis Gorge natural reserve (Eastern Carpathians, Romania), with special note on the micro-refugial role of the subterranean habitats. Trav. Inst. Spéol. E. Racovitza, 46, (2006-2007), pp. 31-50.

NITZU, E., NAE, A., GIURGINCA, A & I. POPA – 2010. Invertebrates communities from the mesovoid shallow substratum of the Carpato-Euxinic area. Trav. Inst. Spéol. E. Racovitza, 49, pp. 41-80.

OLTEANU, R. – 2006. Paleo-ecologia ecosistemelor salmastre din Bazinul Dacic. GeoEcoMar, București, 90 pp.

OLTEANU, R. & D. JIPA – 2006. Dacian basin environmental evolution during Upper Neogene within the Paratethys domain. Geo-eco-marina, 12, pp. 91-106.

ONAC B., TAMAS T., PERSOIU A., – 2007, The morphologic and hydrologic elements of the area allow the separation of three relief units: the Gârda Seacă Valley, the Ordâncușa Valley and the divide between them. On thisare distinguished two subunits with clearly different characteristics: The Scărișoara Plateau , European Society for Isotope Research 9th edition Post-workshop field trip, Cluj, 22pp

ONCESCU, N. – 1957. Geologia Republicii Populare Romane. Ed. Tehnica, 438 pp.

ORASANU, I & A. JURKIEWICZ – 2010. Karst hidrogeology of Romania. Belvedere, Oradea, 443 pp.

ORGHIDAN, N. & E. NEDELCU – 1969. Vaile transversale din Romania. Studiu geomorphologic. Acad. Romana, 190 pp.

ORGHIDAN, T. – 1955 – Un nouveau domaine de vie souterraine aquatique: le biotope hyporhéique. Bull. Biol. Acad. R. P. Romania, 7, 3, pp. 657-676.

ORGHIDAN, T. – 1959. Ein neuer Lebensraum des unterirdischen Wassers: das hyporheische Biotop. Arch. Hydrobiol., 55, pp. 392-414.

ORGHIDAN, T. 1953. Un noudomeniu de viataacvaticsubteran»Biotopulhiporeic. Bull.Sti. sect. Biologie si sti. Agronom si sect. geologiesi geogr. Acad. R.P.R., T. 7, 3.

ORGHIDAN, T., DANCĂU, D., CĂPUȘE, I., 1979. Cercetări asupra mediului acvatic hiporeic și a celui freatic din sectorul Defileului Dunării inferioare. In: Monografia “Porțile de Fier”, Speologie, 88-97.

ORGHIDAN, T. & M. DUMITRESCU – 1963. Studiu monografic al complexului carstic din defileul Virghisului. Lucr. Inst. Speol. E. Racovitza, I-II (1962-1963), pp. 69-179.

ORGHIDAN, T., PUSCARIU, V., BLEAHU, M., DECU, V., RUSU, T. & A. BUNESCU – 1965. Harta regiunilor carstice din Romania. Lucr. Inst. Speol. E. Racovitza, 4, pp. 75-105.

ORGHIDAN, T. & St. Negrea (eds) – 1979. Porțile de Fier. Speologia. Ed. Acad. R.S.Rom., Bucarest, 178 pp.

ORGHIDAN, T., GEORGESCU, M. & S. SÂRBU – 1982. Deux espèces nouvelles d'Eukoenenia (Arachnida, Palpigradida) vivant dans les grottes de Roumanie. Trav. Mus. Hist. nat. G. Antipa, 24, p. 19-27.

ORGHIDAN, T., D. DANCĂU, & St. NEGREA. – 1993. Contribution à l’étude de la faune aquatique souterraine de la dépression de Hațeg (Roumanie). Trav. Inst. Spéol. E. Racovitza, 32, pp. 9-18.

PALACIOS-VARGAS, J. F., DECU, V., IAVORSCHI, V., HUTU, M. & C. JUBERTHIE – 1998. Acari terrestria, pp. 929-952. In: C. Juberthie et V. Decu (eds), Encyclopaedia Biospeologica, 2, Soc. Biospeol. Moulis-Bucarest, 839-1372 pp.

PAULIAN, R. – 1988. Biologie des Coléoptères. Lechevalier, 719 pp.

Persoiu, a – 2011. Paleoclimatic significance of perrenial ice accumulations in caves: an exemple from Scărișoara Ice Cave, Romania. Univ. South Florida, Depart. Geol., 126 pp.

Persoiu, a. & A. PAZDUR – 2011. Ice genesis and its long term mass balance and dynamics in Scărișoara Ice Cave, Romania. The Cryosphera, 5, pp. 5-45.

Persoiu, a., ONAC, B., WYNN, J., BOJAR, A. V. & K. HOLMGREN – 2011. Stable isoptope behaviour during cave ice formation by free water freezing. J. Geoph. Res. 116, pp. 1-8.

PETCULESCU, Al. & D. MURARIU (coord.) – 2009. The first ecological reconstruction of underground environment from Romania – Cioclovina Uscata cave. Ed. Universitara, 136 pp.

PETCULESCU A., VLAICU M., ROBU M., GHEORGHIU V., TEREMTE M., GORAN C. – 2017, Cartarea habitatelor cavernicole si evaluarea starii de conservare a speciilor de chiroptere din cele mai importante pesteri din Parcul National Buila-Vanturarita, In: Monografia studiilor realizate in PNBV in perioada 2010-2014, Ed. Adm.PNBV, 286-367

PLEȘA, C. –1959.Étude sur la faune interstitielle littorale de la mer Noire. I. Description du Halicyclops brevispinosus psammophilus n. subs. (Crustacé Copépode).Lucrarile Sesiunii Stiintifice Statiunii Zoologice Marine Agigea ‘’ Prof. Ioan Borcea'’ Volume: 1956: 303-307

PLESA C. – 1961. New cyclopoids (Crustacea, Copepoda) of the interstitial fauna from the beaches of Ghana. Journal of the West African Science Association 7(1):1-13.

PLESA, C. 1961. New cyclopoids (Crustacea, Copepoda) of the interstitial fauna from the beaches of Ghana. Journal of the West African Science Association 7(1):1-13, figs. 1-55.

PLEȘA, C., 1977. Nouvelles données sur la répartition et l'écologie de Troglochaetus beranecki Delachaux (Archiannelida) en Roumanie. Lucrarile Institutului de Speologie "Emil Racoviță" 16: 9-16.

PLEȘA C. 1995. Un compartiment écologique majeur pour la stygofaune: le psammal. Lucrarile Institutului de Speologie "Emil Racoviță" 34, 167-170.

PLEȘA, C., BOTEA F., RACOVIȚĂ, G., 1964. Cercetări asupra faunei biotopurilor acvatice subterane din bazinul Crișului Repede. I. Valea Mișidului și afluenți. Lucr. Inst. Speol. “Emil Racoviță”, III, 49-81.

PLEȘA, C., I. CHINAUAN-MIHUT, 1996.Nouvellesdonnées sur la présence et la repartitiongéographique des cyclopides (Crustacea, Copepoda) en Roumanie. II. StudiisiCercetari (St. Naturii) Volume: 2:113-117.

PLEȘA, C., FEKETE A., RAJKA, G., BUZILA, R., 1999. Some data concernig the biodiversity of stygofauna in the River Someșul Cald/Meleg Szamos basin. In Tiscia monograph series – The Someș/Szamos River Valley. Ed. Sárkány-Kiss & Hamar, Târgul Mures,223-228.

PLEȘA, C. – 1958. Conspectul sistematic al Cyclopidelor (Crustacee copepode) cunoscute pana in prezent din R. P. R. St. Univ. V. Babes-Bolyai, 3, 7, pp. 137-150.

PLEȘA, C., BOTEA, F. & Gh. RACOVIȚĂ – 1964. Cercetari asupra faunei acvatice subterane din bazinul Crișului Repede. I. Valea Misidului si afluenti. Lucr. Inst. Speol. E. Racovitza, 3, pp. 367-397.

PLEȘA, C. – 1967. Recherches sur la périodicité de la reproduction chez les cavernicoles. Spelunca, Mém. 5, pp. 295-299.

PLEȘA, C. – 1969a. Nota critica asupra unor ciclopide (Crustacea, Copepoda) din apele subterane ale Romaniei. Lucr. Inst. Speol. E. Racovitza, 8, pp. 81-91.

PLEȘA, C. – 1969b. Cercetari asupra periodicitatii reproductive la unele crustacee cavernicole troglobionte. Thèse Doct. d'Etat, Inst. Biol. "T. Savulescu", București.

PLEȘA, C. & Gh. RACOVIȚĂ – 1973. Recherches sur les gours, en tant que milieux aquatiques souterrains. Note I. Livre Cinq. Inst. Spéol. Emile Racovitza, pp. 487-503.

PLEȘA, C. – 1977. Nouvelles données sur la répartition et l'écologie de Troglochaetus beranecki Delachaux (Archiannelida) en Roumanie. Trav. Inst. Spéol. E. Racovitza, 16, pp. 9-17.

PLEȘA, C. – 1985. Microglossaire de stygologie. Theor. Appl. Karstology., 2, pp. 25-45.

PLEȘA, C. – 1987. Les aqueducs en tant qu'habitats temporaires pour la stygofaune. Trav. Inst. Spéol. E. Racovitza, 26, pp. 39-45.

PLEȘA, C. – 1989. Etude préliminaire des Cyclopides (Crustacea, Copepoda) de la grotte « Peștera Movile », Mangalia, Roumanie. Misc. Speol. Romanica, 1, pp. 39-45.

PLEȘA, C. – 1996. Sur un remarquable cas d’adaptation à la vie interstitielle (psammal) : Microcerberus Pleșai Chappuis et Delamare Deboutteville (Crustacé, Isopode, Microcerberidae). Mém. Biospéol., 23, pp. 87-89.

PLEȘA, C., MOLDOVAN, O. & A. MUNTEANU – 1996. Aperçu biospéologique sur la grotte Vadu-Crișului, Monts Pãdurea Craiului (Transylvanie, Roumanie). Trav. Inst. Spéol. E. Racovitza, 35, pp. 115-142.

PLEȘA, C. & R. BUZILA – 2000. Nouvelles données sur la biodiversité de la stygofauna. II. Le bassin inférieur de la vallée de Garda Seaca (Monts Apuseni). Evolution et adaptation, Cluj-Napoca, 6, pp. 89-102.

POGGI, R. & V. DECU – 1992. Coléoptères édaphicoles de grottes de la Roumanie. Trav. Inst. Spéol. E. Racovitza, 31, pp. 69-73.

POGGI, R. – 1994. Descrizione di un nuovo pselafide rumeno, primo reppresentante cavernicolo della tribu Tyrini. Boll. Sol. Entomol. Ital., 125, pp. 221-218.

POGGI, R. & S. SÂRBU – 2013. Two new Pselaphinae beetles from Movile cave (Romania) (Coleoptera Staphilinidae-Pselaphinae). Ann. Mus. Civ. St. Nat. ”G. Doria”, Genova, 105, pp. 115-121.

POINAR, Jr. G. O., & S. M. SÂRBU – 1994. Chronogaster troglodytes sp. n. (Nemastoda Chronogasteridae) from Movile Cave, with a review of cavernicolous nematods. Fundam. Appl. Nematology, 17, pp. 231-237.

POLHEMUS, J. T., NIESER, N. & L. S. KEFFER – 1994. Synonymical notes on the Nepa cinerea Linnaeus complex (Nepidae: Heteroptera) Tijds. Entomol., 137, pp. 331-336.

POP, E. & I. CIOBANU – 1950 – Analize de polen in ghiata de la Scărișoara. An. Acad. R. P. R., 3, 2.

POPA, I. – 2010. Contributii la studiul taxonomic, ecologic si biogeografic al Colembolelor din Romania. Ph. D. Thesis, 187 pp.

POPA, R. & S. SÂRBU – 1991. Trophic structure in an aquatic troglobitic community based upon chemoantotrophic carbon fixation. Trav. Inst. Spéol. E. Racovitza, 30, pp. 51-58.

POPOV, S. V., F., ROGL, A. Y., ROZANOV, F. F., STEININGER, I. G. SHCHERBA & M. KOVAC – 2004. Lithological-Paleogeographic maps of Paratethys. Late Eocene to Pliocene. Courier Forschunginstitut Senckenburg. Band 250. Frankfurt am Main, 46 pp., maps 1-10.

POPOVICI, I. – 2011. Increngatura Nematoda, pp. 151-155. In: S. Godeanu (red), Determinatorul ilustrat al florei si faunei Romaniei, Vol. IV, Mediul subteran. „Vasile Goldis” University Press, Arad, 423 pp.

POSEA, G., POPESCU, N. E. & I. IELENICZ – 1974. Relieful Romaniei. Ed. Stiintifica, 483 pp.

POVARA, I., DIACONU & C. GORAN – 1972. Observations préliminaires sur les grottes influencées par les eaux thermo- minérales de la zone de Băile Herculane. Trav. Inst. Spéol. E. Racovitza, 11, pp. 355-365.

POVARA, I – 2012. Valea Cernei. Morfologie, hydrologie, ape termominerale. Ed. Agir, 304 pp.

RACOVITZA, E. – 1907. Essai sur les problèmes biospéologiques. Arch. Zool. expér. génér, 6, pp. 371-388.

RACOVITZA, E. – 1927. Observations sur la glacière naturelle dite “Ghetarul de la Scărișoara ». Bull. Soc. Sci Cluj., pp. 75-108.

RACOVITZA, Gh. – 1967. Nouvelles contributions à l’étude du topoclimat de la grotte Ghțearul de la Scărișoara . Ann. Spéléol., 22, 4, pp. 757-786.

RACOVITZA, Gh. – 1970. La périodocité reproductrice chez Pholeuon proserpinae glaciale Jean. (Coleoptera, Bathysciinae). In : Livre Cent. E. Racovitza (1868-1968), pp. 445-458. Ed. Acad. R.S.R., 699 pp.

RACOVITZA, Gh. & V. CRACIUN – 1970. Le topoclimat de la grotte de Vadu-Crișului. Trav. Inst. Spéol. E. Racovitza, 9, pp. 61-80.

RACOVITZA, Gh. – 1971. La variation numérique de la population de Pholeuon moczaryi Cs. de la grotte de Vadu-Crișului. Trav. Inst. Spéol. E. Racovitza, 10, pp. 273-279.

RACOVITZA, Gh. – 1973. Quelques significations de la variation numérique des populations de Coléoptères cavernicoles. Trav. Inst. Spéol. E. Racovitza, 12, pp. 9-31.

RACOVITZA, Gh. – 1975. La classification topoclimatique des cavités souterraines. Trav. Inst. Spéol. E. Racovitza, 14, pp. 197-216.

RACOVITZA, Gh. & M. ȘERBAN – 1975. Recherches sur la biologie de la population de Coléoptères cavernicoles de la Peștera cu Apa din Valea Lesului. Ann. Spéléol., 30, 2, pp. 351-363.

RACOVITZA, Gh. – 1977. Rolul regiunilor forestiere in evolutia faunei cavernicole. Lucr. simpoz. "Padurea si spatille verzi in actualitate si perspectiva", Cluj-Napoca, pp. 104-116.

RACOVITZA, Gh. – 1978. Données écologiques sur une population souterraine de Drimeotus horvathi Trav. Inst. Spéol. E. Racovitza,17, pp. 81-94.

RACOVITZA, Gh. – 1980. Etude écologique sur les Coléoptères Bathysciinae cavernicoles. Mém. Biospéol., 6, pp. 1-199.

RACOVITZA, Gh. & V. DECU – 1981. Un nou biotop subteran si implicatiile lui in protectia faunei hipogee. Ocrot. Nat. Med. inconj., 25, 2, pp. 179-183.

RACOVITZA, Gh. & M. ȘERBAN – 1982. Recherches sur la dynamique de la faune du milieu souterrain superficiel. Trav. Inst. Spéol. E. Racovitza, 21, pp. 33-42.

RACOVITZA, Gh. – 1983. Sur les relations dynamiques entre le milieu souterrain superficiel et le milieu cavernicole. Mém. Biospéol., 10, pp. 85-89.

RACOVITZA, Gh. – 1984a. Sur la structure méroclimatique des cavités souterraines. Theor. Appl. Karstology, 1, pp. 123-130.

RACOVITZA, Gh. – 1984b – Etude faunistique et écologique du milieu souterrain superficiel de la vallée d'Ordincusa (Monts du Bihor). Trav. Inst. Spéol. E. Racovitza, 23, pp. 27-37.

RACOVITZA, Gh – 1985. Taxonomie quantitative des Bathysciinae (Coleoptera, Catopidae) du bassin de la Valea Iadului (Monts Apuseni). Trav. Inst. Spéol. E. Racovitza, 24, pp. 69-83.

RACOVITZA, Gh. – 1993. Recherches éthologiques sur les Bathysciinae troglobies du genre Pholeuon (Coleoptera, Catopidae). Mém. Biospéol., 20, pp. 169- 176.

RACOVITZA, Gh., BOGHEAN, V. & M. PETRESCU – 1993. Le bilan topoclimatique de la grotte de Cloșani (Monts Mehedinti, Roumanie). Theor. Appl. Karstology, 6, pp. 7-87.

RACOVITZA, Gh. – 1994. Bilan climatique de la grotte glacière de Scărișoara (Monts du Bihor, Roumanie), dressé sur dix années d’observations. Trav. Inst. Spéol. E. Racovitza, 33, pp. 107-158.

RACOVITZA, Gh. – 1995. Révision systématique des Leptodirinae souterrains des Monts Apuseni. I. Variabilité individuelle et valeur taxonomique des caractères morphologiques dans la série phylétique des Drimeotus (Coleoptera, Bathysciinae). Trav. Inst. Spéol. E. Racovitza, 34, pp. 103-129.

RACOVITZA, Gh. – 1996 .Révision systématique des Leptodirinae souterrains des Monts Apuseni. II. Le sous-genre Parapholeuon Gangl.du bassin de Crișul Repede (Monts Padurea Craiului). Trav. Inst. Spéol. E. Racovitza, 35, pp. 71-105.

RACOVITZA, Gh. – 1998-1999. Révision systématique des Leptodirinae souterrains des Monts Apuseni. III. Le sous-genre Parapholeuon Gangl.du bassin de Crișul Negru (Monts Padurea Craiului). Trav. Inst. Spéol. E. Racovitza, 37-38, pp. 175-216.

Racoviță G., Onac B.P. – 2000 Scărișoara Glacier Cave. Ed. Carpatica, Cluj-Napoca, 133 p.

RACOVITZA, Gh., MOLDOVAN, O. & B. ONAC – 2002. Monografia carstului dín Munții Padurea Craiului. Cluj-Napoca, 264 pp.

RACOVITZA, Gh., ȘERBAN, M., VIEHMANN, I. & B. P. ONAC – 2003. Scărișoara. Press. Univ., Cluj-Napoca, 155 pp.

RACOVITZA, Gh. – 2004-2005. Révision systématique des Leptodirinae souterrains des Monts Apuseni. IV . Le sous-genre Pholeuon (s. str.) du bassin de l’Aries (Monts du Bihor). Trav. Inst. Spéol. E. Racovitza, 43-44, pp. 165-191.

RACOVITZA, Gh. – 2006-2007. Révision systématique des Leptodirinae souterrains des Monts Apuseni. V . Le sous-genre Pholeuon (s. str.) de la zone de Padis (Monts du Bihor). Trav. Inst. Spéol. E. Racovitza, 45-46, pp. 13-30.

RACOVITZA, Gh. – 2009. Révision systématique des Leptodirinae souterrains des Monts Apuseni. VI. Le sous-genre Pholeuon (s. str.) du bassin de Somesul Cald Padis (Monts du Bihor). Trav. Inst. Spéol. E. Racovitza, 48, pp. 11-29.

RACOVITZA, Gh. – 2010. Révision systématique des Leptodirinae souterrains des Monts Apuseni. VII. Le sous-genre Pholeuon (s.str.) du bassin supérieur de Crișul Negru (Monts du Bihor). Trav. Inst. Spéol. E. Racovitza, 49, pp. 3-28.

RACOVITZA, Gh. – 2011. Révision systématique des Leptodirinae souterrains des Monts Apuseni. VIII. Aperçu synthétique sur le genre Pholeuon. Trav. Inst. Spéol. E. Racovitza, 50, pp. 37-60.

RADU, V. G., RADU, V. V., CADARIU, M. – 1955 Haplophthalmus caecus, o nouă specie de isopod terestru în fauna Republicii Populare Române. Acad. R.P.R., Bul. șt., Secț. biol., 7, pp. 803 – 815.

ROBINSON, S. D. – 1980. Cave-dwelling tineid moths: a taxonomic

REITER Edmund – 2006: Fauna Germanica – Die Käfer des Deutschen Reiches, Digitale Bibliothek Band 134, Directmnedia Publishing GmbH, Berlin  ISBN 3-89853-534-7)

REMANE A. 1951.Mesodasys, ein neues Genus der Gastrotricha Macrodasyoidea aus der Kieler Bucht. Kieler Meeresforsch. 8: 102-105; Taf. 29. review of the world species (Lepidoptera: Tineidae). Trans. Brit. Cave Research. Assoc., 7, 2, pp. 83-120.

ROUGIER, H. – 2012. Homo sapiens en Europe. Dossiers d'Archéol., 351, pp. 22-27

RUFFO S. 1961.Problemi relativi allo studio della fauna interstiziale iporreica. Bollettino di Zoologia, vol. 28, no. 2, p. 273-319.

RUSDEA, E. – 1989. Dynamique de la population de Pholeuon (s. str.) knirschi Breit (Coleoptera, Bathysciinae) de la grotte Ghetarul de la Virtop (Monts du Bihor, Roumanie). Mém. Biospéol., 16, pp. 201-213.

RUSU, T., Racovitza, GH. & D. COMAN – 1970. Contributions à l’étude du complexe karstique de Scărișoara. Ann. Spéléol., 25, 2, pp. 383-408.

RUSU, T. – 1988. Carstul din Muntii Padurea Craiului. Ed. Dacia, Cluj-Napoca, 254 pp.

SÂRBU, S. – 1990. The unusual fauna from a cave with thermomineral waters containing H2S, from southern Dobrogea, Romania,. Mém. Biospéol., 17, 191-195.

SÂRBU, S. – 1991. Contributions to the biological investigation of the “Movile Cave”: the species composition and the trophic structure of the cave community and the origin of the fauna. Mém Biospéol., 18, pp. 193-197.

SÂRBU. S., POPA, R. & I. GOLIAT – 1991. Chemoautotrophic production in a thermomineral sulfurous cave. Trav. Inst. Spéol. E. Racovitza, 30, pp. 59-61.

SÂRBU, S. & R. POPA – 1992. A unique chemoautotrophically based cave ecosystem, pp. 638-666. In: A. Camacho (ed.), The natural history of Biospeleology. Madrid, 680 pp.

SARBU S., KINKLE B.K., VLSCEANU T.C., KANE C., POPA R., – 1994, Microbiological characterization of a sulfide‐rich groundwater ecosystem, Geomicrobiology Journal Volume 12, 175-182

SÂRBU, S., GHEORGHE, C., POPESCU-JARNEA, VLASCEANU, L., POPA, R. & C. LASCU – 1995. Stable isotope in Movile cave. Trav. Inst. Spéol. E. Racovitza, 34, pp. 99-102.

SÂRBU, S., T. C. KANE & B. KLINKLE – 1996. A chemoauto-trophically based cave ecosystem. Science, 272, pp. 1953-1955.

SÂRBU, S. – 2000. Movile Cave: A chemoautotrophycally based groundwater ecosystem. In: H. Wilkens, D. C. Culver & W. H. Humphreys. Ecosystems of the World, 30, Subterranean Ecosystems. Elsevier, Amsterdam and N.Y., pp. 317-343.

SÂRBU, S., GALDENZI, S., MENICHETTI, M. & G. GENTILE – 2000. Geology and Biology of the Frasassi caves in Central Italy: An ecological multi-disciplinary study of a hypogenic underground karst system. In : H. Wilkens, D.C. Culver, W. F. Humphreys (eds), Ecosystems of the world, vol. 30. Subterranean ecosystems. Amsterdam, Elsevier, pp. 359-378.

SÂRBU,S.,T.,C.KANE–2000, A subterranean chemoautotrophycally based ecosystem. N. S. S. Bull., 57, pp. 91-98.

SÂRBU, S., VLASCEANU, L., POPA, R., SHERIDAN, P., KINKLE, B. K. & T. C. KANE – 1994, Microbial mats in a thermomineral sulfurous cave. In: L. J. Stal and P. Chaumette (eds). Microbial mats: Structure, Development and Environmental Significance. Springer Verlag, Berlin, pp. 45-50.

SAULEA, E. – 1967. Geologia istorica. Ed. Did. si Pedagogica.

SCHMALFUSS, H. – 2005. World catalog of terrestrial isopods (Isopoda: Oniscidea). Stuttgarter Beitr. Naturk., 654, 341 pp.

SENCU, V., NEGREA, A., NEGREA, St. & L. BOTOȘĂNEANU – 1971. Grottes explorées dans le bassin du Caras (Banat, Roumanie). Trav. Inst. Spéol. E. Racovitza, 10, pp. 43-70.

SENDRA, A., NITZU, E. & A. SANJUAN – 2012. Half a century after Ionescu's work on Romanian Diplura – A faunal contribution based on material collected from karst area. Trav. Inst. Spéol. E. Racovitza, 51, pp. 37-66.

ȘERBAN, M. – 1963.La récolte du matérielbiologique des nappesphréatiques. Acta Mus. maced. Sci. nat., 9(1): 1-13.

ȘERBAN, M. – 1956. Pontocyclops bacescuin. g., n. sp. (Crustacea Copepoda), ein neuer Cyclopide vom Schwarzen Meere.Izdanija Zavod za Ribarstvo na NP Makedonija (Izdanija, Institut de Pisciculture de la RP Macedoine) 1(7):169-184.

ȘERBAN, E. – 1964. Nouvelles données sur les Microparasellides (Isopodes) de Roumanie : Microcharon Motași nov. sp., Microcharon orghidani nov. sp. et Microcharon oltenicus nov. sp. Vie et Milieu, 15, 2, pp. 341-364.

ȘERBAN, E. – 1965. Concerning the presence of Bathynella natans stammeri Jakobi (Crustacea, Syncarida) in England and Rumania. Ann. Mag. Nat. Hist., 13, 8, pp. 513-522.

ȘERBAN, E. – 1966. Nouvelles contributions à l'étude de Bathynella (Bathynella) natans Vejd. et Bathynella (Antrobathynella) stammeri Jakobi. Int. J. Speleol., II, pp. 208-221.

ȘERBAN, E. – 1971. Quatre nouvelles Bathynella (Crustacea, Syncarida) de Roumanie ; de nouveau sur le "Dilemme Bathynella natans Vejd." Int. J. Speleol., 3, 3 + 4, pp. 225-240.

ȘERBAN, E. – 1972. Bathynella (Podophallocarida Bathynellacea). Ph. D. Thesis. Trav. Inst. Spéol. E. Racovitza, 11, pp. 11-224.

ȘERBAN, E. – 1975. Sur les Bathynella de Roumanie.Première partie. Int. J. Speleology., 7, pp. 357-378.

ȘERBAN, E. – 1976. Sur les Bathynella de Roumanie. Deuxième partie. Int. J. Speleology, 8, pp. 269-283.

ȘERBAN, E. – 1989. Taxa nouveaux des Bathynellidés d'Europe (Bathynellacea, Podophalacarida, Malacostraca). Trav. Inst. Spéol. E. Racovitza, 28, pp. 3-47.

ȘERBAN, M., COMAN, D. & R. GIVULESCO – 1948. Découvertes récentes et observations sur la glacière naturelle dite ‘Ghețarul de la Scărișoara”. Bull. Soc. Sci. Cluj, 10, pp. 174-210.

ȘERBANESCU, M. & V. DECU – 1962. Contribution à la connaissance des algues cavernicoles d'Olténie. Rev. Biol., 7, 2, pp. 201-214 (en russe).

STEFFAN, A. W. – 1965. Zur Statik und Dinamik im ökosystem der Fliessgewässer und zu den Möglichkeiten ihrer Klassifizierung. Biosoziologie, Bericht über das internationale Symposium im Stolzenau/Weser (1960) : pp. 64-110. Junk, The Hagne.

ȘTEFUREAC T., 1951, Considerații bryologice asupra rezervației naturale, Bul. Științ. Sec.de Științ. Biol. Agro., Geol. și Geograf., 3(2):249-270

STEFUREAC, I. T. – 1970. Bryophytes trouvées à l'entrée de quelques grottes de Roumanie. Livre Cent. Emile Racovitza (1868-1968), pp. 473-486. Ed. Acad. R.S.R., 699 pp.

StiUca, E. & H. ILINCA – 1995. Pleistocen mammals (Rodentia) from Movile Cave (Romania). Theor. Appl. Karstology., 8, pp. 157-161.

SUCIU, M. – 1968. Sifonaptere colectate in pesteri din Romania. St. Cerc., ser. Zool., 20, 3, pp. 245-254.

SUCIU, M. – 1970. Contributii la studiul sistematic, ecologic si zoogeografic al siphonapterelor (Siphonaptera, Latreille) din Romania. Ph. D. Thesis, rezumat, Univ. București

SUCIU, M. – 1973. Catalogue of the Syphonaptera from Romania. St. cerc. Muz. St. Nat. Bacau, pp. 47-72.

SCHWOERBEL J. – 1961.Uber die Lebensbedingungen und die Besiedlung des hyporheischen Lebensraumes.s. Arch. HSuppl. 25, p. 182-214.

TABACARU, I. – 1958. Beiträge zur Kenntnis der cavernicole Gervaisia-Arten. Gervaisia orghidani n. sp. und G. jonescui (Bröl.). Zool. Anz., Leipzig, 161 (5/6), pp. 157- 164.

TABACARU, I. – 1960. Neue cavernicolen Gervaisia – Arten: G. racovitzai n. sp., G. spelaea n. sp. und G. dobrogica n. sp. Zool. Anz., Leipzig, 165 (7/8), pp. 311-320.

TABACARU, I. & St. NEGREA – 1962. Beitrage zur Revision der Gattung Polydesmus in der Fauna Rumäniens nebst Betrachtungen uber Polydesmiden-faune der Nachbarländer. Acta Mus. Maced. Sci. nat. Skopje, 8, pp. 1-27.

TABACARU, I. – 1963a. Biharoniscus racovitzai n. g. n. sp. nouvel Isopode terrestre cavernicole de Roumanie. Ann. Spéléol., 18, 4, pp. 473-481.

TABACARU, I. – 1963b. Dezvoltarea postembrionara la specii cavernicole de Gervaisia (Diplopoda, Gervaisiidae). Lucr. Inst. Speol. E. Racovitza, I-II, pp. 341-399.

TABACARU, I. – 1964. Observatii zoogeografice asupra faunei cavernicole din Oltenia si Banat. Trav. Inst. Spéol. E. Racovitza, 3, pp. 293-340.

TABACARU, I. – 1965. Orobainosoma hungaricum orientale n. ssp. (Diplopoda, Ascospermophora) si dezvoltarea sa postembrionara. Lucr. Inst. Speol. E. Racovitza, 4, pp. 229-243.

TABACARU, I. – 1966. Contributii la cunoasterea faunei de diplopode din Dobrogea, a originii si relatiilor ei zoogeografice. Lucr. Inst. Speol. E. Racovitza, 5, pp. 169-183.

TABACARU, I. – 1968a. Contributii la cunoasterea originii si istoriei raspindirii diplopodelor cavernicole din Romania. Lucr. Inst. Speol. E. Racovitza, 8, pp. 149-161.

TABACARU, I. – 1968b. Beitrage zur Kenntnis der cavernicolen Antroleucosomiden (Diplopoda, Ascospermophora). Int. J. Speleol, 3, pp. 1-31.

TĂBACARU, I. – 1969a. Einige Bemerkungen über die Verbreitung der Höhlendiplopoden der Balkanhalbinsel und der Karpatengebiete. Actes IV Congr. Int. Spéléol., Ljubljana, 4-5, pp. 245-251.

TABACARU, I. – 1969b. Uber die Verbreitung der cavernicolen Landisopoden der Balkanhalbinsel und der Karpatengebiete. Abandl. V Int. Kongr. Späleol., Stuttgart, 4, 20, pp. 1-5.

TABACARU, I. – 1970a. Sur la répartition des Diplopodes cavernicoles européens. Livre Cent. Emile Racovitza (1868-1968), pp. 421-443. Ed. Acad. R.S.R., 699 pp.

TABACARU, I. – 1970b. Description d'une nouvelle espèce cavernicole du genre Haplophthalmus (Crustacea, Isopoda). Trav. Inst. Spéol. E. Racovitza, 9, pp. 151-158.

TABACARU, I. – 1970°. Sur l’origine de la faune des Diplopodes des Carpates. 1er Congrès International de Myriapodologie, Paris, Bull. Mus. Nat. Hisf. Nat., 2 Série, 41 Suppl. No 2, pp. 139-143.

TABACARU, I. – 1973a. Contribution à l'étude du genre Biharoniscus Tăbacaru (Crustacea, Isopoda, Oniscoidea). Trav. Inst. Spéol. E. Racovitza, 12, pp. 121-125.

TABACARU, I. – 1973b Thaumatoniscellus orghidani n.g., n.sp. (Isopoda, Oniscoidea, Trichoniscidae). Livre du Cinquantenaire de l’Institut de Spéologie « Emile Racovitza », pp. 235 – 247.

TABACARU, I. – 1975. Napocodesmus florentzae n. sp. (Diplopoda Polydesmida). Trav. Inst. Spéol. E. Racovitza, 14, p. 71-82.

TABACARU, I. – 1976. Sur un nouvel Iulide cavernicole de Roumanie : Typhloiulus (Lamellotyphlus) mehedintzensis n. sg., n. sp. Trav. Inst. Spéol. E. Racovitza, 15, pp. 63-75.

TABACARU, I. – 1980. Trichopolydesmus (Banatodesmus) jeanneli n. sg., n. sp. (Diplopoda, Polydesmida). Trav. Inst. Spéol. E. Racovitza, 19, pp. 155-161.

TABACARU, I. – 1983-1987. Sur la genre Trachysphaera Heller, 1858 (Diplopoda, Glomerida, Trachysphaeridae). Trav. Inst. Spéol. E. Racovitza, 22 (1983), pp. 51-66; 25 (1986), pp. 33-39; 26 (1987), pp. 9-27.

TABACARU, I. – 1985. Banatoiulus troglobius n. g., n. sp., nouveau Diplopode Iulide cavernicole de Roumanie. Trav. Inst. Spéol. E. Racovitza, 24, pp. 63-68.

TABACARU, I. – 1989. Le genre Trachysphaera Heller, 1858 (Diplopoda, Glomerida, Trachysphaeridae) dans les grottes de Roumanie. Trav. Inst. Spéol. E. Racovitza, 28, pp. 19-27.

TABACARU, I. & V. BOGHEAN – 1989. Découverte en Dobrogea (Roumanie) d'une espèce troglobie du genre Trachelipus (Isopoda, Oniscoidea, Trachelipidae). Misc. Speol. Romanica, I, pp. 53-76.

TABACARU, I. – 1990. Le genre Trachysphaera Heller, 1858 (Diplopoda, Glomerida, Trachysphaeridae) dans les grottes de Roumanie. II. T. schmidti Heller. Trav. Inst. Spéol. E. Racovitza, 29, pp. 25-31.

TABACARU, I. – 1991. Un nouvel Isopode terrestre cavernicole de Roumanie Banatoniscus karbani n. g., n. sp. Remarques sur la systématique des Haplophthalminae. Trav. Inst. Spéol. E. Racovitza, 30, pp-12.

TABACARU, I. – 1993. Sur Caucasonethes vandeli n. sp., (Crustacea, Isopoda, Oniscidea) Isopode terrestre cavernicole de Roumanie. Mém. Biospéol., 20, pp. 231-238.

TABACARU, I. – 1994. Les Trichoniscidae des grottes de Roumanie. Description d’une nouvelle espèce troglobie : Trichoniscus racovitzai n. sp. (Crustacea, Isopoda, Oniscidae).Trav. Inst. Spéol. E. Racovitza, 33, pp. 49-61.

TABACARU, I. – 1996a. Contribution à l’étude du genre Hyloniscus (Crustacea, Isopoda) II. Diagnoses des genres Hyloniscus et Nippononethes nov. gen. La tribu des Spelaeonethini. Trav. Inst. Spéol. E. Racovitza, 35, pp. 21-62.

TABACARU, I. – 1996b. Sur un groupe d’espèces cavernicoles de Trichoniscus (Crustacea, Isopoda, Oniscidea) caractérisées par des organes glandulopilifères. Mém. Biospéol., 23, pp. 241-248.

TABACARU, I. & D. DANIELOPOL – 1996. Phylogenèse et convergence chez les Isopodes terrestres. Vie et Milieu, 46, 2, pp. 171-181.

TABACARU, I., GIURGINCA, A. & L. VANOAICA – 2002- 2003. Cavernicolous Diplopoda of Romania. Trav. Inst. Spéol. E. Racovitza, 41-42, pp. 121-148.

TABACARU, I. & A. GIURGINCA – 2003. The presence of the family Scleropactidae in Dobrogea. Systematic and zoogeographic remarks. The Biology of Terrestrial Isopods, V. Crustaceana Monographs, 2, Brill, pp. 13-22.

TABACARU, I., GIURGINCA, A. – 2013 Cavernicolous Oniscidea of Romania. Trav. Inst. Spéol. “É. Racovitza”, 52,pp. 3-26.

TABACARU, I. – 2011. Ordinul Isopoda, pp. 273-283. In: S. Godeanu (red.), Determinatorul ilustrat al florei si faunei Romaniei. Vol. IV, Mediul subteran. “Vasile Goldis” University Press, Arad, 423 pp.

THALHAMMER, F.J. (1899) Diptera. In: Fauna Regni Hungariae 2. Budapest.

TANASACHI, J. & T. ORGHIDAN – 1955. Hidracarieni orbi diu apele freatice. Bul. St. Biol. Agr. Geol., Geogr., 7, 2, pp. 369-381.

THALHAMMER, F.J. (1902) Diptera. In: Fauna Regni Hungariae 5. Budapest.

THIENEMANN A., (1925) Die Binnengewässer Mitteleuropas. Binnengewässer 1: 1–255

TOLLET, R. – 1955. Etudes biospéologiques. 36. Révision des Mycetophilidae cavernicoles de Transylvanie (Diptera Nematocera) recueillis par R. Leruth. Mém. Soc. roy. Entomol. Belg., 27, pp. 443-465.

TRINKAUS, E., MILOTA, S., RODRIGO, R., GHERASE, M. & O. MOLDOVAN – 2003. Early modern human cranial remains from the Peștera cu Oase, Romania. J. Human Evol., 45, pp. 245-253.

TRINKAUS, E., CONSTANTIN, S. & J. ZILHAO – 2013. Life and death at the Peștera cu Oase: a setting for modern human emergernce in Europa. Oxford Univ. Press, New York, 436 pp.

TUFESCU, M. & V. DECU – 1977. Modèles préliminaires de la dynamique des populations principales de la biocénose du guano de la grotte "Peștera lui Adam" de Băile Herculane (Roumanie). Trav. Inst. Spéol. E. Racovitza, 16, pp. 85-99.

TURQUIN, M. J. – 1994. Lepidoptera: pp. 333-339. In: C. Juberthie et V. Decu (eds), Encyclopaedia Biospeologica, 1, Soc. Biospéol. Moulis-Bucarest, 834 pp.

TURK, S., SKET, B. & S. SÂRBU – 1996. Comparison between some epigean and hypogean populations of Asellus aquaticus (Crustacea: Isopoda: Asellidae). Hydrobiologia, 337, pp. 161-170.

TURK-PREVORCNIK & A. BLEJEC – 1998. Asellus aquaticus infernus new subspecies (Isopoda: Asellota; Asellidae) from Romania hypogean waters. J. Crust. Biol., 18, pp. 763-773.

URSU A., GHEORGHIU., – 2011, Ordinul Diptera, In: Vol. 4, Mediul Subteran–Determinator ilustrat, Godeanu S. (coord.-ed.), ed. “Vasile Goldis”University Press, 364-381 pp, Arad

VALENCIUC, N. & T. DONE – 2001. Liliecii… intre mit si adevar. CSB Suceava, 107 pp.

VALENCIUC, N. – 2003. Mammalia. Chiroptera. Fauna Romaniei. Ed. Acad., 16, 3, 160 pp.

VASILIU,, N. & O. IVAN – 2011. New oppiid species (Acari, Oribatida, Opiidae) from Romanian caves. Trav. Inst. Spéol. E. Racovitza, 50, pp. 3-14.

VERHOEFF, K. W. – 1898. Uber neue und wenig bekannte Polydesmiden aus Siebenbürgen, Rumänien und Banat. Arch. Natur., 64, 1, 3, pp. 363-372.

VERHOEFF, K. W. – 1899. Beiträge zur Kenntnis paläarktischer Myriopoden. VIII. Aufsatz: Zur vergleichenden Morphologie, Phylogenie, Gruppen- und Artsystematik der Chordeumiden. Arch. Naturg., 66, 1, pp. 347– 402.

VERHOEFF, K. W. – 1908. Uber Isopoden. 15. Arch. f. Biontologie, 2, pp.335-387.

VIEHMANN, I. & C. PLEȘA – 1958. Peștera cu apa din Valea Lesului. Ocrotirea Naturii, 3, pp. 162-166.

VIEHMANN, I., RACOVITZA, Gh. & M. ȘERBAN – 1963. Ghetarul de la Scărișoara. Meridiane, Buc.,

VIEHMANN, I., PLEȘA, C. & T. RUSU – 1964. Peștera de la Vadu-Crișului. Lucr. Inst. Speol. E. Racovitza, 3, pp. 49-81.

VIEHMANN, I. – 2004. Speologie generala. Cunoasterea pesterii. Presa Univ. Cluj, 232 pp.

VLASceanu, L, POPA, R. & B. K. KINKLE – 1997. Characterization of Thiobacillus thioprus LV43 and its distribution in a chemoautotrophycally based ground ecosystem. Appl. Environ. Microbiol., 63, pp. 3123-3127.

WEISS, I. & S. SÂRBU – 1994. Die Höhlenspinne Agraecina Criștiani (Georgescu, 1989) n. comb. (Arachnida, Araneae, Liocranidae). Verh. Naturwiss. Ver. Hamburg, 34, pp. 249-257

WEISS, I. & S. SÂRBU – 1996. Das unbekannte Männchen der Höhlenspinne Hahnia caeca n. comb., mit Hinweisen zur Funktion der Tibial – Apophyse der männlichen Pedipalpus (Arachnida, Araneae, Hahniidae). Verh. Naturwiss. Ver. Hamburg. 36, pp. 163-171

WEISS, I. & I. URAK – 2000. Checklist of the Romanian spiders (Arachnida, Araneae) available from: http://members.aol.com/ Arachnologie/Faunenlisten.htm

WILKENS, H., CULVER, D. & W. HUMPHREY – 2000. Ecosystems of the world, vol. 30. Subterranean ecosystems. Elsevier, 791 pp.

WOLFF, B. – 1934-1938. Animalium cavernarum catalogus. W. Junk 's-Gravenhage, I (108 pp), II (616 pp), III (918 pp).

ŽAK K., ONAC B., PERSOIU A., – 2008, Cryogenic carbonates in cave environments: A review, Quaternary International, Volume 187, Issue 1, 15 August 2008, Pages 84-96

ZACHARDA, M. – 1978. Soil mites of the family Rhagidiidae (Actinedida: Eupodoida). Morphology, systematics, ecology. Acta Univ. Carolinae, Biol., 5-6, pp. 489-785.

ZINCENCO, D. – 1971. Nouvelles données sur la morphologie et la répartition de Parastenocaris aquaeductus Chappuis, 1925 (Copepoda-Harpacticoida). Trav. Inst. Spéol. E. Racovitza, 10, pp. 179-188.

2. MOLDOVA

VITALIE BOTNARU, ALEXANDRU PETCULESCU,

VICTOR GHEORGHIU,

VASILE DECU†, EMIL ȘTIUCÆ

I General information

The Republic of Moldova lies between Romania and Ukraine, its border with Romania being the Prut River while the Dniester River separates it from Ukraine in the north-est and in the south-east. In the eastern part of the country, on the left bank of the Dniester River there is Transdniestrian territory belonging to Moldova. The country occupies a hilly plain with a surface of 33,843 km². The climate is temperate continental with low precipitations.

II History

The karst was first mentioned in Antiquity by Herodotus and Strabo in their works. They talk about the rupestrian caves which could be found along the valley of the Tyras (Dniester) where a numerous sacerdotal caste lived; the fact that such a caste used to live there was acknowledged by the discovery of many funeral urns in some niches in the caves.

In his paper ”Rupestrian Monasteries in Basarabia” (Merlan, 2010) and then re-published in the same year with the title ”Rupestrian Caves in Basarabia”), the historian Vicu Merlan asserts that cremating the dead was part of the Geto-Dacian tradition. Merlan’s study mentions more than 175 rock alcoves (shelters carved inside the caves) and describes more than 90 cavities that were mapped in Orheiul Vechi, Butuceni, Țâpova and Saharna, half of which used to be inhabited by the ancient and medieval sacerdotal caste (Pl. II. A, B).

Three such caves from Orheiul Vechi, Țâpova and Saharna were inhabited permanently and the monasteries were functional, hosting dozens of monks and priests. The places of worship or the dwellings were established in cavities formed in oolitic limestone and whetstone during the transgression and regression periods of the Sarmatian sea.

Fig. 1. Map of the karst areas and principal caves of Moldova (zones 1-4): Zone 1 – karst developed in Miocene gypsum formations; Zone 2 – karst developed in Miocene and Sarmatian reefal limestone formations; Zone 3 – karst developed in Sarmatian limestone formations; Zone 4 – karst developed in Pontian limestone formations. (After Verina, 1960). Caves (1-6): 1 – Cave Emil Racoviță; 2 – Brânzeni Grottos; 3 – The Cave of Surprises; 4 – Cave Duruitoarea Veche; 5 – Cave Răposaților. (See Tabl. 1).

Fig. 2. Springs (1-10) and mines for bats (1-6) of Moldova (maps after Botnaru, Decu, Arghir.)

The karst isk also mentioned in the ecclesiastical correspondence of the local gentry (for example in “The History of Hasnasei Family”, from 1776 (Verina, 1960)), but the first scientific observations about it appeared in the book “Basarabia in the 19th century” (published in in 1898) by Zamfir C. Arbore, doctor and naturalist. Arbore, (1898) also published “The Geographic Dictionary of Basarabia” in 1904.

The low number of caves discovered in Moldova is reflected by the reduce low speleological activity which started effectively after the discovery of Zoloushka Cave in 1959 which since 1991 has been named ”Emil Racoviță Cave”. A gigantic labyrinthine cave, with galleries stretching for more than 100 kilometres, ”Emil Racoviță” is the world’s third largest cave to have formed inside gypsum formations. The first speleological expeditions to study karst phenomena in the area were organized in 1969 and between 1977 and 1978 by the Geography Department of the Academy of Sciences of the Republic of Moldova. These expeditions resulted in findings which were published later on, together with the plan depicting the network of galleries that had been explored until then. A first description of the cave given by amateur speleologists from Cernăuți appeared in June 1977 in ”Radianska Bucovina” gazette; here it was given the name Popeliushka (Zoloushka). The exploration of the cave continued during the decades, published by geologysts (Andreiczuk & Klimchouk,2001; Botnaru 2001; Klimchouk, 2004; Andreiczuk 2007; Botnaru & Moraru 2008; Andreiczuk et al. 2009) always for the Ukrainian geologists under the original name of Zolushka and in book such as Klimciuk (2004) in Gunn (2004). A lot of scientific information was collected (geological, geo – chemical, hydro – geological, micro – biological, etc).

According to Vorgovitsh (Ukraine in the volume), the Emile Racovitza/Zoloushka cave crosses the Moldovian-Ukrainean border, as the Baradla-Dominica cave crossing the Hungarian-Slovakian border. Thus it seems for the editors more accurate to consider that the Zoloushka cave so named in 1977, corresponds to the Ukrainian part and the Emil Racovitza Cave, sonamed only since 1991, to the Moldavian part (Fig. 3).

Between 1999 and 2005 ”Emil Racoviță Cave” was closed, and in 1991 it had been declared a state protected natural monument by the Guvernment Decizion no 664.

Little research was done as regards the fauna and the flora in the cave, but this can change in the future. Emil Racoviță Cave is not a touristic site, and can be visited only by groups of speleologists accompanied by local guides.

III – Karst and caves

Most of the karst phenomena on the current territory of the Republic of Moldova developed on/in limestone, gypsum, argillaceous formations and the main types of such phenomena were divided based on four zones (Fig.1)

Zone 1: karst developed in Miocene gypsum formations.

The karst zone developed in Miocene gypsum formations in Ukraine and north-western Moldova, tectonically belongs to the south-eastern edge of the East-European Craton (situated between the Ukrainian Crystalline Shield and the Vorland of the Eastern Carpathians), also called the Moldavian Platform.

The Neogene formations, representative of the area, belong to Middle Miocene (the Badenian stage, with conglomerate, gypsum, limestone, etc and to Upper Miocene (the Sarmatian stage, with limestone, marl, whetstone, etc) (Moraru et al 2008).

The gypsum formations, which can be found in the north-western part of the Republic of Moldova, form the karst zone called Criva-Drepcăuți which is part of the Volhynian-Podolian karst region; the Volhynian-Podolian karst region corresponds on the map to the spreading area of Miocene gypsum (with a width of 20 kilometres and a length of a few hundred kilometres), area which stretches up to Lviv region in western Ukraine (see Klimciuk, 2004). Initially this area had a marine accumulatation relief as a result of the withdrawal of the Sarmatian Sea. The current relief which was formed during Upper Pliocene and Quaternary has been subject to erosion from the Prut and its tributaries.

The groundwaters present in this area which are part of the groundwaters found trapped in the Badenian gypsum formations (calcium-sulphate ones with a mineralization level of 2.5-3 g/l) and those from the alluvions of the Quaternary (Moraru, et al 2009) terraces of the Prut have contributed to the karstification of the gypsum, and the karstification process continues. Due to its high salinity the water can not be used as drinking water or for irrigation in crop farming.

The Emil Racoviță Moldavian karstic system (Fig. 3), a natural monument of world importance which is protected by the state by the 1991 Government Decision no. 664, component of the karst area Criva – Drepcăuți, lies in the far north-west of the country, 1.5 km west of the village Criva (Fig .4). It was discovered in 1959 during the gypsum exploitation at Criva quarry at a depth of 30-40 metres, when, after an explosion, the entrance to “Emil Racoviță" cave was first spotted (now the cave is entered via a 34 m deep artificial shaft equipped with metal stairs). After the explosion water overflowed from the open underground cavities and flooded the 20-27 m thick exploitable gypsum layer (Verina, et al. 2008) .

Currently, the benchmark of the stope of the quarry is 102 m and the water level of the Prut is 112 m. To exploit the flooded gypsum layer (~6 m), up to 30, 000 m3 of water are pumped out of the quarry during 24 h.

Fig. 3. Map of the Zoloushka-Emil Racovitza Cave (After Andrejczk, 2007).

Fig.4. Location of the Zoloushka-Emil Racovitza Cave (After Botnaru, 2001)

The cave was formed by dissolution. Its network of galleries is the result of the tectonic fractures and of the way the water flows underground.

Corrosion helped to form the cave; a secondary role was played by the erosion, the collapse of the ceilings and cave fillings. The network of galleries stretches in 2 main directions (horizontally speaking): 20-25° North – East și 290-310° North-West; these directions are the result of the tectonic factor and of the positioning of the tri-dimensionl network of the lithoclases, fissures and diaclases respectively. The upper level is in the active karst area where erosion and sedimentation are predominant. The lower level, now partially flooded, is in the old karst area where the main speleo-genetic factor is represented by corrosion. (Botnaru, 2001) Etude des composés chimiques de métaux lourds dans la grotte de gypse “Emile Racovitza”

In 1979 a levelling of the floor revealed the existence of three levels, the middle one being the most developed and the average elevation of the floor of the central gallery being of about 12 m within a distance of more than 2000 m. The general appearance of the walls is relatively uneven and rough as corrosion processes highlight the rock structure and its irregularities. In larger spaces, bare walls alternate with portions covered by parietal clay crusts, iron and manganese hydroxides, or small speleothems formed of extensions of gels in the shape of stalactites (silica, iron or manganese hydroxides, iron monosulfide), obtained by chemical precipitation (Botnaru, and Moraru, 2008).

Recrystallization formations across the fault lines are quite frequent as well; as they are more enduring than the rock on which they appear recrystallization formations stand out and result in drapefolds, slopes, occasionally barriers, which can close the galleries.

91,045km/56,573 miles of galleries have been mapped so far and an oscillation of level of -30 m has been observed (Gulden B., 2015), with over 20 lakes with depths up to 2m and wells with depths up to 8 m. The water of the lakes is colored according to the mineral oxides that constitute their argilaceous bottom. Fine clay, wet or dry sometimes with different shades of color (green, blue, red, black, white, etc.), covers the floors of the explored galleries and rooms. From it speleologists have carved a wide variety of figurines used as signposts to mark the route in the cave (Pl. I. A, B). The temperature of the water from the lakes is 10-11șC, but its value, as well as the value of relative humidity in the air, varies depending on the altitude of the gallery and the distance between the gallery and the entrance ; thus, the values range between 14 șC and 90/ 100% RH and 19 ° C and 75 % UR .

Air composition has not yet been thoroughly studied. The presence of N and CO2 has been reported in some areas of the cave, and the measurements of β – radiation and γ – radiation indicate values of 0.05-5 ​​, respectively, of 0.01 to 2.

Pl. I. A and B: Sculptures of coloured argilaceous earth in Emil Racoviță cave (Zoloushka); C: Gypsum quarry of Criva (Photos V. Botnaru, A. Petculescu, E. Știucă).

Tabl. 1. Main caves in the Republic of Moldova (after Verina, Botnaru – 1985; Andreev – 2006

*Paleonthological and archaeological sit

Zone 2- Karst developed in reefal limestone formations.

It is present in the north – west of Moldova on large areas of the Dniester and Prut basins. In the northern (Vznuzdaev, 1963) part of the area deep canyons (Verina, 1960) have formed and surveys have revealed the presence of relatively small karst holes, most of them flooded. In the Dniester valley there is karstic relief with small caves, such as "Cave of the Dead (Peștera Raposaților)" located under the cemetery of Rudi village (Soroca district). Other archaeologically and paleontologically important caves in the area are “Old Duruitoarea (Duruitoarea Veche)" from Râșcani district and "Brânzeni Grottos" in " Rock of the Mill " (Stânca Morii), Edinet district where traces of human habitation throughout millenia have been found.

Zone 3: Karst developed in limestone formations in Eastern Moldova.

It includes rich karst formations, such as sinkholes, ponors, ditches, potholes and caves developed mainly in Lower and Middle Sarmatian limestones from the eastern part of the plain between the Prut and the left bank of the Dniester. “The Cave of Surprises " is part of this area and is located on the right bank of the Dniester. (Bușmachiu, 2010) With its galleries stretching for approximately 1700 m, this cave is the second largest after “Emil Racoviță”. On October 3rd 1992 Cryptophagus nitidulus L. Miller, 1858 was found here by A. Koral 30 m away from the entrance.

Zone 4: Karst developed in Pontian limestone formations.

It is situated on large areas in southern and south-eastern extremities of the country. The thickness of the limestone layer does not exceed 12 m, and is covered by a blanket of clay of about 25m thick. The exokarst missing and the endokarst was revealed with the help of drilling or through exploitation of limestone mines.

Pl. II. A and B: Monasteries established inside rupestrian caves. A: Tipova Rupestrian Monastery (on the right bank of the Dniester); B: Rupestrian Monastery from Butuceni (Răuțului Valley) (Photos V. Merlan). C and D: Maps of the limestone mines of Cricova (C) and Mileștii Mici (D).

IV – Karstic springs

Most of karst areas in Moldova are characterized by a sudden change in the groundwater flow regime, the lack of hydraulic connection between various underground aquifers and great differences between groundwater levels (water levels can vary by about 60-70m at wells located only 30-50 m apart from each other). The flow rates of surface rivers crossing karst areas may undergo considerable changes such as loss of water or pressurized water inflow from underground karst aquifers.

Pl. III. Karstic springs of Mândâc (A) and Cotova (B). (Photos in Overcenco et al. 2008).

Tabl. 2. Main karstic springs of Moldova (modified according to Gâlcă in Overcenco et al. 2008)

Table 2 shows the type of water, mineralization values ​​(low or moderate, which is characteristic of karst water ) (Verina, Botnaru, Tarigradskii, 1983) and flow rates of Moldova’s ten main karst springs located in the northern half of the Dniester basin. All the springs, presented throughout the year, have a relatively constant flow rate.

V – Mines, galleries and chiroptera

Those deposits are located mainly in the northern, north-eastern and central areas of the country (Edineț, Rășcani, Ocnoța, Rezina, Șoldănești, Orhei, Ialoveni districts and Chișinau municipality). They are oolitic Miocene limestone formations from Lower and Middle Sarmatian, which are stratified in layers ranging between 2 and 18 m thickness, with high porosity (30-40%) and uniform chemical composition (82-95% CaCO3). More than 80 such deposits have been exploited since the 1950s . Currently, many of these galleries, most of which are dry, are abandoned or have become conservation areas (see Table. 3); meanwhile, some have become habitats/shelters for bats, while others have become mushroom farms or wine storage rooms. Two mines are very important: Cricova and Milestii Mici. (Verina V. N. and Botnaru, 1985)

The former, Cricova (Pl. II, C), has galleries stretching for 60-80 km, all of them dug 35-80 m below the surface and a total area of 55 ha. Since 1952 some of these galleries have been used for wine production and wine storage. The constant temperatures (12-14 ° C) and the relative humidity (97-98%) inside them are ideal conditions for wine storing and lengthy wine aging The latter, Mileștii Mici (Pl. II, D), has galleries which stretch for 250 km and which have been dug at the same depth below the surface. The limestone extracted from here was used to rebuild Chisinau and Warsaw after their destruction during Second World War. Temperature and humidity are constant at 12-14 ° C and 85-95% respectively. In this mine, as in the case of Cricova, some galleries have been turned into "wine-cities". The “wine city” from Milești entered the "Guinness World Records Book" in 2005 as the largest wine warehouse and the Caves

and abandoned limestone mines are schelters for a numerous population of Chiroptera.

Thes galleries are their main habitat, especially during hibernation. For example, there are galleries near Saharna village, where have been identified 13 species of bats (Tabel 3) including Barbastella barbastellus (Schreber, 1774) and Myotis dasycneme (Boie, 1825). Galleries near Bicioc village are one of the largest artificial caves in Moldova, hosting 8 species (Tabel 4) of bats. Rhinolophus ferrumequinum (Schreber, 1774) was found here for the first time in the Moldova.

Table 3 – Shelters from (abandoned) mines and species of bats identified in them (Andreev, 2006)

Table 4 – The biological cycle and bats’ vulnerability in Rep. Moldova (after Decu, Murariu, Gheorghiu, 2003)

VI – Subterranean aquatic fauna

AMPHIPODA

In 1963, serval stygobitic species of Niphargidae were from karstic springs and deskribedby Dedju. Interstitial subterranean species has been also collected by Dedju in 1967 and 1980 and (Sidorov et al 2015).

Crangonictdae: Synurella ambulans (Müller 1846) recorded by Dedju (1967, 1980) in interstitial in northem Moldova in northern Moldova (Râșcani and Dondușeni district), hied in wells and substrat of slowflow zones with mud and abundante vegetation. (Sidorov et al 2015) The distribution of the species Moldova is probably more large (Konopacka et al. 2014).

Gammaridae: Two stygophile species were recorded: Gammarus balcanicus Schäferna, 1922; dicovered by Mushchinskij (1964) and collected in bore-holes on banks of Prut and Dnister river and Gammarus kischineffensis Schellenberg, 1937; rare species collected from bore-holes

Nifargidae: Niphargus birsteini Dedju, 1963; from Rauț River area (the Dniester basin), near the village of Piatra, Orhei district Niphargus jaroschenkoi Dedju, 1963 was found in a spring on the bank of the Prut near Bădragii Noi village, Edinet district. Niphargus corinae Dedju, 1963 and Niphargus hoverlicus Dedju, 1963. were collected in the Hoverla Masssif in Ukraine, on the upper Prut river near the Moldova border. Since the karstic springs of the respective sit are tributaries of the Prut and Danister it is quite possible that these species exist also in Moldova. This fauna has an origin Ponto-Caspian (Väinöla, et al. 2008). The low number of identified species is surprising compared to the number of species found in the neighbouring countries, but geollogically and paleogeographically speakhing, the fact that Moldova Plateau and its hydrological network were formed relatively recently has to be taken into consideration and seen as a possible cause (Konopacka et al. 2014). In Emil Racovitza cave during the first years of research (1977-1978) there were identified several stygophile specimens of the Tubicifidae Tubifex rivolorum Lamark, 1816 as well as the Protozoua Lagenophrys ampulla Stein. 1852.

VII – Fungi

The saprophytic fungi collected at the site are invasive, have been seen growing on different substrata (paper waste, or other organic substances) and were brought inside the cave after its opening; moreover, there have been collected samples of saprophytic fungi such as: Diasporangium jonesianum Höhnk, 1936, Gimnoascus reesii Bak; Arthocladiella Sp.; Perenospora Sp.; Zygorhynchus molleri Vuill și Mucor mucedo Linnaeus, 1753.

VIII – Microbiology

After the discovery of "Emil Racovitza" cave (1950) and the evacuation/pumping of the groundwater there were observed the first anthropic effects on the cave under the given circumstances. The phenomenon caused obvious alterations of the chemical composition of karstic waters by changing environmental geo-chemical values​​. The accumulation of oxygen in the cave led to the appearance of new minerals (Fe and Mn hydroxides); these new minerals have particular mineralogic characteristics and chemical composition, resembling oceanic nodules, being, of course, smaller in size than those due to the shorter active period in which they are formed (from several months to several years).

This phenomenon can be considered an accelerated anthropic experiment which highlights the layers of iron, manganese, etc. which can be seen in the cross sections which are also to be found in other caves where there is evidence of transition from a typically closed karst aquifer to a new hydrodynamic aquifer which is subject to direct oxygen intake.

In this context, until the late 80s, a characteristic feature of the cave fill and of the water in some lakes in the cave was the relatively high concentration of H2S present there. In time, the concentration level of H2S in the water has continuously decreased while the aquifer has been evacuted from the cave. Inferior organisms are fairly represented by a range of microorganisms which are active inside the cave due to favorable conditions: high humidity; no light source; a suitable substratum; the presence of organic matter; constant temperature which led to an explosion of microbial activity.

Among microorganisms, some of the most active are different types of iron bacteria. Microbial activity led to intense biochemical black and red rainfall. The most interesting formations are microbialites, which are rich in iron and have coatings, crusts, filamentous films, and coral-shaped, tube-shaped or veil-shaped stalactites and stalagmites, covering the walls and floors of the cave passages. There are also surfaces covered in still unidentified fungi. In the first half of the 80s microorganisms found at the site were studied in situ and in the laboratory (Klimciuk, A., 2004) to establish their role in the accumulation of hydrogen sulphide, sulphate and sulfur compounds development, production of CO2 and nitrogen, the accumulation of iron manganese sediment, their physiology, denitrification, methane forming bacteria and iron-oxidizing. New types and cycles of biochemical reactions taking place in the underground under the current environmental changes were observed and investigated. The main ecological types of environment were analyzed in the context of bacterial population growth in relation to their specific functional and physiological activity. Such six groups were identified: 1. Bacteria reducing sulphur (Desulfovibrio desulfuricans); 2. Denitrification bacteria (Pseudomonas denitrificans); 3. The hydrogen-producing bacteria (Clostridium); 4. Thionic bacteria (Thiobacillus ferrooxidans, Thiobacillus thioxidans, Thiobacillus thioparus, Thiobacillus denitrificans); 5. Fero–bacteria (iron – like bacteria); and 6. Fungi-like bacteria (scientifically unidentified). It was observed (Table 5) that the substratum favorable to the development of microorganisms in the cave is the superficial clays present on the floor and on the walls of the cave, superficial mud from lakes, the film on the surface of lakes, sediments of iron and manganese

hydroxides (Andrejchuk & Klimchouk, et al., 2009)

Crenothrix polyspora (discovered in 1870 by Ferdinand Cohn, founder of modern bacteriology) was detected in the cave. It is a genus of Gram negative bacterial cells of cylindrical or disc form that are divided by transverse sepsis. Forms coated filaments with a very fine sheath and inlaid with Fe or Mn oxides at the base. They are present in stagnant or flowing waters containing small amounts of organic substances and Fe. It can develop abundantly under favorable conditions, for example in water pipes (Zarnea & Popescu, 2011). Bacteria operates and oxidizes methane in aerobic conditions; it looks filamentous and reddens the water, it is the catalyst which reduces the amount of methane. Recent studies have shown that its genome sequence can play an important role in regulating the global carbon ratio in the current rough conditions for the Earth's climate, it may counteract the heating (global warming) process as the reduction of the amount of methane released by habitats is a must. Crenothrix polyspora Cohn, 1870 has a special protein that is not present in any other living organism, it thrives on "oxydising methane" in its cellular substance, incorporating greenhouse gas; moreover, it is able to assimilate carbon-carbon bonded substrata, it is the first oxidizing methane, with a filamentous morphology and a complex life cycle with several morphologically distinct developmental stages (Stocker, et al. 2006)

Table 5 – Bacteria growth substrata in Emil Racoviță cave.

Pl IV: 1. Fossilized clay speleothems; 2 and 3: filamentous microbial colonies in the form of stalactite or veil-shaped; 4 and 5: stalactitic colony of micro-organisms with accumulation of iron-manganese; 6 and 7: stalagmitic speleothems with the same bacterial composition (after Andrejczuk 2007; Andrejczuk et al., 2001).

IX – Conservation

It has been proposed to create a bat reserve in the mine called ”Țiganca (The Gipsy Woman)” near Cricova village and the gouvernment has recently declared it a Natural reserve with the special statuts of Bat Cave Prezerve for Myotis bechsteinii. In „Cosăuti” Landscape Reserve there have been identified no fewer than 14 species of bats (Tabel 4), including large horseshoed bat included in the IUCN Red List 2009.

Bibliography

ANDREEV. S. & BONDARENCO, A.– 2006. Liliecii ființe remarcabile. Chișinău, 36 pp.

ANDREJCZUK, W. – 2007. Jaskinia Zoluszka. Sosnowiec Simferopol, 408 pp.

ANDREJCHUK, V.N. & A.B. KLIMCHOUK, – 2001: Geomicrobiology and Redox Geochemistry of the Karstified Miocene Gypsum Aquifer, Western Ukraine: The study from Zoloushka Cave, Geomicrobiology – 18, 3: pp 275-295.

ANDREJCHUK, V.N., KLIMCHOUK A.B.,BOSTON P. & E. GALUSCHIN, – 2009: Unique iron-manganese colonies of microorganisms in Zoloushka Cave (Ukraine-Moldova), Speleology and Karstology, Simferopol.3: pp 5-25.

ARBORE, Z. C. – 1898: Basarabia în secolul XIX. București, 789 pp.

ARBORE, Z. C. – 1904 The Geographical Dictionary of Bessarabia, 1904 in Bucharest, in Ed.Saeculum I.O., ediția a III-a, București, 2012, 496 p. I Oprișan – ‎2013

BUȘMACHIU, G. – 2010, Checlist of springtails (Colembola) from the Republic of Moldova, Trav. Mus. Nat. Hist. Nat. «G. Antipa», 53: pp 149-160.

BOTNARU, V. B. – 2001: Etude des composés chimiques de métaux lourds dans la grotte de gypse “Emile Racovitza” (Zolusca, Moldavie). Actes des rencontres d’Octobre, Lisle-en-Rigault, 11, pp. 21-24.

BOTNARU, V., & O. MORARU, – 2008: Geochimia sedimentelor din sistemul carstic „Emil Racovitza”. Bul. Inst. Geol. Seismol., AȘM., 1, pp. 52-65. (In Russian).

DECU, V., MURARIU, D. & V. GHEORGHIU, – 2003: Chiropterele din Romania., Inst. Speol. "Emil coviță" și Muz. Naț. de Ist. Nat. "Grigore Antipa", București, 521 pp.

DEDYU, I. – 1963. Fauna subterană (Crustacea, Amphipoda) din Moldova. Zoologhiceskii jurnal, 42, 1, Ed. AȘ URSS, M. pp. 206-215. (In Russian).

DEDYU, I., – 1963. Fauna (Crustacea, Amphipoda) Carpaților din Ucraina. Flora și fauna din Carpați. Ed. AȘ URSS, M.pp.159-174. (In Russian).

DEDYU I. I., 1980, Amphipods of the fresh and brackish waters of the South-West USSR, Shtiintsa, Kishinev, 223 pp., (in Russian)

GULDEN B. – 2015: Worlds longest caves, The NSS Geo2 Long & Deep Caves Web Site is at http://www.caverbob.com

KLIMCIUK, A. – 2004. Ukraine gypsum caves and karst: pp. 745-748. In: J. Gunn (ed.), Encyclopaedia of caves and karst science. F. Dearborn, New York – London, 902 pp.

KONOPACKA, A., HUPAŁO, K., REWICZ T. & M. GRABOWSKI, – 2014. Species inventory and distribution patterns of freshwater amphipods in Moldova. North- Western Journal of Zoology, 10, 2 (online-first Oradea, 11 pp. http://biozoojournals.ro/nwjz/index.html,

MERLAN, V. – 2010. Peșterile rupestre din Basarabia. Spiritualitatea perenă românească de pe valea Răutului și cea a Nistrului. (online-first) www.lohanul.lx.ro, Lohanul, 1-6, pp.

MERLAN, V. – 2010. Carst și pseudocarst în Podișul Moldovei. (online-first ) www.lohanul.lx.ro), Lohanul, 4, 2, 12, pp. 1-4.

MORARU, C., ARNAUT, N., BOTNARU, V., MELNICIUC, O., GALCA, G., BUDESTEANU, S., MALEEVA, E., CADOCINICOV, O., MORARU, O., VLAICU, M., PETCULESCU, A. & V. TATOMIR – 2008. Carstul în gipsurile din nord-vestul Moldovei. Chișinău, 192 pp.

MORARU, C., BOTNARU, V. & E. MATVEEVA, – 2009. Geochimia rocilor cuaternare și neogene din extremitatea de nord-vest a Moldovei (în baza secțiunilor din cariera de gips Criva). Bul. Inst. Geol., Seismol., AȘM., 2, pp. 69-83 (In Russian).

OVERCENCO, A., MIHAILESCU, C., BOGDEVICI, O. & G. GALCA – 2008. Resursele acvatice ale Republicii Moldova. Fântâni și izvoare (Atlas ecologic). Ed. Știința, Chișinău, 208 pp.

STÖCKER, K., BENDINGER, B. & WAGNER, – 2006 Microbial ecology: Crenothrix polyspora – An unusual

methane oxidizer., BioSpektrum, 12, 7, pp 718-720.

SIDOROV, D.A. & O.A. Kovtun – 2015. Sinurella odessana sp. (crustacean, Amphipoda, Crangonyctidae), first report of the subterraneanamphipod from the catacombs of Odessa and its zoogeographic importance. Subterranean Biology, 15, pp 11-27

VERINA, V. N. – 1960. Carstul în Moldova. In: Ocrotirea naturii în Moldova. 1, Ed. Știința, Chișinău, pp. 86-93. (In Russian).

VERINA, V. N., PROCA, V. E., SPANU, N. I. & S. N. NAUMENKO – 2008. Peștera Zoluska. Buletinul AȘM, ser. Geof., Geol., 2, pp. 76- 82. (In Russian).

VERINA, V. N., BOTNARU, V. & V. TARIGRADSKII – 1983. Compoziția minerală a apelor din zona carstică Criva, Știința, Chișinău, pp. 125-132. (In Russian).

VERINA, V. N. & V. BOTNARU – 1985. Peisajele subterane și perspectiva utilizării lor. Ed. Știința, Chișinău, pp. 153-158. (In Russian).

VZNUZDAEV, S., 1963. Fenomene carstice in Republica Moldova, Buletinul AȘM, 2, pp.15-20. (In Russian).

VÄINÖLA, R., WIT, J.D.S., GRABOWSKI, M., BRADBURY, J.H., JAŹDŹEWSKI, K. & B. SKET – 2008, Global diversity amphipods (Amphipoda; Crustacea) in freshwater. Hydrobiologia 595: pp 241-255.

ZARNEA G, & O.V. POPESCU – 2011. Dicționar de microbiologie generală și Biologie moleculară, Ed. Acad, Române, București, 1339 pp.

Similar Posts